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1. General Linear Systems

Consider the linear nonhomogeneous system

(1.1) y′ = A(t)y + g(t)

where A(t) and g(t) are continuous on an interval I.

Theorem 1.1. If A(t), g(t) are continuous on some interval a ≤ t ≤ b, if a ≤
t0 ≤ b, and if η ∈ Rn, then the system (1.1) has a unique solution φ(t) satisfying
the initial condition φ(t0) = η and existing on the interval a ≤ t ≤ b.

1.1. Linear Homogeneous Systems. Consider the liner homogeneous system
associated with (1.1)

(1.2) y′ = A(t)y.

For a homogeneous system, φ(t) = 0 is the only solution that satisfies φ(t0) = 0.
Moreover, if φ1 and φ2 are any solutions of (1.2) on an interval I, and c1 and c2
are any constants, then c1φ1 + c2φ2 is again a solution of (1.2).

Definition 1.1. A set of vectors v1, v2, . . . , vk is linearly dependent if there exist
scalers c1, c2, . . . , ck, not all zero, such that the linear combination

c1v1 + c2v2 + · · ·+ ckvk = 0.

A set of vectors v1, v2, . . . , vk is linearly independent if it is not linearly dependent.

A set S of vectors is said to form a basis of a vector space V if it is linearly
independent and if every vector in V can be expressed as a linear combination of
vectors in S.

We can define the dimension of a particular vector space V to be the number of
elements in any basis of V . A vector space is called finite-dimensional if is has a
finite basis.

Theorem 1.2. if the complex n × n matrix A(t) is continuous on an interval I,
then the solutions of the system (1.2) on I form a vector space of dimension n over
the complex numbers.

We say that the linearly independent solutions φ1, φ2, . . . , φn form a fundamental
set of solutions. There are infinitely many different fundamental sets of solutions
of (1.2).

A matrix of n rows whose columns are solutions (1.2) is called a solution matrix.
An n×n solution matrix whose columns form a fundamental set of solutions is called
a fundamental matrix for (1.2) on I. Denote the fundamental matrix formed from
the solutions φ1, . . . , φn by Φ. The statement that every solution φ of (1.2) is the
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linear combination of φ1, . . . , φn for some unique choice of the constants c1, . . . , cn
is simply that

(1.3) φ(t) = Φ(t)c

where Φ is the fundamental matrix solution and c is the column vector with the
components c1, . . . , cn.

Theorem 1.3. If Φ is a solution matrix of (1.2) on I and if t0 is any point of I,
then

(detΦ)′ = (
n∑

j=1

ajj(t))detΦ,

detΦ(t) = detΦ(t0)exp[
∫ t

t0

n∑
j=1

ajj(s)ds], for every t in I.

It follows that either detΦ(t) 6= 0 for each t ∈ I or detΦ(t) = 0 for every t ∈ I.

Proof. Because the column vectors of Φ is a solution of (1.2), we have

(1.4) φ′ij =
n∑

k=1

aikφkj , i, j = 1, . . . , n.

Therefore,

(detΦ)′ =

∣∣∣∣∣∣∣∣∣
φ′11 φ′12 . . . φ′1n

φ21 φ22 . . . φ2n

...
...

...
...

φn1 φn2 . . . φnn

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
φ11 φ12 . . . φ1n

φ′21 φ′22 . . . φ′2n
...

...
...

...
φn1 φn2 . . . φnn

∣∣∣∣∣∣∣∣∣ + · · ·

+

∣∣∣∣∣∣∣∣∣
φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

...
...

φ′n1 φ′n2 . . . φ′nn

∣∣∣∣∣∣∣∣∣.
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Using (1.4), we have

(detΦ)′ =

∣∣∣∣∣∣∣∣∣

∑n
k=1 a1kφk1

∑n
k=1 a1kφk2 . . .

∑n
k=1 a1kφkn

φ21 φ22 . . . φ2n

...
...

...
...

φn1 φn2 . . . φnn

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
φ11 φ12 . . . φ1n∑n

k=1 a2kφk1

∑n
k=1 a2kφk2 . . .

∑n
k=1 a2kφkn

...
...

...
...

φn1 φn2 . . . φnn

∣∣∣∣∣∣∣∣∣ + · · ·

+

∣∣∣∣∣∣∣∣∣
φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

...
...∑n

k=1 ankφk1

∑n
k=1 ankφk2 . . .

