A Geometric Proof for the Jordan Canonical Form of a matrix ${\cal A}$

Xiao-Biao Lin Department of mathematics North Carolina State University Raleigh, NC 27695-8205

Let A be an $n \times n$ matrix. We say that u is an eigenvector corresponding to the eigenvalue λ if

$$(A - \lambda I)u = 0.$$

We way u is a generalized eigenvector if there exists N > 1 such that

$$(A - \lambda I)^N u = 0$$

The smallest of such N is called the flag of the generalized eigenvector u. If u is a generalized eigenvector of flag N, then the sequence of vectors

$$u, (A - \lambda I)u, \dots, (A - \lambda I)^{N-1}u$$

are all generalized eigenvectors of descending flags. The last entry $(A - \lambda I)^{N-1}u$ is of flag one and is just a regular eigenvector. One can verify that the vectors in the sequence are all linearly independent.

Theorem 0.1. [Jordan Canonical form] There exists a basis of n generalized eigenvectors

$$P = (u_1, \ldots, u_n)$$

such that

$$P^{-1}AP = diag(B_i), \quad , i = 1, \dots, m$$

where B_i is a square matrix of the form

$$B_i = \begin{pmatrix} \lambda_i & 1 & 0 \dots 0 \\ 0 & \lambda_i & 1 \dots 0 \\ 0 & \dots & \lambda_i \dots 1 \\ 0 & 0 & 0 \dots \lambda_i \end{pmatrix} = diag(\lambda_i) + N_i.$$

The matrices N_i , i = 1, ..., m, is nilpotent.

See http://en.wikipedia.org/wiki/Nilpotent_matrix

The proof of Theorem 0.1 is divided into several lemmas, which are of independent interest.

For each $\lambda \in \mathbb{C}$, let $A_{\lambda} = A - \lambda I$. Let $X = \mathbb{C}^n$.

Lemma 0.2.

$$\begin{split} X \supset R(A_{\lambda}) \supset \cdots \supset R(A_{\lambda}^{k}) \supset R(A_{\lambda}^{k+1}), \\ R(A_{\lambda}^{k+1}) &= A_{\lambda}R(A_{\lambda}^{k}) \\ 1 \end{split}$$

Lemma 0.3.

$$0 \in N(A_{\lambda}) \subset N(A_{\lambda}^{2}) \subset \dots \subset N(A_{\lambda}^{k}) \subset N(A_{\lambda}^{k+1}),$$
$$N(A_{\lambda}^{k+1}) = A_{\lambda}^{-1}N(A_{\lambda}^{k}),$$

where A_{λ}^{-1} denotes the pre-image of the mapping A_{λ} .

Definition 0.4. There exists $k \geq 0$ such that $N(A_{\lambda}^k) = N(A_{\lambda}^{k+1})$. The smallest such number is called the ascent of A_{λ} , and is denoted by $\alpha(A_{\lambda})$.

There exists $k \geq 0$ such that $R(A_{\lambda}^{k}) = R(A_{\lambda}^{k+1})$. The smallest such number is called the descent of A_{λ} , and is denoted by $\delta(A_{\lambda})$.

Remark 0.5. (1) If $\alpha(A_{\lambda}) = 0$, then A_{λ} is nonsingular. If $\delta(A_{\lambda}) = 0$, then $R(A_{\lambda}) = X$. Again A_{λ} is nonsingular. Thus, $\alpha(A_{\lambda}) = 0$ is equivalent to $\delta(A_{\lambda}) = 0$.

 $(2) R(A_{\lambda}^{k}) = R(A_{\lambda}^{k+1}) \text{ for all } k \geq \delta(A_{\lambda}). \text{ Similarly } N(A_{\lambda}^{k}) = N(A_{\lambda}^{k+1}) \text{ for all } k \geq \alpha(A_{\lambda}).$

Lemma 0.6. $\alpha := \alpha(A_{\lambda}) = \delta := \delta(A_{\lambda}).$

Proof. The proof is divided into two parts: (1) Show $\alpha \leq \delta$.

