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Let A be an n × n matrix. We say that u is an eigenvector corre-
sponding to the eigenvalue λ if

(A − λI)u = 0.

We way u is a generalized eigenvector if there exists N > 1 such that

(A − λI)Nu = 0.

The smallest of such N is called the flag of the generalized eigenvector
u. If u is a generalized eigenvector of flag N , then the sequence of
vectors

u, (A − λI)u, . . . , (A − λI)N−1u,

are all generalized eigenvectors of descending flags. The last entry
(A − λI)N−1u is of flag one and is just a regular eigenvector. One can
verify that the vectors in the sequence are all linearly independent.

Theorem 0.1. [Jordan Canonical form] There exists a basis of n gen-
eralized eigenvectors

P = (u1, . . . , un)

such that
P−1AP = diag(Bi), , i = 1, . . . ,m

where Bi is a square matrix of the form

Bi =









λi 1 0 . . . 0
0 λi 1 . . . 0
0 . . . λi . . . 1
0 0 0 . . . λi









= diag(λi) + Ni.

The matrices Ni, i = 1, . . . ,m, is nilpotent.
See http://en.wikipedia.org/wiki/Nilpotent matrix

The proof of Theorem 0.1 is divided into several lemmas, which are
of independent interest.

For each λ ∈ C, let Aλ = A − λI. Let X = C
n.

Lemma 0.2.

X ⊃ R(Aλ) ⊃ · · · ⊃ R(Ak
λ) ⊃ R(Ak+1

λ ),

R(Ak+1

λ ) = AλR(Ak
λ)
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Lemma 0.3.

0 ∈ N(Aλ) ⊂ N(A2

λ) ⊂ · · · ⊂ N(Ak
λ) ⊂ N(Ak+1

λ ),

N(Ak+1

λ ) = A−1

λ N(Ak
λ),

where A−1

λ denotes the pre-image of the mapping Aλ.

Definition 0.4. There exists k ≥ 0 such that N(Ak
λ) = N(Ak+1

λ ).
The smallest such number is called the ascent of Aλ, and is denoted by
α(Aλ).

There exists k ≥ 0 such that R(Ak
λ) = R(Ak+1

λ ). The smallest such
number is called the descent of Aλ, and is denoted by δ(Aλ).

Remark 0.5. (1) If α(Aλ) = 0, then Aλ is nonsingular. If δ(Aλ) = 0,
then R(Aλ) = X. Again Aλ is nonsingular. Thus, α(Aλ) = 0 is
equivalent to δ(Aλ) = 0.

(2) R(Ak
λ) = R(Ak+1

λ ) for all k ≥ δ(Aλ). Similarly N(Ak
λ) = N(Ak+1

λ )
for all k ≥ α(Aλ).

Lemma 0.6. α := α(Aλ) = δ := δ(Aλ).

Proof. The proof is divided into two parts:
(1) Show α ≤ δ.

Since N(Aα−1

λ ) 6= N(Aα
λ), there exists x0 ∈ N(Aα

λ) but x0 6= N(Aα−1

λ ).
Thus, y = Aα−1

λ x0 6= 0 but Aα
λx0 = 0. This shows that dimR(Aα

λ) <

dimR(Aα−1

λ ). Thus R(Aα−1

λ ) 6= R(Aα
λ). Therefore δ(Aλ) ≥ α(Aλ).

(2) Show δ ≤ α.
Since R(Aδ−1

λ ) 6= R(Aδ
λ), there exists y ∈ R(Aδ−1

λ ), y 6= 0 but Aλy = 0.
Let y = Aδ−1

λ x0. Then Aδ−1

λ x0 6= 0 but Aδ
λx0 = 0. This shows that

N(Aδ−1

λ ) 6= N(Aδ
λ). Therefore α(Aλ) ≥ δ(Aλ). �

Lemma 0.7. Let λ be an eigenvalue of A, and p := α(Aλ) = δ(Aλ).
Then:
(1) The matrix Aλ is nonsingular in R(Ap

λ).
(2) Let µ 6= λ. Then the matrix Aµ is nonsingular in N(Ap

λ).

