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Let A be an n × n matrix. We say that u is an eigenvector corre-
sponding to the eigenvalue λ if

(A− λI)u = 0.

We way u is a generalized eigenvector if there exists N > 1 such that

(A− λI)Nu = 0.

We want to show that there exists a basis of n generalized eigenvectors

P = (u1, . . . , un)

such that

P−1AP = diag(Bi),

where Bi is a square matrix of the form

Bi =


λi 1 0 . . . 0
0 λi 1 . . . 0
0 . . . λi . . . 1
0 0 0 . . . λi

 = diag(λi) +Ni.

The matrix Ni is nilpotent. See:
http://en.wikipedia.org/wiki/Nilpotent matrix

The proof is divided into several lemmas, which are of independent
interest.

For each λ ∈ C, let Aλ = A− λI. Let X = Cn.

Lemma 0.1.

X ⊃ R(Aλ) ⊃ · · · ⊃ R(Ak
λ) ⊃ R(Ak+1

λ ),

R(Ak+1
λ ) = AλR(Ak

λ)

Lemma 0.2.

0 ∈ N(Aλ) ⊂ N(A2
λ) ⊂ · · · ⊂ N(Ak

λ) ⊂ N(Ak+1
λ ),

N(Ak+1
λ ) = A−1

λ N(Ak
λ),

where A−1
λ denotes the pre-image of the mapping Aλ.
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Definition 0.3. There exists k ≥ 0 such that N(Ak
λ) = N(Ak+1

λ ).
The smallest such number is called the ascent of Aλ, and is denoted by
α(Aλ).

There exists k ≥ 0 such that R(Ak
λ) = R(Ak+1

λ ). The smallest such
number is called the descent of Aλ, and is denoted by δ(Aλ).

Remark 0.4. (1) If α(Aλ) = 0, then Aλ is nonsingular. If δ(Aλ) = 0,
then R(Aλ) = X. Again Aλ is nonsingular. Thus, α(Aλ) = 0 is
equivalent to δ(Aλ) = 0.

(2) R(Ak
λ) = R(Ak+1

λ ) for all k ≥ δ(Aλ). Similarly N(Ak
λ) = N(Ak+1

λ )
for all k ≥ α(Aλ).

Lemma 0.5. α := α(Aλ) = δ := δ(Aλ).

Proof. The proof is divided into two parts:
(1) Show α ≤ δ.

Since N(Aα−1
λ ) ̸= N(Aα

λ), there exists x0 ∈ N(Aα
λ) but x0 ̸= N(Aα−1

λ ).
Thus, y = Aα−1

λ x0 ̸= 0 but Aα
λx0 = 0. This shows that dimR(Aα

λ) <
dimR(Aα−1

λ ). Thus R(Aα−1
λ ) ̸= R(Aα

λ). Therefore δ(Aλ) ≥ α(Aλ).
(2) Show δ ≤ α.

Since R(Aδ−1
λ ) ̸= R(Aδ

λ), there exists y ∈ R(Aδ−1
λ ), y ̸= 0 but Aλy = 0.

Let y = Aδ−1
λ x0. Then Aδ−1

λ x0 ̸= 0 but Aδ
λx0 = 0. This shows that

N(Aδ−1
λ ) ̸= N(Aδ

λ). Therefore α(Aλ) ≥ δ(Aλ). �
Lemma 0.6. Let λ be an eigenvalue of A, and p := α(Aλ) = δ(Aλ).
Then:
(1) The matrix Aλ is nonsingular in R(Ap

λ).
(2) Let µ ̸= λ. Then the matrix Aµ is nonsingular in N(Ap

λ).

Proof. (1) If there exists x ∈ R(Ap
λ) such thatAλx = 0, thenAλR(Ap

λ) ̸=
R(Ap

λ), contradicting to p = δ(Aλ).
(2) Assume that there exists x ∈ N(Ap

λ) such that Aµx = 0. Since
x ∈ N(Ap

λ), there exists an integer k ≥ 0 such that Ak−1
λ x ̸= 0, Ak

λx =
0. Applying Ak−1

λ to

Aλx+ (λ− µ)x = 0,

we have (λ− µ)Ak−1
λ x = 0. This can occur only if λ− µ = 0. �

Our next man result shows that X is a direct sum of two invariant
subspaces R(Ap

λ)⊕N(Ap
λ) = X, where λ is nonsingular on R(Ap

λ) and
λ is the only eigenvalue for N(Ap

λ).

Lemma 0.7. Let p = α(Aλ) = δ(Aλ). Then

R(Ap
λ)⊕N(Ap

λ) = X.
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Proof. (1) We show that R(Ap
λ) ∩N(Ap

λ) = 0.

If y ∈ R(Ap
λ) ∩ N(Ap

λ), then y = Ap
λx and Ap

λy = 0. Thus A2p
λ x = 0.

x ∈ N(A2p
λ ) = N(Ap

λ). Thus A
p
λx = 0. This implies y = 0.

(2) We show that for any x ∈ X, there exist x1 ∈ R(Ap
λ), x2 ∈ N(Ap

λ)
such that x = x1 + x2.

Consider Ap
λx ∈ R(Ap

λ) = R(A2p
λ ). There exists y such that A2p

λ y =
Ap

λx. Thus
Ap

λ(x− Ap
λy) = 0.

