
NONLINEAR DAMPING AND AVERAGING

1. An energy balance method for limit cycles

A statement from P. E. Zadunaisky: “ I have a theory that whenever you want to get in
trouble with a method, look for the Van-der-Pol equation”.

The purpose of this note is to study the limit cycle for the van der Pol’s equation

ẍ+ ϵ(x2 − 1)ẋ+ x.

More generally, we consider the following damped system

ẍ+ h(x, ẋ) + g(x) = 0.

The kinetic energy is T = (1/2)ẋ2 and the potential energy is

V (x) =

∫
g(x)dx.

For the undamped system with h = 0, the total energy E = T + V is conserved.

1

2
y2 + V (x) = C, y = ẋ.

The phase portrait can be obtained by

y = ±
√

2C − 2V (x).

The graph of 2C − 2V can be read off from the graph of V and the range of x must be
chosen so that 2C − 2V is non-negative. See Figure 1.
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Figure 1. The graph of 2V (x)− 2C and the phase portrait
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For the damped system with h ̸= 0, consider how E changes along a trajectory.

dE

dt
=
dT

dt
+
dV

dt
= ẋẍ+ V ′(x)ẋ

= −ẋh(x, ẋ).

Integrate from t = τ0 to t = τ ,

E(τ)− E(τ0) = −
∫ τ

τ0

ẋh(x, ẋ)dt.

If in the region where the trajectory lies,
(1) ẋh(x, ẋ) = yh(x, y) > 0, then E(τ) < E(τ0); that is the energy decreases as h has the

damping effect, causing the decrease in amplitude; or
(2) ẋh(x, ẋ) < 0, then E(τ) > E(τ0); the effect is a negative damping causing the increase

in amplitude.
(3) ẋh(x, ẋ) can be both positive and negative along the trajectory. In this case, it is

possible that the positive and negative dampings reach balance so that the amplitude of
oscillation is preserved.

The third case is of great interest in engineering and other applications. Examples are
abundant. We will consider the famous van der Pol’s equation. Consider the family of
equations of the form

ẍ+ ϵh(x, ẋ) + x = 0.

The small damping coefficient ϵ reflects the fact in many mechanical system the damping
is weak. Assume that h(0, 0) = 0 so that the origin is an equilibrium point.

When ϵ = 0, the equation ẍ+ x = 0 has 2π periodic solutions x(t) = a cos(t+ α). With
out the loss of generality, assume a > 0, α = 0. When ϵ is small but non-zero, we look
for a periodic solution that is close to one of the unperturbed solution x(t) = a cos t. The
constant a has to be determined. Then ẋ(t) = y(t) = −a sin t. The change in energy over
a cycle is approximately given by

E(2π)− E(0) = −ϵ
∫ 2π

0
(−a sin t)h(a cos t,−a sin t)dt.

For any periodic solution which is close to the linear oscillation, we must have∫ 2π

0
(−a sin t)h(a cos t,−a sin t)dt = 0.

In principle, this equation determines a if the periodic solution is a limit cycle, and is
identically zero around a center (with infinitely many periodic solutions).

Example: Find the limit cycle for the van der Pol’s equation

ẍ+ ϵ(x2 − 1)ẋ+ x.

Assuming x ≈ a cos t, the energy equation gives∫ 2π

0
(a2 cos2 t− 1) sin t sin tdt = 0.

Thus, 1
4a

2 − 1 = 0 and a = 2. Numerical solutions of the limit cycles for ϵ = 0.1 and 0.5
are shown in Figure 2.
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Figure 2. The limit cycle and solution that approach the cycle

We study the stability of the limit cycle. The solutions close to the limit cycle can also
be approximately given by x = a cos t, y = −a sin t. On a trajectory correspooonding to
0 ≤ t ≤ 2π the change of energy is approximately

E(2π)− E(0) = ϵa

∫ 2π

0
h(a cos t,−a sin t) sin tdt = G(a).

