A Geometric Proof for the Jordan Canonical Form of a matrix A

Xiao-Biao Lin

Department of mathematics
North Carolina State University
Raleigh, NC 27695-8205
Let A be an $n \times n$ matrix. We say that u is an eigenvector corresponding to the eigenvalue λ if

$$
(A-\lambda I) u=0 .
$$

We way u is a generalized eigenvector if there exists $N>1$ such that

$$
(A-\lambda I)^{N} u=0 .
$$

The smallest of such N is called the flag of the generalized eigenvector u. If u is a generalized eigenvector of flag N, then the sequence of vectors

$$
u,(A-\lambda I) u, \ldots,(A-\lambda I)^{N-1} u
$$

are all generalized eigenvectors of descending flags. The last entry $(A-\lambda I)^{N-1} u$ is of flag one and is just a regular eigenvector. One can verify that the vectors in the sequence are all linearly independent.

Theorem 0.1. [Jordan Canonical form] There exists a basis of n generalized eigenvectors

$$
P=\left(u_{1}, \ldots, u_{n}\right)
$$

such that

$$
P^{-1} A P=\operatorname{diag}\left(B_{i}\right), \quad, i=1, \ldots, m
$$

where B_{i} is a square matrix of the form

$$
B_{i}=\left(\begin{array}{ccc}
\lambda_{i} & 1 & 0 \ldots 0 \\
0 & \lambda_{i} & 1 \ldots 0 \\
0 & \ldots & \lambda_{i} \ldots 1 \\
0 & 0 & 0 \ldots \lambda_{i}
\end{array}\right)=\operatorname{diag}\left(\lambda_{i}\right)+N_{i} .
$$

The matrices $N_{i}, i=1, \ldots, m$, is nilpotent.
See http://en.wikipedia.org/wiki/Nilpotent_matrix
The proof of Theorem 0.1 is divided into several lemmas, which are of independent interest.

For each $\lambda \in \mathbb{C}$, let $A_{\lambda}=A-\lambda I$. Let $X=\mathbb{C}^{n}$.

Lemma 0.2.

$$
\begin{gathered}
X \supset R\left(A_{\lambda}\right) \supset \cdots \supset R\left(A_{\lambda}^{k}\right) \supset R\left(A_{\lambda}^{k+1}\right), \\
R\left(A_{\lambda}^{k+1}\right)=A_{\lambda} R\left(A_{\lambda}^{k}\right) \\
1
\end{gathered}
$$

Lemma 0.3 .

$$
\begin{aligned}
& 0 \in N\left(A_{\lambda}\right) \subset N\left(A_{\lambda}^{2}\right) \subset \cdots \subset N\left(A_{\lambda}^{k}\right) \subset N\left(A_{\lambda}^{k+1}\right) \\
& N\left(A_{\lambda}^{k+1}\right)=A_{\lambda}^{-1} N\left(A_{\lambda}^{k}\right)
\end{aligned}
$$

where A_{λ}^{-1} denotes the pre-image of the mapping A_{λ}.
Definition 0.4. There exists $k \geq 0$ such that $N\left(A_{\lambda}^{k}\right)=N\left(A_{\lambda}^{k+1}\right)$. The smallest such number is called the ascent of A_{λ}, and is denoted by $\alpha\left(A_{\lambda}\right)$.

There exists $k \geq 0$ such that $R\left(A_{\lambda}^{k}\right)=R\left(A_{\lambda}^{k+1}\right)$. The smallest such number is called the descent of A_{λ}, and is denoted by $\delta\left(A_{\lambda}\right)$.

Remark 0.5. (1) If $\alpha\left(A_{\lambda}\right)=0$, then A_{λ} is nonsingular. If $\delta\left(A_{\lambda}\right)=0$, then $R\left(A_{\lambda}\right)=X$. Again A_{λ} is nonsingular. Thus, $\alpha\left(A_{\lambda}\right)=0$ is equivalent to $\delta\left(A_{\lambda}\right)=0$.
(2) $R\left(A_{\lambda}^{k}\right)=R\left(A_{\lambda}^{k+1}\right)$ for all $k \geq \delta\left(A_{\lambda}\right)$. Similarly $N\left(A_{\lambda}^{k}\right)=N\left(A_{\lambda}^{k+1}\right)$ for all $k \geq \alpha\left(A_{\lambda}\right)$.

Lemma 0.6. $\alpha:=\alpha\left(A_{\lambda}\right)=\delta:=\delta\left(A_{\lambda}\right)$.
Proof. The proof is divided into two parts:
(1) Show $\alpha \leq \delta$.