Let x1 = Ap
λy, and x2 = x− x1. Then x1 ∈ R(Ap

λ), x2 ∈ N(Ap
λ). �

Let
λ1, . . . , λm

be a list of all the distinct eigenvalues of A, each associated with a
unique

pi = α(Aλi
) = δ(Aλi

).

We have shown
R(Api

λi
)⊕N(Api

λi
) = X.

Clearly N(Api
λi
) is the generalized eigenspace for λi.

We now show

Lemma 0.8.
⊕iN(Api

λi
) = X.

Proof. (1) We show that the generalized eigenspaces, each correspond-
ing to a distinct λi, are linearly independent. Let k be the smallest
integer such that x1 + · · · + xk = 0 where we assume, without loss of
generality, xj ∈ N(A

pj
λj
) and is nonzero.

Applying Ap1
λ1

to x1 + · · ·+ xk = 0, we have

Ap1
λ1
x2 + · · ·+ Ap1

λ1
xk = 0.

From Lemma 0.6, Ap1
λ1

is nonsingular in each of its invariant subspace

N(A
pj
λj
), j ̸= 1, and thus yj := Ap1

λ1
xj ̸= 0. We have y2 + · · · + yk = 0.

This is a contradiction to the minimal property of k.
(2) For any x ∈ X, we show, by induction, that it is possible to

express x as x = x1 + . . . xm with xi ∈ N(Api

λi
).

If m = 1, then R(Ap1
λ1
) ⊕ N(Ap1

λ1
). From Lemma 0.6, λ1 is not an

eigenvalue of A restricted to R(Ap1
λ1
). If R(Ap1

λ1
) ̸= 0, then the restriction

of A to it has no eigenvalue. This is a contradiction. Thus R(Ap1
λ1
) = 0

and X = N(Ap1
λ1
).

If the lemma is true for m − 1, then consider all the invariant sub-
spaces

N(Ap2
λ2
), . . . , N(Apm

λm
).
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They are all contained in R(Ap1
λ1
) because from Lemma 0.6, Aλ1 is

nonsingular in each N(A
pj
λj
), j ≥ 2. Therefore, if A is restricted to

R(Ap1
λ1
), it has all the eigenvalues λ2, . . . , λm but not λ1. This is due

to Lemma 0.6 that λ1 is not an eigenvalue in R(Ap1
λ1
). Based on the

induction assumption, for the case of m− 1 eigenvalues, we have

R(Ap1
λ1
) = ⊕2≤j≤mN(A

pj
λj
).

Thus

X = ⊕1≤j≤mN(A
pj
λj
).

�

To finish the construction of the Jordan canonical form, it remains
to show that in each generalized eigenspace N(A

pj
λj
), a cyclic basis can

be selected. The idea of the proof is illustrated in Figure 1.

Y
R(T)

R(T^(p−3))
R(T^(p−2))

x_i^3

x_i^(p−1)x_i^(p−1)

x_i^px_i^px_i^p

x_i^(p−1)

x_i^3x_i^3

x_i^2x_i^2

x_i^1 R(T^(p−1))

i = 1, ..., q_1 i = q_1 + 1, ..., q_2 i = q_2 + 1, ..., q_3

Figure 1. A cyclic basis can be selected for N(Ap
λ).

Let T be the restriction of the matrix Aλ to Y := N(Ap
λ) where λ is

one of the λj and p = pj. Since T p = 0 but T p−1 ̸= 0, R(T p−1) ̸= 0.
Let (x1

1, . . . , x
1
q1
) be a basis of R(T p−1). Each x1

i can be written as

x1
i = T p−1xp

i for some xp
i ∈ Y, i = 1, . . . , q1. If p > 1, set T p−2xp

i = x2
i ,

so that Tx2
i = x1

i . The vectors xk
i , k = 1, 2, i = 1, . . . , q1, belong to

R(T p−2) and are linearly independent. In fact,
∑

αix
2
i +

∑
βix

1
i = 0

implies
∑

αix
2
i = 0 on applying T and hence αi = 0 for all i, hence∑

βix
1
i = 0 and βi = 0 for all i. We can enlarge the family {xk

i } to a
basis ofR(T p−2) by adding, if necessary, new vectors x2

q1+1, . . . , x
2
q2
; here

we can arrange that Tx2
i = 0 for i > q1. (Proof: Consider Tx

2
i , i > q1,

which are in R(T p−1). Therefore Tx2
i , i > q1 can be written as a linear

combination of x1
i , i = 1, . . . , q1. We then subtracting x2

i , i > q1, by a
linear combination of x2

i , i = 1, . . . , q1 with the same coefficients. This
yields is a revised set of new vectors which are mapped to 0 by T .)
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If p > 2, we can repeat the process the same way. Finally, we arrive
at a basis {xk

i } of Y with the following properties: k = 1, . . . , p, j =
1, . . . , qk, q1 ≤ q2 ≤ · · · ≤ qp,

Txk
j =

{
xk−1
j , 1 ≤ j ≤ qk−1,

0, qk−1 + 1 ≤ j ≤ qk,

where we set q0 = 0.
If we arrange the basis {xk

j} in the order {x1
1, . . . , x

p
1, x

1
2, . . . , x

p
2, . . . },

the matrix of T with respect to this basis takes the form

0 1
0 1

· ·
· ·

0 1
0

0 1
0 1

· 1
0

· ·
· ·


Figures that illustrate the proofs.