If G(a0) = 0, G′(a0) < 0, then

G(a) > 0 when a0 − δ < a < a0,

G(a) < 0 when a0 < a < a0 + δ.

On the interior of the limit cycle energy is gained and on exterior energy is lost, so the limit
cycle is stable.

Because E = 1
2(y

2+x2), the argument can be carried by using the polar coordinates and
the change in distance from the origin can be used to show the stability of the limit cycle.

2. Amplitude and frequency estimates

As expected, a periodic solution of the equation

ẍ+ ϵh(x, ẋ) + x = 0,

or the equivalent system

ẋ = y, ẏ = −ϵh(x, y)− x,

with h(0, 0) = 0 and ϵ << 1 is a small distortion of one of the circular orbit of the linearized
equation ẍ+ x = 0. Using the polar coordinates

x = a cos θ, y = a sin θ,

we can calculate the perturbation of the amplitude and frequency of the periodic solution.

ȧ = (xẋ+ yẏ)/a = −ϵyh(x, y)/a
= −ϵh(a cos θ, a sin θ) sin θ,

θ̇ = (xẏ − yẋ)/a2

= −1− ϵ

a
h(a cos θ, a sin θ) cos θ.
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Therefore

da

dθ
=

−ϵh(a cos θ, a sin θ) sin θ
−1− ϵ

ah(a cos θ, a sin θ) cos θ

= ϵh(a cos θ, a sin θ) sin θ +O(ϵ2).

Since da/dθ = O(ϵ), over one period

a(θ) = a0 +O(ϵ),

where a0 is a constant obtained before. To find the period T , we have

T =

∫ T

0
dt =

∫ 0

2π
(
dθ

dt
)−1dθ

=

∫ 2π

0

dθ

1 + ϵ
ah(a cos θ, a sin θ) cos θ

≈ 2π − (ϵ/a0)

∫ 2π

0
h(a0 cos θ, a0 sin θ) cos θdθ.

The frequency ω is given to order ϵ by

ω = 2π/T ≈ 1 +
ϵ

2πa0

∫ 2π

0
h(a0 cos θ, a0 sin θ) cos θdθ.

3. Gaps for the linear nonhomogeneous system

Consider the damped system

(1) ẍ+ ϵh(x, ẋ) + x = 0.

We show for small ϵ there is a unique periodic solution bifurcates from x(t) = 2 cos t.
First consider a linear system

ẋ = y + f1(t),

ẏ = −x+ f2(t).

It has two linearly independent period solutions

ϕ1(t) =

(
cos t
− sin t

)
, ϕ2(t) =

(
sin t
cos t

)
.

The homogenous system is self-adjoint. The periodic solutions of the adjoint systems are
the same as for the linear system:

ψ1(t) = ϕ1(t), ψ2(t) = ϕ2(t).

The general solutions for the nonhomogeneous system are:

Φ(t)x(0) +

∫ t

0
Φ(t− s)f(s)ds.

Denote the convolution by Kf , then the solution is

Φ(t)x(0) +Kf .

Since Φ(2π) = I, the gap from t = 0 to t = 2π is

x(2π)− x(0) = Kf(2π).
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Let w1 = (1, 0), w2 = (0, 1). The x-gap g1 and y-gap g2 are the gaps along the direction of
x and y axes.

g1 = w1Kf =

∫ 2π

0
ψ1(s)f(s)ds

g2 = w2Kf =

∫ 2π

0
ψ2(s)f(s)ds.

Intuitively the x-gap g1 is related to the energy gain E(2π)−E(0) and the y-gap is related
to the change of period.

4. Linear variational system for the perturbed nonlinear system

Rewrite (1) as a system

d

dt
x = y,

d

dt
y = −x− ϵh(x, y).

Assume that the perturbed system has a solution of period 2µπ with µ ≈ 1. Let t =
µτ, u(τ) = x(µτ), v(τ) = y(µτ). We look for period 2π solutions for the system

d

dτ
u = µv,

d

dτ
v = −µu− ϵµh(u, v).