Since $N(A_{\lambda}^{\alpha-1}) \neq N(A_{\lambda}^{\alpha})$, there exists $x_0 \in N(A_{\lambda}^{\alpha})$ but $x_0 \neq N(A_{\lambda}^{\alpha-1})$. Thus, $y = A_{\lambda}^{\alpha-1}x_0 \neq 0$ but $A_{\lambda}^{\alpha}x_0 = 0$. This shows that dim $R(A_{\lambda}^{\alpha}) < \dim R(A_{\lambda}^{\alpha-1})$. Thus $R(A_{\lambda}^{\alpha-1}) \neq R(A_{\lambda}^{\alpha})$. Therefore $\delta(A_{\lambda}) \geq \alpha(A_{\lambda})$. (2) Show $\delta \leq \alpha$.

Since $R(A_{\lambda}^{\delta-1}) \neq R(A_{\lambda}^{\delta})$, there exists $y \in R(A_{\lambda}^{\delta-1}), y \neq 0$ but $A_{\lambda}y = 0$. Let $y = A_{\lambda}^{\delta-1}x_0$. Then $A_{\lambda}^{\delta-1}x_0 \neq 0$ but $A_{\lambda}^{\delta}x_0 = 0$. This shows that $N(A_{\lambda}^{\delta-1}) \neq N(A_{\lambda}^{\delta})$. Therefore $\alpha(A_{\lambda}) \geq \delta(A_{\lambda})$.

Lemma 0.7. Let λ be an eigenvalue of A, and $p := \alpha(A_{\lambda}) = \delta(A_{\lambda})$. Then:

(1) The matrix A_{λ} is nonsingular in $R(A_{\lambda}^{p})$.

(2) Let $\mu \neq \lambda$. Then the matrix A_{μ} is nonsingular in $N(A_{\lambda}^{p})$.

Proof. (1) If there exists $x \in R(A_{\lambda}^p)$ such that $A_{\lambda}x = 0$, then $A_{\lambda}R(A_{\lambda}^p) \neq R(A_{\lambda}^p)$, contradicting to $p = \delta(A_{\lambda})$.

(2) Assume that there exists $x \in N(A_{\lambda}^{p})$ such that $A_{\mu}x = 0$. Since $x \in N(A_{\lambda}^{p})$, there exists an integer $k \geq 0$ such that $A_{\lambda}^{k-1}x \neq 0$, $A_{\lambda}^{k}x = 0$. Applying A_{λ}^{k-1} to

$$A_{\lambda}x + (\lambda - \mu)x = 0,$$

we have $(\lambda - \mu)A_{\lambda}^{k-1}x = 0$. This can occur only if $\lambda - \mu = 0$.

 $\mathbf{2}$

3

Our next man result shows that X is a direct sum of two invariant subspaces $R(A_{\lambda}^{p}) \oplus N(A_{\lambda}^{p}) = X$, where λ is nonsingular on $R(A_{\lambda}^{p})$ and λ is the only eigenvalue for $N(A_{\lambda}^{p})$.

Lemma 0.8. Let $p = \alpha(A_{\lambda}) = \delta(A_{\lambda})$. Then

$$R(A^p_{\lambda}) \oplus N(A^p_{\lambda}) = X.$$

Proof. (1) We show that $R(A_{\lambda}^{p}) \cap N(A_{\lambda}^{p}) = 0$. If $y \in R(A_{\lambda}^{p}) \cap N(A_{\lambda}^{p})$, then $y = A_{\lambda}^{p}x$ and $A_{\lambda}^{p}y = 0$. Thus $A_{\lambda}^{2p}x = 0$. $x \in N(A_{\lambda}^{2p}) = N(A_{\lambda}^{p})$. Thus $A_{\lambda}^{p}x = 0$. This implies y = 0.

(2) We show that for any $x \in X$, there exist $x_1 \in R(A_{\lambda}^p)$, $x_2 \in N(A_{\lambda}^p)$ such that $x = x_1 + x_2$.

Consider $A_{\lambda}^{p}x \in R(A_{\lambda}^{p}) = R(A_{\lambda}^{2p})$. There exists y such that $A_{\lambda}^{2p}y = A_{\lambda}^{p}x$. Thus

$$A_{\lambda}^{p}(x - A_{\lambda}^{p}y) = 0.$$

Let $x_1 = A_{\lambda}^p y$, and $x_2 = x - x_1$. Then $x_1 \in R(A_{\lambda}^p)$, $x_2 \in N(A_{\lambda}^p)$.

