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Let A be an n x n matrix. We say that u is an eigenvector corre-
sponding to the eigenvalue A if

(A—A)u=0.

We way u is a generalized eigenvector if there exists N > 1 such that
(A= XDNu=0.

We want to show that there exists a basis of n generalized eigenvectors
P = (uy,...,uy)

such that
P 'AP = diag(B;),

where B; is a square matrix of the form

A 1 0...0
0 A L..0| .

Bi=1¢o . . 1| = diag(h) + N
0 0 0.\

The matrix N; is nilpotent. See:
http://en.wikipedia.org/wiki/Nilpotent_matrix

The proof is divided into several lemmas, which are of independent
interest.

For each A € C, let Ay = A — \[. Let X =C".
Lemma 0.1.
X D R(A)) D -+ D R(A}) o R(AYT),
R(AS™) = A\R(A})
Lemma 0.2.
0€ N(Ay) C N(A3) C--- C N(AY) € N(AFHY),
N (A = AJIN(AY),

where Ay denotes the pre-image of the mapping Aj.
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Definition 0.3. There exists k > 0 such that N(Af) = N(AF™).
The smallest such number is called the ascent of Ay, and is denoted by
Oé(A)\).

There ezists k > 0 such that R(AY) = R(A5™). The smallest such
number is called the descent of Ay, and is denoted by 6(Ay).

Remark 0.4. (1) If a(Ay) = 0, then A, is nonsingular. If 6(Ay) = 0,
then R(Ay) = X. Again A, is nonsingular. Thus, a(A)) = 0 is
equivalent to 6(Ay) = 0.

for all k > a(A,).
Lemma 0.5. o := a(A4)) =0 :=(A)).

Proof. The proof is divided into two parts:

(1) Show o < 6.
Since N(A$™1) # N(AY), there exists zy € N(A$) but xg # N(A$™).
Thus, y = AY 'zy # 0 but ASzy = 0. This shows that dimR(A§) <
dimR(A™1). Thus R(AS™") # R(A$). Therefore §(Ay) > a(Ay).

(2) Show 4 < a.
Since R(A‘f\’l) # R(A3), there exists y € R(A‘f\’l), y # 0 but Ayy = 0.
Let y = A‘f\_lxo. Then A‘f\_laro # 0 but ASz¢ = 0. This shows that

N(AS™) # N(A3). Therefore a(Ay) > 5(Ay). O
Lemma 0.6. Let A be an eigenvalue of A, and p := a(Ay) = 0(A)).
Then:

(1) The matriz Ay is nonsingular in R(AY).
(2) Let 1 # X. Then the matriz A, is nonsingular in N(AY).

Proof. (1) If there exists x € R(AY) such that Ayz = 0, then A\R(AY) #
R(AY), contradicting to p = §(A,).

(2) Assume that there exists x € N(AY) such that A,z = 0. Since
x € N(AR), there exists an integer k > 0 such that A5~ 'x £ 0, Akz =
0. Applying Alj\_l to

A+ AN—p)z =0,
we have (A — p) A% 'z = 0. This can occur only if A — = 0. O

Our next man result shows that X is a direct sum of two invariant
subspaces R(AY) @& N(AY) = X, where A is nonsingular on R(A%) and
A is the only eigenvalue for N(AY).

Lemma 0.7. Let p = a(Ay) = 6(Ay). Then
R(AY) @ N(AY) = X.



Proof. (1) We show that R(AY) N N(AY) = 0.
If y € R(AY) N N(AP), then y = A%z and APy = 0. Thus Az = 0.
x € N(A¥) = N(A?). Thus APz = 0. This implies y = 0.

(2) We show that for any = € X, there exist z; € R(AL), zo € N(AY)
such that r = 1 + 2.

Consider A%z € R(AY) = R(A}). There exists y such that AYy =
A¥x. Thus

Af(z — AJy) = 0.

Let 1 = Ay, and 25 = x — xy. Then x; € R(AY), 20 € N(AY). O

Let
Ay A
be a list of all the distinct eigenvalues of A, each associated with a
unique
pi = a(Ay,) = 6(Ax).
We have shown
R(AY) @ N(AY) = X.
Clearly N(AY') is the generalized eigenspace for A;.
We now show

Lemma 0.8.