Since $N\left(A_{\lambda}^{\alpha-1}\right) \neq N\left(A_{\lambda}^{\alpha}\right)$, there exists $x_{0} \in N\left(A_{\lambda}^{\alpha}\right)$ but $x_{0} \neq N\left(A_{\lambda}^{\alpha-1}\right)$. Thus, $y=A_{\lambda}^{\alpha-1} x_{0} \neq 0$ but $A_{\lambda}^{\alpha} x_{0}=0$. This shows that $\operatorname{dim} R\left(A_{\lambda}^{\alpha}\right)<$ $\operatorname{dim} R\left(A_{\lambda}^{\alpha-1}\right)$. Thus $R\left(A_{\lambda}^{\alpha-1}\right) \neq R\left(A_{\lambda}^{\alpha}\right)$. Therefore $\delta\left(A_{\lambda}\right) \geq \alpha\left(A_{\lambda}\right)$.
(2) Show $\delta \leq \alpha$.

Since $R\left(A_{\lambda}^{\delta-1}\right) \neq R\left(A_{\lambda}^{\delta}\right)$, there exists $y \in R\left(A_{\lambda}^{\delta-1}\right), y \neq 0$ but $A_{\lambda} y=0$. Let $y=A_{\lambda}^{\delta-1} x_{0}$. Then $A_{\lambda}^{\delta-1} x_{0} \neq 0$ but $A_{\lambda}^{\delta} x_{0}=0$. This shows that $N\left(A_{\lambda}^{\delta-1}\right) \neq N\left(A_{\lambda}^{\delta}\right)$. Therefore $\alpha\left(A_{\lambda}\right) \geq \delta\left(A_{\lambda}\right)$.

Lemma 0.7. Let λ be an eigenvalue of A, and $p:=\alpha\left(A_{\lambda}\right)=\delta\left(A_{\lambda}\right)$. Then:
(1) The matrix A_{λ} is nonsingular in $R\left(A_{\lambda}^{p}\right)$.
(2) Let $\mu \neq \lambda$. Then the matrix A_{μ} is nonsingular in $N\left(A_{\lambda}^{p}\right)$.

Proof. (1) If there exists $x \in R\left(A_{\lambda}^{p}\right)$ such that $A_{\lambda} x=0$, then $A_{\lambda} R\left(A_{\lambda}^{p}\right) \neq$ $R\left(A_{\lambda}^{p}\right)$, contradicting to $p=\delta\left(A_{\lambda}\right)$.
(2) Assume that there exists $x \in N\left(A_{\lambda}^{p}\right)$ such that $A_{\mu} x=0$. Since $x \in N\left(A_{\lambda}^{p}\right)$, there exists an integer $k \geq 0$ such that $A_{\lambda}^{k-1} x \neq 0, A_{\lambda}^{k} x=$ 0 . Applying A_{λ}^{k-1} to

$$
A_{\lambda} x+(\lambda-\mu) x=0,
$$

we have $(\lambda-\mu) A_{\lambda}^{k-1} x=0$. This can occur only if $\lambda-\mu=0$.

Our next man result shows that X is a direct sum of two invariant subspaces $R\left(A_{\lambda}^{p}\right) \oplus N\left(A_{\lambda}^{p}\right)=X$, where λ is nonsingular on $R\left(A_{\lambda}^{p}\right)$ and λ is the only eigenvalue for $N\left(A_{\lambda}^{p}\right)$.

Lemma 0.8. Let $p=\alpha\left(A_{\lambda}\right)=\delta\left(A_{\lambda}\right)$. Then

$$
R\left(A_{\lambda}^{p}\right) \oplus N\left(A_{\lambda}^{p}\right)=X .
$$

Proof. (1) We show that $R\left(A_{\lambda}^{p}\right) \cap N\left(A_{\lambda}^{p}\right)=0$.
If $y \in R\left(A_{\lambda}^{p}\right) \cap N\left(A_{\lambda}^{p}\right)$, then $y=A_{\lambda}^{p} x$ and $A_{\lambda}^{p} y=0$. Thus $A_{\lambda}^{2 p} x=0$. $x \in N\left(A_{\lambda}^{2 p}\right)=N\left(A_{\lambda}^{p}\right)$. Thus $A_{\lambda}^{p} x=0$. This implies $y=0$.
(2) We show that for any $x \in X$, there exist $x_{1} \in R\left(A_{\lambda}^{p}\right), x_{2} \in N\left(A_{\lambda}^{p}\right)$ such that $x=x_{1}+x_{2}$.