∑n
k=1 ankφkn

∣∣∣∣∣∣∣∣∣.
Using elementary row elimination, we find that the first row of the first determinant
simplifies to

a11φ11 a11φ12 . . . a11φ1n.

Similarly for the ith row of the ith determinant. Thus

(detΦ)′ = a11detΦ + a22detΦ + · · ·+ anndetΦ

for every t ∈ I. This proves the first part of the theorem.
The rest of the proof follows by solving the scalar equation for detΦ. �

Theorem 1.4. A solution matrix Φ of (1.2) on an interval I is a fundamental
matrix of (1.2) if and only if detΦ(t) 6= 0 for every t ∈ I.

Theorem 1.5. If Φ is a fundamental matrix for (1.2) on I and C is a nonsingular
constant matrix, then ΦC is also a fundamental matrix for (1.2). Every fundamen-
tal matrix of (1.2) is of this form for some nonsingular matrix C.

1.2. Linear Nonhomogeneous Systems. Consider the linear nonhomogeneous
system as in (1.1)

(1.1) y′ = A(t)y + g(t).

Suppose φ1 and φ2 are any two solutions of (1.1) on I. Then φ1 − φ2 is a
solution of the associated homogeneous systems (1.2) on I. By the remark following
Theorem 1.2, there exists a constant vector c such that

φ1 − φ2 = Φc.

The general solutions for (1.1) are

(1.5) ψ = Φc + φ0,

where Φ is a fundamental matrix solution of (1.2), c is an arbitrary constant vector
and φ0 is a particular solution of (1.1). If the initial condition ψ(t0) = η is given
for t0 ∈ I, then, the constant vector c can be solved from the given vector η. Note
that the matrix Φ(t0) is nonsingular.
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Theorem 1.6. If Φ is a fundamental matrix of (1.2) on I, then the function

ψ(t) = Φ(t)
∫ t

t0

Φ−1(s)g(s)ds

is the (unique) solution of (1.1) valid on I and satisfying the initial condition

ψ(t0) = 0.

If the initial condition ψ(t0) = η is given, then

φ(t) = φh(t) + ψ(t),

where ψ is the solution given in Theorem 1.6, and ψh is the solution of the homo-
geneous system (1.2) satisfying the initial condition φh(t0) = η, the same η as the
initial condition for φ.

φh(t) = Φ(t)Φ−1(t0)η.
We have

φ(t) = Φ(t)Φ−1(t0)η + Φ(t)
∫ t

t0

Φ−1(s)g(s)ds.

Let T (t, s) = Φ(t)Φ−1(s). Then T (t, s) is a special fundamental matrix solution
that satisfies T (s, s) = I, and is called the principal matrix solution. We can write
the solution to (1.1) as

φ(t) = T (t, t0)η +
∫ t

t0

T (t, s)g(s)ds.

2. Linear Systems with Periodic Coefficients

2.1. Homogeneous systems with Periodic Coefficients. Consider the homo-
geneous system

(1.2) y′ = A(t)y,

where A(t) is a continuous periodic n × n matrix of period ω, i.e., A(t + ω) =
A(t), t ∈ R. If Φ(t) is a fundamental matrix for (1.2), then Φ(t + ω) is also a
fundamental matrix of (1.2). Therefore there exists a nonsingular constant matrix
C such that

Φ(t+ ω) = Φ(t)C, −∞ < t <∞.
In the rest of this paper, we assume that Φ(t) satisfies the initial condition

Φ(0) = I. Then we have

Φ(t+ ω) = Φ(t)Φ(ω). proof?

The nonsingular matrix C = Φ(ω) is called the monodromy matrix. Since C is
nonsingular, there exists a matrix R such that C = exp(ωR). Note that

(2.1) Φ(ω) = exp(ωR).

Theorem 2.1. Let A(t) be a continuous periodic matrix of period ω and let Φ(t) be
any fundamental matrix of (1.2). Then there exists a periodic nonsingular matrix
P (t) of period ω and a constant matrix R such that

Φ(t) = P (t)exp(tR).

Remark 2.1. (1) Note that Φ(t) may not be periodic.
(2) If A(t) is a constant matrix, hence periodic of any period ω, then P (t) = I

and R = A.