Proof. (1) We show that the generalized eigenspaces, each correspond-
ing to a distinct \;, are linearly independent. Let k be the smallest
integer such that z; + --- 4+ xp = 0 where we assume, without loss of
generality, x; € N (Ai? ) and is nonzero.

Applying A% to xy + -+ 4 2 = 0, we have

Al wy + -+ Al = 0,
From Lemma 0.6, A%} is nonsingular in each of its invariant subspace
N(Ag’é),j # 1, and thus y; := Af'z; # 0. We have yp +--- + 3 = 0.
This is a contradiction to the minimal property of k.

(2) For any x € X, we show, by induction, that it is possible to
express r as £ = 1+ ...T,, with x; € N(Aiz_).

If m = 1, then R(AY!) @ N(AY). From Lemma 0.6, A; is not an
eigenvalue of A restricted to R(A%}). If R(AY}) # 0, then the restriction
of A to it has no eigenvalue. This is a contradiction. Thus R(A}!) =0
and X = N(AY)).

If the lemma is true for m — 1, then consider all the invariant sub-

spaces
N(ASZ),...,N(AS™).



4

They are all contained in R(AY!) because from Lemma 0.6, Ay, is
nonsingular in each N (Aié ),7 = 2. Therefore, if A is restricted to
R(AY!), it has all the eigenvalues Mg, ..., A, but not A;. This is due
to Lemma 0.6 that A; is not an eigenvalue in R(A%!). Based on the
induction assumption, for the case of m — 1 eigenvalues, we have

R(AR}) = @2<jem N(AY).
Thus
X = ®1<jmN(AY).
O
To finish the construction of the Jordan canonical form, it remains

to show that in each generalized eigenspace N (A];\JJ ), a cyclic basis can
be selected. The idea of the proof is illustrated in Figure 1.

i=1,..,0q.1 i=q 1+1,..,02 i=gq_2+1,..,03
‘ x_i"p ‘ ‘ X_i"p ‘ ‘ X_i"p ‘
L xie) || xven || xreen |
Y R(T) ‘ x_i"3 ‘ ‘ x_i"3 ‘ ‘ x_i"3 ‘
| X_in2 | xi2 | R(TA(p-3))
R(T"(p-2))
= R(Mp-D)

FIGURE 1. A cyclic basis can be selected for N(A%).

Let T be the restriction of the matrix Ay to Y := N(A%) where A is
one of the \; and p = p;. Since T? = 0 but 77~ # 0, R(T*" ') # 0.
Let (zf,...,z, ) be a basis of R(T?~'). Each x; can be written as
i =TP 2l forsome 2? € Yi=1,....q.. lf p > 1, set TP~ 22! = 22,
so that Tz? = z}. The vectors 2%, k = 1,2,i = 1,...,q, belong to
R(TP72) and are linearly independent. In fact, Y aza? + > izl = 0
implies Y a;z? = 0 on applying T and hence «o; = 0 for all 4, hence
S Bzl =0 and B; = 0 for all i. We can enlarge the family {z¥} to a
basis of R(T?~?) by adding, if necessary, new vectors :E31+1, e ,:1:22; here
we can arrange that Tz? = 0 for i > ¢,. (Proof: Consider Tz?,i > ¢,
which are in R(T?~1). Therefore Tx?,i > ¢, can be written as a linear
combination of x},i = 1,...,q. We then subtracting z?,7 > ¢, by a
linear combination of 2%,i = 1,..., ¢, with the same coefficients. This
yields is a revised set of new vectors which are mapped to 0 by T'.)
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If p > 2, we can repeat the process the same way. Finally, we arrive
at a basis {z¥} of Y with the following properties: k = 1,...,p,j =

17"'7Qkaq1§q2§“'SQ;m

ok xffl, 1 <7< gk,
:L‘] — .
0, -1 +1 <7 <q,

where we set gy = 0.

If we arrange the basis {27} in the order {1, ..., 2, 23, ..., 25, ...},
the matrix of T" with respect to this basis takes the form
01
01
0 1
0
01
01
1
0

Figures that illustrate the proofs.