Let A =

(
0 1
−1 0

)
. Then

(
u
v

)′

−A

(
u
v

)
=

(
0 (µ− 1)

−(µ− 1) 0

)(
u
v

)
+

(
0

−ϵµh(u, v)

)
.

Let E be the projection to the range of L(u, v)T = d
dτ (u, v)

T − A(u, v)T . Using the
Lyapunov-Schimidt reduction, the system split into two system(

u
v

)′

−A

(
u
v

)
= E

(
0 (µ− 1)

−(µ− 1) 0

)(
u
v

)
+

(
0

−ϵµh(u, v)

)
,

0 = (I − E)

(
0 (µ− 1)

−(µ− 1) 0

)(
u
v

)
+

(
0

−ϵµh(u, v)

)
.

Since the system is autonomous, after a time shifting, we can impose a phase condi-
tion: (u, v) ⊥ (sin τ, cos τ). The first equation can be solved for (u, v) = (a cos τ +
u∗(τ, a, ϵ, µ),−a sin τ + v∗(τ, a, ϵ, µ)) where (a cos τ,−a sin τ) ∈ kerL and (u∗, v∗) ⊥ kerL.
Then (u∗(τ, a, 0, 1), v∗(τ, a, 0, 1)) = (0, 0). Substitue (u, v) into the second equation, we have
the bifurcation equations

Gj(a, ϵ, µ) =

∫ 2π

0
ψj(τ)

(
0 (µ− 1)

−(µ− 1) 0

)(
a cos τ + u∗

−a sin τ + v∗

)
+

(
0

−ϵµh(a cos τ + u∗,−a sin τ + v∗)

)
dτ = 0, j = 1, 2.
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We have ∫ 2π

0
ψ1(τ) · ((µ− 1)(− sin τ),−(µ− 1)(cos τ))Tdτ = 0,∫ 2π

0
ψ2(τ) · ((µ− 1)(− sin τ),−(µ− 1)(cos τ))Tdτ

=

∫ 2π

0
(µ− 1)(− sin2 τ − cos2 τ)dτ = −2π(µ− 1).

Therefore,

G1(a, ϵ, µ) = ϵµ

∫ 2π

0
(sin τ)h(a cos τ + u∗,−a sin τ + v∗)dτ,

G2(a, ϵ, µ) = −2aπ(µ− 1)− ϵµ

∫ 2π

0
(cos τ)h(a cos τ + u∗,−a sin τ + v∗)dτ.

If we look solutions with ϵµ ̸= 0, then from G1 = 0, we have

g1(a, ϵ, µ) :=

∫ 2π

0
(sin τ)h(a cos τ + u∗,−a sin τ + v∗)dτ = 0.

Assume that g1(a, 0, 1) =
∫ 2π
0 (sin τ)h(a cos τ,−a sin τ)dτ has a simple zero at a = a0, i.e.∫ 2π

0
(sin τ)h(a0 cos τ,−a0 sin τ)dτ = 0,

∂

∂a

∫ 2π

0
(sin τ)h(a0 cos τ,−a0 sin τ)dτ ̸= 0.

We look for solutions (a, µ) ≈ (a0, 1) for small ϵ. Observe that when ϵ = 0, µ = 1,
∂u∗/∂a = 0, ∂u∗/∂µ = 0. Similarly for v∗. Thus the matrix at ϵ = 0, µ = 1 is nonsingular:(

∂
∂ag1

∂
∂µg1

∂
∂aG2

∂
∂µG2

)
=

(
∂
∂ag1 0
0 −2aπ

)
.

Therefore, there exists a unique solution (a, µ) = (ã(ϵ), µ̃(ϵ)) near (a0, 1). In particular,
from G2 = 0, as predicted by the method of averaging, we have

µ̃(ϵ)− 1 ≈ −ϵ
2πa0

∫ 2π

0
(cos τ)h(a0 cos τ,−a0 sin τ)dτ,

T − 2π ≈ −ϵ
a0

∫ 2π

0
(cos τ)h(a0 cos τ,−a0 sin τ)dτ.