NOTES ON LINEAR NON-AUTONOMOUS SYSTEMS 5

Proof. Let R be as in (2.1). Define

P (t) = Φ(t)exp(−tR), −∞ < t <∞.

P (t) is nonsingular and

P (t+ ω) = Φ(t+ ω)exp(−(t+ ω)R)

= Φ(t)Cexp(−(t+ ω)R)

= Φ(t)Cexp(−ωR)exp(−tR)

= Φ(t)exp(−tR) = P (t).

�

The Floquet theorem can be used to transform (1.2) to a linear system with
constant coefficients. Let

(2.2) y = P (t)u.

Since y is a solutioin and Φ(t) is a fundamental matrix to (1.2), there exits a
constant c such that

y = Φ(t)c

= P (t)exp(tR)c

= P (t)u,

it follows that
u = exp(tR)c.

Therefore

(2.3) u′ = Ru.

Corollary 2.2. The change of variable y = P (t)u transforms the periodic system
(1.2) to the system (2.3) with constant coefficients.

Corollary 2.3. A nontrivial solution φ(t) of (1.2) has the property

φ(t+ ω) = kφ(t), −∞ < t <∞,

where k is a constant, if and only if k is an eigenvalue of Φ(ω) = exp(ωR).

The eigenvalues ρi of the nonsingular matrix Φ(ω) = exp(ωR) is called the
characteristic multipliers of the system (1.2), and the eigenvalues λi of the matrix
R is called the characteristic exponents of (1.2). One can show that

ρj = eωλj , λj =
1
ω

log ρj , (mod
2πi
ω

), j = 1, . . . , n.

Πn
j=1ρj = exp(

∫ ω

0

trA(s)ds),
n∑

j=1

λj =
1
ω

∫ ω

0

trA(s)ds, (mod
2πi
ω

).

Corollary 2.4. If the characteristic exponents of (1.2) have negative real parts (or
equivalently, it the multipliers (1.2) have magnitude strictly less than 1), then all
solutions of (1.2) approach zero as t→∞.
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2.2. Nonhomogeneous Systems with Periodic Coefficients. We consider the
nonhomogeneous system

(1.1) y′ = A(t)y + g(t),

where we assume that A(t) and g(t) are continuous and periodic in t of the same
period ω.

Theorem 2.5. A solution φ(t) of (1.1) is periodic of period ω if and only if φ(ω) =
φ(0).

Proof. The condition is clearly necessary. To prove the sufficiency, let ψ(t) =
φ(t + ω). Then φ and ψ are both solutions of (1.1) and ψ(0) = φ(ω) = φ(0). By
the uniqueness theorem, φ(t) = ψ(t) = φ(t+ ω) for all t. �

Theorem 2.6. The system (1.1) has a periodic solution of period ω for any periodic
forcing vector g of period ω if and only if the homogeneous system (1.2) has no
periodic solution of period ω except for the trivial solution y = 0.

Proof. Since Φ(t) be a fundamental matrix of (1.2) with Φ(0) = I. A solution of
(1.1) has the form

ψ(t) = Φ(t)ψ(0) + Φ(t)
∫ t

0

Φ−1(s)g(s)ds.

The solution ψ is periodic of and only if ψ(0) = ψ(ω). But

ψ(ω) = Φ(ω)ψ(0) + Φ(ω)
∫ ω

0

Φ−1(s)g(s)ds.

Therefore, ψ(0) = ψ(ω) if and only if

[I − Φ(ω)]ψ(0) = Φ(ω)
∫ ω

0

Φ−1(s)g(s)ds.

The homogeneous algebraic system must be solved for every periodic forcing term
g. This is possible if and only if det(I − Φ(ω)) 6= 0. On the other hand, (1.2) has
a periodic solution of period ω if and only if 1 is a multiplier of y′ = A(t)y. Thus,
det(I − Φ(ω)) 6= 0 if and only if (1.2) has no nontrivial periodic solution of period
ω. �

Theorem 2.7. (Fredholm’s alternative). If A and g are continuous and periodic
in t with period ω, then (1.1) has a period ω solution if and only if∫ ω

0

z(t)g(t)dt = 0,

for all period ω solutions z of the adjoint equation

ż = −zA(t).

Note that z(t) is a row vector in the adoint equation.