Let

$$\lambda_1, \ldots, \lambda_m$$

be a list of all the distinct eigenvalues of A, each associated with a unique

$$p_i = \alpha(A_{\lambda_i}) = \delta(A_{\lambda_i}).$$

We have shown

$$R(A_{\lambda_i}^{p_i}) \oplus N(A_{\lambda_i}^{p_i}) = X.$$

Clearly $N(A_{\lambda_i}^{p_i})$ is the generalized eigenspace for λ_i .

We now show

Lemma 0.9.

$$\oplus_i N(A^{p_i}_{\lambda_i}) = X.$$

Proof. (1) We show that the generalized eigenspaces, each corresponding to a distinct λ_i , are linearly independent. Let k be the smallest integer such that $x_1 + \cdots + x_k = 0$ where we assume, without loss of generality, $x_j \in N(A_{\lambda_j}^{p_j})$ and is nonzero.

Applying $A_{\lambda_1}^{p_1}$ to $x_1 + \cdots + x_k = 0$, we have

$$A_{\lambda_1}^{p_1}x_2 + \dots + A_{\lambda_1}^{p_1}x_k = 0.$$

From Lemma 0.7, $A_{\lambda_1}^{p_1}$ is nonsingular in each of its invariant subspace $N(A_{\lambda_j}^{p_j}), j \neq 1$, and thus $y_j := A_{\lambda_1}^{p_1} x_j \neq 0$. We have $y_2 + \cdots + y_k = 0$. This is a contradiction to the minimal property of k.

(2) For any $x \in X$, we show, by induction, that it is possible to express x as $x = x_1 + \ldots x_m$ with $x_i \in N(A_{\lambda_i}^{p^i})$.

If m = 1, then $R(A_{\lambda_1}^{p_1}) \oplus N(A_{\lambda_1}^{p_1})$. From Lemma 0.7, λ_1 is not an eigenvalue of A restricted to $R(A_{\lambda_1}^{p_1})$. If $R(A_{\lambda_1}^{p_1}) \neq 0$, then the restriction of A to it has no eigenvalue. This is a contradiction. Thus $R(A_{\lambda_1}^{p_1}) = 0$ and $X = N(A_{\lambda_1}^{p_1})$.

If the lemma is true for m-1, then consider all the invariant subspaces

$$N(A_{\lambda_2}^{p_2}),\ldots,N(A_{\lambda_m}^{p_m}).$$

They are all contained in $R(A_{\lambda_1}^{p_1})$ because from Lemma 0.7, A_{λ_1} is nonsingular in each $N(A_{\lambda_j}^{p_j}), j \geq 2$. Therefore, if A is restricted to $R(A_{\lambda_1}^{p_1})$, it has all the eigenvalues $\lambda_2, \ldots, \lambda_m$ but not λ_1 . This is due to Lemma 0.7 that λ_1 is not an eigenvalue in $R(A_{\lambda_1}^{p_1})$. Based on the induction assumption, for the case of m-1 eigenvalues, we have

$$R(A_{\lambda_1}^{p_1}) = \bigoplus_{2 \le j \le m} N(A_{\lambda_j}^{p_j}).$$

Thus

$$X = \bigoplus_{1 \le j \le m} N(A_{\lambda_j}^{p_j}).$$

$$Y \begin{pmatrix} i = 1, ..., q_{-1} & i = q_{-1} + 1, ..., q_{-2} & i = q_{-2} + 1, ..., q_{-3} \\ \hline x_{1}^{i}p & \hline x_{1}^{i}p & \hline x_{1}^{i}p \\ \hline x_{-i}^{i}(p-1) & \hline x_{1}^{i}(p-1) & \hline x_{-i}^{i}(p-1) \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline x_{1}^{i}a^{3} & \hline x_{1}^{i}a^{3} & \hline x_{1}^{i}a^{3} & \hline x_{1}^{i}a^{3} \\ \hline x_{1}^{i}a^{2} & \hline x_{1}^{i}a^{2} & \hline x_{1}^{i}a^{2} \\ \hline x_{1}^{i}a^{1} & \leftarrow R(T^{n}(p-1)) \end{pmatrix} R(T^{n}(p-2)) \end{pmatrix} R(T^{n}(p-3))$$

FIGURE 1. A cyclic basis can be selected for $N(A^p_{\lambda})$.