Consider $A_{\lambda}^{p} x \in R\left(A_{\lambda}^{p}\right)=R\left(A_{\lambda}^{2 p}\right)$. There exists y such that $A_{\lambda}^{2 p} y=$ $A_{\lambda}^{p} x$. Thus

$$
A_{\lambda}^{p}\left(x-A_{\lambda}^{p} y\right)=0 .
$$

Let $x_{1}=A_{\lambda}^{p} y$, and $x_{2}=x-x_{1}$. Then $x_{1} \in R\left(A_{\lambda}^{p}\right), x_{2} \in N\left(A_{\lambda}^{p}\right)$.
Let

$$
\lambda_{1}, \ldots, \lambda_{m}
$$

be a list of all the distinct eigenvalues of A, each associated with a unique

$$
p_{i}=\alpha\left(A_{\lambda_{i}}\right)=\delta\left(A_{\lambda_{i}}\right) .
$$

We have shown

$$
R\left(A_{\lambda_{i}}^{p_{i}}\right) \oplus N\left(A_{\lambda_{i}}^{p_{i}}\right)=X
$$

Clearly $N\left(A_{\lambda_{i}}^{p_{i}}\right)$ is the generalized eigenspace for λ_{i}.
We now show

Lemma 0.9.

$$
\oplus_{i} N\left(A_{\lambda_{i}}^{p_{i}}\right)=X .
$$

Proof. (1) We show that the generalized eigenspaces, each corresponding to a distinct λ_{i}, are linearly independent. Let k be the smallest integer such that $x_{1}+\cdots+x_{k}=0$ where we assume, without loss of generality, $x_{j} \in N\left(A_{\lambda_{j}}^{p_{j}}\right)$ and is nonzero.

Applying $A_{\lambda_{1}}^{p_{1}}$ to $x_{1}+\cdots+x_{k}=0$, we have

$$
A_{\lambda_{1}}^{p_{1}} x_{2}+\cdots+A_{\lambda_{1}}^{p_{1}} x_{k}=0 .
$$

From Lemma 0.7, $A_{\lambda_{1}}^{p_{1}}$ is nonsingular in each of its invariant subspace $N\left(A_{\lambda_{j}}^{p_{j}}\right), j \neq 1$, and thus $y_{j}:=A_{\lambda_{1}}^{p_{1}} x_{j} \neq 0$. We have $y_{2}+\cdots+y_{k}=0$. This is a contradiction to the minimal property of k.
(2) For any $x \in X$, we show, by induction, that it is possible to express x as $x=x_{1}+\ldots x_{m}$ with $x_{i} \in N\left(A_{\lambda_{i}}^{p^{i}}\right)$.

If $m=1$, then $R\left(A_{\lambda_{1}}^{p_{1}}\right) \oplus N\left(A_{\lambda_{1}}^{p_{1}}\right.$. From Lemma $0.7, \lambda_{1}$ is not an eigenvalue of A restricted to $R\left(A_{\lambda_{1}}^{p_{1}}\right)$. If $R\left(A_{\lambda_{1}}^{p_{1}}\right) \neq 0$, then the restriction of A to it has no eigenvalue. This is a contradiction. Thus $R\left(A_{\lambda_{1}}^{p_{1}}\right)=0$ and $X=N\left(A_{\lambda_{1}}^{p_{1}}\right)$.

If the lemma is true for $m-1$, then consider all the invariant subspaces

$$
N\left(A_{\lambda_{2}}^{p_{2}}\right), \ldots, N\left(A_{\lambda_{m}}^{p_{m}}\right) .
$$

They are all contained in $R\left(A_{\lambda_{1}}^{p_{1}}\right)$ because from Lemma $0.7, A_{\lambda_{1}}$ is nonsingular in each $N\left(A_{\lambda_{j}}^{p_{j}}\right), j \geq 2$. Therefore, if A is restricted to $R\left(A_{\lambda_{1}}^{p_{1}}\right)$, it has all the eigenvalues $\lambda_{2}, \ldots, \lambda_{m}$ but not λ_{1}. This is due to Lemma 0.7 that λ_{1} is not an eigenvalue in $R\left(A_{\lambda_{1}}^{p_{1}}\right)$. Based on the induction assumption, for the case of $m-1$ eigenvalues, we have

$$
R\left(A_{\lambda_{1}}^{p_{1}}\right)=\oplus_{2 \leq j \leq m} N\left(A_{\lambda_{j}}^{p_{j}}\right) .
$$

