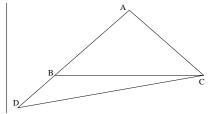
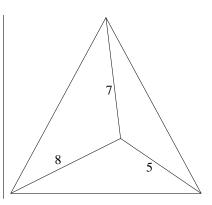
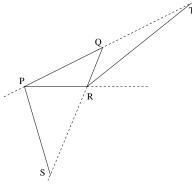
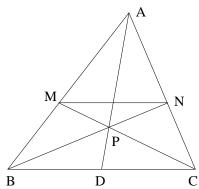
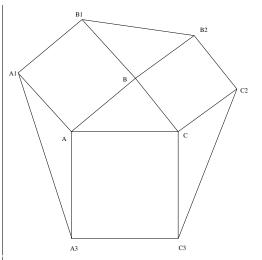

1. In $\triangle ABC$, $m(\angle BAC)=80^o$, $m(\angle ACB)=20^o$ and CD=AB. What is $m(\angle CBD)$?

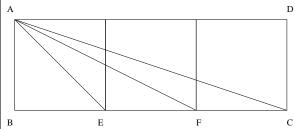

2. Point E is inside square ABCD with $BE = \sqrt{5}, \ CE = 1, \ \text{and} \ DE = \sqrt{3}.$ What is $m(\angle DEC)$?


3. A quadrilateral ABCD is inscribed in a circle with AD a diameter, $AB=3,\ BC=4,$ and CD=5. What is the diameter of the circle?


4. In an isosceles triangle $\triangle ABC$, $m(\angle B) = m(\angle C) = 40^{\circ}$, AB is extended past B to D so that AD = BC. What is $m(\angle BCD)$?


5. An interior point in an equilateral triangle is located at distances of 5, 7 and 8 from the three vertices. What is the (common) length of the sides?


6. In $\triangle PQR$, QR < PR < PQ so that the exterior angle bisector through P intersects ray \overrightarrow{QR} at point S, and the exterior angle bisector at R intersects ray \overrightarrow{PQ} at point T, as shown on the right. Given that PR = PS = RT, determine, with proof, the measure of $\angle PRQ$.


7. Let AD be the median of $\overrightarrow{\Delta ABC}$. Let P be an arbitrary point on AD. If the rays \overrightarrow{CP} and \overrightarrow{BP} intersect AC and AB at N and M respectively, show that MN is parallel to BC.

8. Let $\Box ABA_1B_1$, $\Box BCB_2C_2$ and ACA_3C_3 be squares that are attached to the outside a triangle $\triangle ABC$. If the lengths of the segments $\overline{B_1B_2}$, $\overline{C_2C_3}$ and $\overline{A_3A_1}$ are given. How can the sides of the triangle $\triangle ABC$ be determined?

9. The rectangle $\Box ABCD$ is the union of three squares of equal size. Determine the sum of three angles $\angle AEB + \angle AFB + \angle ACB$.