Proof. (1) If there exists x ∈ R(Ap
λ) such that Aλx = 0, then AλR(Ap

λ) 6=
R(Ap

λ), contradicting to p = δ(Aλ).
(2) Assume that there exists x ∈ N(Ap

λ) such that Aµx = 0. Since
x ∈ N(Ap

λ), there exists an integer k ≥ 0 such that Ak−1

λ x 6= 0, Ak
λx =

0. Applying Ak−1

λ to

Aλx + (λ − µ)x = 0,

we have (λ − µ)Ak−1

λ x = 0. This can occur only if λ − µ = 0. �
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Our next man result shows that X is a direct sum of two invariant
subspaces R(Ap

λ) ⊕ N(Ap
λ) = X, where λ is nonsingular on R(Ap

λ) and
λ is the only eigenvalue for N(Ap

λ).

Lemma 0.8. Let p = α(Aλ) = δ(Aλ). Then

R(Ap
λ) ⊕ N(Ap

λ) = X.

Proof. (1) We show that R(Ap
λ) ∩ N(Ap

λ) = 0.

If y ∈ R(Ap
λ) ∩ N(Ap

λ), then y = A
p
λx and A

p
λy = 0. Thus A

2p
λ x = 0.

x ∈ N(A2p
λ ) = N(Ap

λ). Thus A
p
λx = 0. This implies y = 0.

(2) We show that for any x ∈ X, there exist x1 ∈ R(Ap
λ), x2 ∈ N(Ap

λ)
such that x = x1 + x2.

Consider A
p
λx ∈ R(Ap

λ) = R(A2p
λ ). There exists y such that A

2p
λ y =

A
p
λx. Thus

A
p
λ(x − A

p
λy) = 0.

Let x1 = A
p
λy, and x2 = x − x1. Then x1 ∈ R(Ap

λ), x2 ∈ N(Ap
λ). �

Let
λ1, . . . , λm

be a list of all the distinct eigenvalues of A, each associated with a
unique

pi = α(Aλi
) = δ(Aλi

).

We have shown
R(Api

λi
) ⊕ N(Api

λi
) = X.

Clearly N(Api

λi
) is the generalized eigenspace for λi.

We now show

Lemma 0.9.

⊕iN(Api

λi
) = X.

Proof. (1) We show that the generalized eigenspaces, each correspond-
ing to a distinct λi, are linearly independent. Let k be the smallest
integer such that x1 + · · · + xk = 0 where we assume, without loss of
generality, xj ∈ N(A

pj

λj
) and is nonzero.

Applying A
p1

λ1
to x1 + · · · + xk = 0, we have

A
p1

λ1
x2 + · · · + A

p1

λ1
xk = 0.

From Lemma 0.7, A
p1

λ1
is nonsingular in each of its invariant subspace

N(A
pj

λj
), j 6= 1, and thus yj := A

p1

λ1
xj 6= 0. We have y2 + · · · + yk = 0.

This is a contradiction to the minimal property of k.
(2) For any x ∈ X, we show, by induction, that it is possible to

express x as x = x1 + . . . xm with xi ∈ N(Api

λi
).
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If m = 1, then R(Ap1

λ1
) ⊕ N(Ap1

λ1
. From Lemma 0.7, λ1 is not an

eigenvalue of A restricted to R(Ap1

λ1
). If R(Ap1

λ1
) 6= 0, then the restriction

of A to it has no eigenvalue. This is a contradiction. Thus R(Ap1

λ1
) = 0

and X = N(Ap1

λ1
).

If the lemma is true for m − 1, then consider all the invariant sub-
spaces

N(Ap2

λ2
), . . . , N(Apm

λm
).

They are all contained in R(Ap1

λ1
) because from Lemma 0.7, Aλ1

is

nonsingular in each N(A
pj

λj
), j ≥ 2. Therefore, if A is restricted to

R(Ap1

λ1
), it has all the eigenvalues λ2, . . . , λm but not λ1. This is due

to Lemma 0.7 that λ1 is not an eigenvalue in R(Ap1

λ1
). Based on the

induction assumption, for the case of m − 1 eigenvalues, we have

R(Ap1

λ1
) = ⊕2≤j≤mN(A

pj

λj
).

