1. In $\triangle A B C, m(\angle B A C)=80^{\circ}, m(\angle A C B)=20^{\circ}$ and $C D=A B$. What is $m(\angle C B D)$?

2. Point E is inside square $A B C D$ with $B E=\sqrt{5}, C E=1$, and $D E=\sqrt{3}$. What is $m(\angle D E C)$?

3. A quadrilateral $A B C D$ is inscribed in a circle with $A D$ a diameter, $A B=3, B C=4$, and $C D=5$. What is the diameter of the circle?

4. In an isosceles triangle $\triangle A B C, m(\angle B)=m(\angle C)=40^{\circ}, A B$ is extended past B to D so that $A D=B C$. What is $m(\angle B C D)$?

5. An interior point in an equilateral triangle is located at distances of 5,7 and 8 from the three vertices. What is the (common) length of the sides?

6. In $\triangle P Q R, Q R<P R<P Q$ so that the exterior angle bisector through P intersects ray $\overrightarrow{Q R}$ at point S, and the exterior angle bisector at R intersects ray $\overrightarrow{P Q}$ at point T, as shown on the right. Given that $P R=P S=R T$, determine, with proof, the measure of $\angle P R Q$.

7. Let $\square A B A_{1} B_{1}, \square B C B_{2} C_{2}$ and $A C A_{3} C_{3}$ be squares that are attached to the outside a triangle $\triangle A B C$. If the lengths of the segments $\overline{B_{1} B_{2}}, \overline{C_{2} C_{3}}$ and $\overline{A_{3} A_{1}}$ are given. How can the sides of the triangle $\triangle A B C$ be determined?

8. The rectangle $\square A B C D$ is the union of three squares of ${ }_{\text {A }}$ equal size. Determine the sum of three angles $\angle A E B+$ $\angle A F B+\angle A C B$.