To finish the proof of Theorem 0.1, it remains to show that in each generalized eigenspace $N(A_{\lambda_j}^{p_j})$, a cyclic basis can be selected. The idea of the proof is illustrated in Figure 1. The top, left box holds generalized eigenvectors of flag p, pick $u = x_i^p$, $i = 1, \ldots, q_1$ from that box, then $(A_{\lambda_1}u, A_{\lambda_1}^2u, \ldots, A_{\lambda_1}^{p-1}u)$ are placed sequentially below on the the first column of boxes. Similarly the top, second-from-left box contains generalized eigenvectors of flag p-1. Pick $u = x_i^p$, $i = q_1+1, \ldots, q_2$ from that box and apply powers of A_{λ_2} to u generates the second column of boxes, etc. Note the second column has only p-1 boxes because the flag number of the vectors from the top box is smaller.

However, it is impossible to find vectors in the top, left box since vectors of flag p do not form a linear subspace. instead, we start by finding vectors in the bottom box of the first column since they do form the linear subspace $R(A_{\lambda_1}^{p-1})$. This suggests the following construction.

Let T be the restriction of the matrix A_{λ} to $Y := N(A_{\lambda}^{p})$ where λ is one of the λ_{j} and $p = p_{j}$. Since $T^{p} = 0$ but $T^{p-1} \neq 0$, we have $R(T^{p-1}) \neq \{0\}$. Let $(x_{1}^{1}, \ldots, x_{q_{1}}^{1})$ be a basis of $R(T^{p-1})$. Each x_{i}^{1} can be written as $x_{i}^{1} = T^{p-1}x_{i}^{p}$ for some $x_{i}^{p} \in Y, i = 1, \ldots, q_{1}$. If p > 1, set $T^{p-2}x_{i}^{p} = x_{i}^{2}$, so that $Tx_{i}^{2} = x_{i}^{1}$. The vectors $x_{i}^{k}, k = 1, 2, i = 1, \ldots, q_{1}$, belong to $R(T^{p-2})$ and are linearly independent. In fact, $\sum \alpha_{i}x_{i}^{2} + \sum \beta_{i}x_{i}^{1} = 0$ implies $\sum \alpha_{i}x_{i}^{2} = 0$ on applying T and hence $\alpha_{i} = 0$ for all i, hence $\sum \beta_{i}x_{i}^{1} = 0$ and $\beta_{i} = 0$ for all i. We can enlarge the family $\{x_{i}^{k}\}, k = 1, 2$, to a basis of $R(T^{p-2})$ by adding, if necessary, new vectors $x_{q_{1}+1}^{2}, \ldots, x_{q_{2}}^{2}$; here we can arrange that $Tx_{i}^{2} = 0$ for $i > q_{1}$. (Proof: Consider $Tx_{i}^{2}, i > q_{1}$, which are in $R(T^{p-1})$. Therefore $Tx_{i}^{2}, i > q_{1}$ can be written as a linear combination of $x_{i}^{1}, i = 1, \ldots, q_{1}$ with the same coefficients. This yields is a revised set of new vectors which are mapped to 0 by T.)

If p > 2, we can repeat the process the same way. Finally, we arrive at a basis $\{x_i^k\}$ of Y with the following properties: For each $k = 1, \ldots, p$, the index $j = 1, \ldots, q_k$, where $q_1 \leq q_2 \leq \cdots \leq q_p$. Moreover,

$$Tx_j^k = \begin{cases} x_j^{k-1}, & 1 \le j \le q_{k-1}, \\ 0, & q_{k-1} + 1 \le j \le q_k, \end{cases}$$

where we set $q_0 = 0$.

If we arrange the basis $\{x_j^k\}$ in the order $\{x_1^1, \ldots, x_1^p, x_2^1, \ldots, x_2^p, \ldots\}$, the matrix of T with respect to this basis takes the form