5. VDP equation with a large damping

Consider the van der Pol’s equation with a large ϵ,

ẍ+ ϵ(x2 − 1)ẋ+ x.

Let µ = 1/ϵ be the small parameter and let τ = µt. Then ϵẋ = (d/dτ)x = x′.

µ2x′′ + (x2 − 1)x′ + x = 0.

For the slow layer, µ2x′′ → 0 as µ→ 0, we have

(x2 − 1)x′ + x = 0, or x′ =
x

1− x2
.
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The slow manifold in the original time scale is y = ẋ = µx′ ≈ 0 on which the flow is
ẋ = µx

1−x2 . The solutions pn which move toward x = ±1 as time goes to infinity.

For the fast layer, let t = µξ and Dx = dx/dξ = µẋ. Then in the fast time ξ, we have

D2x+Dx(x2 − 1) + µ2x = 0.

Let µ→ 0, then the fast motion is described by

D2x+Dx(x2 − 1) = 0.

Intergrating the eqaution once, we have

Dx = C + x− x3

3
.

The fast motion in the original time scale is y = ẋ = Dx
µ = 1

µ(C + x− x3

3 ). The numerical

result with ϵ = 10 or µ = 0.1 is included with the y-axis zoomed out by a scale of 10.
We can also write the second order equations as first order systems of equations. The

original equation is

ẋ = y,

ẏ = −x− ϵy(x2 − 1).

Using µ = 1/ϵ as the small parameter and τ = ϵt, µx′ = ẋ, we have

µx′ = y,

µy′ = −x− ϵy(x2 − 1).

x ’ = y                  
y ’ = − x − a (x2 − 1) y

a = 10
 

 
 

 
 

−3 −2 −1 0 1 2 3

−30

−20

−10

0

10

20

30

x

y

x ’ = y                  
y ’ = − x − a (x2 − 1) y

a = 10
 

 
 

 
 

−10 0 10 20 30

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x

x ’ = y                  
y ’ = − x − a (x2 − 1) y

a = 10
 

 
 

 
 

0 10 20 30 40 50 60

−3

−2

−1

0

1

2

t

x

Figure 3. The limit cycle and solution that approach the cycle
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Let y = µȳ. We have the system in the slow layer:

(2)
x′ = ȳ,

µ2ȳ′ = −x− ȳ(x2 − 1).

Let µ→ 0,

x′ = ȳ,

0 = −x− ȳ(x2 − 1).

or x′ =
x

x2 − 1
.

The slow manifold y = µȳ ≈ 0 is normally hyperbolic if x ̸= ±1, attracting if |x| > 1 and
repelling if |x| < 1.

For the system in the fast layer, using t = µξ, Dx = µẋ, and letting ¯̄y = µy we have the
system in the fast layer:

Dx = ¯̄y,

D ¯̄y = −µ2x− ¯̄y(x2 − 1).

Let µ→ 0,

Dx = ¯̄y,

D ¯̄y = −µ2x− ¯̄y(x2 − 1).

or D ¯̄y = −Dx(x2 − 1).

Integrating, we have the family of fast curves:

¯̄y = C + x− x3

3
.

The motion on the fast curve is determined by

Dx = C + x− x3

3
.

The slow manifold ¯̄y = µ2ȳ ≈ 0 is nomally hyperbolic. This can be seen from

(3)
Dx = µ2ȳ,

Dȳ = −x− ȳ(x2 − 1).

The fist equation says that near the slow manifold Dx = 0, the value of x is freezed. The
second equation, with x as a parameter, describes the rate of change of ȳ that is unstable
if |x| < 1 and stable if |x| > 1.

Systems (2) and (3), for the variables (x, ȳ) are normally considered as a pair of slow
and fast systems in the geometric singular perturbation theory. However, numerical results
shows that ȳ is unbounded so that ¯̄y = µ2ȳ is introduced. to show that fast motion curve.