Thus

$$
X=\oplus_{1 \leq j \leq m} N\left(A_{\lambda_{j}}^{p_{j}}\right) .
$$

Figure 1. A cyclic basis can be selected for $N\left(A_{\lambda}^{p}\right)$.
To finish the proof of Theorem 0.1, it remains to show that in each generalized eigenspace $N\left(A_{\lambda_{j}}^{p_{j}}\right)$, a cyclic basis can be selected. The idea of the proof is illustrated in Figure 1. The top, left box holds generalized eigenvectors of flag p, pick $u=x_{i}^{p}, i=1, \ldots, q_{1}$ from that box, then $\left(A_{\lambda_{1}} u, A_{\lambda_{1}}^{2} u, \ldots, A_{\lambda_{1}}^{p-1} u\right)$ are placed sequentially below on the the first column of boxes. Similarly the top, second-from-left box contains generalized eigenvectors of flag $p-1$. Pick $u=x_{i}^{p}, i=q_{1}+1, \ldots, q_{2}$ from that box and apply powers of $A_{\lambda_{2}}$ to u generates the second column of boxes, etc. Note the second column has only $p-1$ boxes because the flag number of the vectors from the top box is smaller.

However, it is impossible to find vectors in the top, left box since vectors of flag p do not form a linear subspace. instead, we start by finding vectors in the bottom box of the first column since they do form the linear subspace $R\left(A_{\lambda_{1}}^{p-1}\right)$. This suggests the following construction.

Let T be the restriction of the matrix A_{λ} to $Y:=N\left(A_{\lambda}^{p}\right)$ where λ is one of the λ_{j} and $p=p_{j}$. Since $T^{p}=0$ but $T^{p-1} \neq 0$, we have $R\left(T^{p-1}\right) \neq\{0\}$. Let $\left(x_{1}^{1}, \ldots, x_{q_{1}}^{1}\right)$ be a basis of $R\left(T^{p-1}\right)$. Each x_{i}^{1} can be written as $x_{i}^{1}=T^{p-1} x_{i}^{p}$ for some $x_{i}^{p} \in Y, i=1, \ldots, q_{1}$. If $p>1$, set $T^{p-2} x_{i}^{p}=x_{i}^{2}$, so that $T x_{i}^{2}=x_{i}^{1}$. The vectors $x_{i}^{k}, k=1,2, i=1, \ldots, q_{1}$, belong to $R\left(T^{p-2}\right)$ and are linearly independent. In fact, $\sum \alpha_{i} x_{i}^{2}+$ $\sum \beta_{i} x_{i}^{1}=0$ implies $\sum \alpha_{i} x_{i}^{2}=0$ on applying T and hence $\alpha_{i}=0$ for all i, hence $\sum \beta_{i} x_{i}^{1}=0$ and $\beta_{i}=0$ for all i. We can enlarge the family $\left\{x_{i}^{k}\right\}, k=1,2$, to a basis of $R\left(T^{p-2}\right)$ by adding, if necessary, new vectors $x_{q_{1}+1}^{2}, \ldots, x_{q_{2}}^{2}$; here we can arrange that $T x_{i}^{2}=0$ for $i>q_{1}$. (Proof: Consider $T x_{i}^{2}, i>q_{1}$, which are in $R\left(T^{p-1}\right)$. Therefore $T x_{i}^{2}, i>q_{1}$ can be written as a linear combination of $x_{i}^{1}, i=1, \ldots, q_{1}$. We then subtracting $x_{i}^{2}, i>q_{1}$, by a linear combination of $x_{i}^{2}, i=1, \ldots, q_{1}$ with the same coefficients. This yields is a revised set of new vectors which are mapped to 0 by T.)

If $p>2$, we can repeat the process the same way. Finally, we arrive at a basis $\left\{x_{i}^{k}\right\}$ of Y with the following properties: For each $k=1, \ldots, p$, the index $j=1, \ldots, q_{k}$, where $q_{1} \leq q_{2} \leq \cdots \leq q_{p}$. Moreover,

$$
T x_{j}^{k}= \begin{cases}x_{j}^{k-1}, & 1 \leq j \leq q_{k-1}, \\ 0, & q_{k-1}+1 \leq j \leq q_{k}\end{cases}
$$

where we set $q_{0}=0$.
If we arrange the basis $\left\{x_{j}^{k}\right\}$ in the order $\left\{x_{1}^{1}, \ldots, x_{1}^{p}, x_{2}^{1}, \ldots, x_{2}^{p}, \ldots\right\}$, the matrix of T with respect to this basis takes the form

$$
\left(\begin{array}{cccccccccccc}
0 & 1 & & & & & & & & & & \\
& 0 & 1 & & & & & & & & & \\
& & & \cdot & & & & & & & & \\
& & & \cdot & \cdot & & & & & & & \\
& & & & \cdot & & & & & & & \\
& & & & 0 & 1 & & & & & & \\
& & & & & 0 & & & & & & \\
& & & & & & 0 & 1 & & & & \\
& & & & & & & 0 & 1 & & & \\
& & & & & & & & \cdot & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & \cdot & \\
& & & \\
& &
\end{array}\right)
$$