Thus

X = ⊕1≤j≤mN(A
pj

λj
).

�

Y
R(T)

R(T^(p−3))
R(T^(p−2))

x_i^3

x_i^(p−1)x_i^(p−1)

x_i^px_i^px_i^p

x_i^(p−1)

x_i^3x_i^3

x_i^2x_i^2

x_i^1 R(T^(p−1))

i = 1, ..., q_1 i = q_1 + 1, ..., q_2 i = q_2 + 1, ..., q_3

Figure 1. A cyclic basis can be selected for N(Ap
λ).

To finish the proof of Theorem 0.1, it remains to show that in each
generalized eigenspace N(A

pj

λj
), a cyclic basis can be selected. The idea

of the proof is illustrated in Figure 1. The top, left box holds gener-
alized eigenvectors of flag p, pick u = x

p
i , i = 1, . . . , q1 from that box,

then (Aλ1
u,A2

λ1
u, . . . , A

p−1

λ1
u) are placed sequentially below on the the

first column of boxes. Similarly the top, second-from-left box contains
generalized eigenvectors of flag p−1. Pick u = x

p
i , i = q1+1, . . . , q2 from

that box and apply powers of Aλ2
to u generates the second column of

boxes, etc. Note the second column has only p − 1 boxes because the
flag number of the vectors from the top box is smaller.
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However, it is impossible to find vectors in the top, left box since
vectors of flag p do not form a linear subspace. instead, we start by
finding vectors in the bottom box of the first column since they do form
the linear subspace R(Ap−1

λ1
). This suggests the following construction.

Let T be the restriction of the matrix Aλ to Y := N(Ap
λ) where λ

is one of the λj and p = pj. Since T p = 0 but T p−1 6= 0, we have
R(T p−1) 6= {0}. Let (x1

1, . . . , x
1
q1

) be a basis of R(T p−1). Each x1
i can

be written as x1
i = T p−1x

p
i for some x

p
i ∈ Y, i = 1, . . . , q1. If p > 1, set

T p−2x
p
i = x2

i , so that Tx2
i = x1

i . The vectors xk
i , k = 1, 2, i = 1, . . . , q1,

belong to R(T p−2) and are linearly independent. In fact,
∑

αix
2
i +

∑

βix
1
i = 0 implies

∑

αix
2
i = 0 on applying T and hence αi = 0 for

all i, hence
∑

βix
1
i = 0 and βi = 0 for all i. We can enlarge the family

{xk
i }, k = 1, 2, to a basis of R(T p−2) by adding, if necessary, new vectors

x2
q1+1, . . . , x

2
q2

; here we can arrange that Tx2
i = 0 for i > q1. (Proof:

Consider Tx2
i , i > q1, which are in R(T p−1). Therefore Tx2

i , i > q1

can be written as a linear combination of x1
i , i = 1, . . . , q1. We then

subtracting x2
i , i > q1, by a linear combination of x2

i , i = 1, . . . , q1 with
the same coefficients. This yields is a revised set of new vectors which
are mapped to 0 by T .)

If p > 2, we can repeat the process the same way. Finally, we arrive at
a basis {xk

i } of Y with the following properties: For each k = 1, . . . , p,
the index j = 1, . . . , qk, where q1 ≤ q2 ≤ · · · ≤ qp. Moreover,

Txk
j =

{

xk−1

j , 1 ≤ j ≤ qk−1,

0, qk−1 + 1 ≤ j ≤ qk,

where we set q0 = 0.
If we arrange the basis {xk

j} in the order {x1
1, . . . , x

p
1, x

1
2, . . . , x

p
2, . . . },

the matrix of T with respect to this basis takes the form






































0 1
0 1

· ·
· ·

0 1
0

0 1
0 1

· 1
0

· ·
· ·








































