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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 348, Number 2, February 1996 

ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS OF A 
SINGULARLY PERTURBED REACTION-DIFFUSION SYSTEM 

XIAO-BIAO LIN 

ABSTRACT. For a singularly perturbed n-dimensional system of reaction- 
diffusion equations, assuming that the 0th order solutions possess boundary 
and internal layers and are stable in each regular and singular region, we con- 
struct matched asymptotic expansions for formal solutions in all the regular, 
boundary, internal and initial layers to any desired order in E. The formal solu- 
tion shows that there is an invariant manifold of wave-front-like solutions that 
attracts other nearby solutions. We also give conditions for the wave-front-like 
solutions to converge slowly to stationary solutions on that manifold. 

1. INTRODUCTION 

This is the first of a series of papers devoted to studying internal, boundary and 
initial layers for singularly perturbed n-dimensional systems of reaction-diffusion 
equations. By a formal asymptotic method, we derive matched expansions of layer 
solutions to any desired order in e. We give general conditions for existence and 
stability of the formal solutions. The formal expansion shows how the initial profile 
quickly converges to a manifold of slow moving wave-front-like solutions. We also 
give an analytic condition (see Hypothesis H6) for the formal solution to converge 
slowly towards a stable stationary solution. In the next paper we will show that 
under the same set of conditions there is a unique genuine solution that is near the 
formal series solution. These results have been obtained by other authors for n = 1, 
or n = 2 with small diffusion on only one variable. Our goal is to generalize their 
results to any finite n. 

Obtaining matched asymptotic expansion has always been an indispensable part 
of the complete treatment of singular perturbation problems, for it often provides 
easily computable and highly accurate approximations to the exact solutions. How- 
ever, a rigorous treatment of the asymptotic expansion to the layer solutions of the 
general systems has remained incomplete for almost twenty years since first raised 
by Fife [12, 13]. We have also noted that new tools need to be developed when 
moving from scalar equations to systems. Recent advances using the Melnikov in- 
tegrals in the functional analytic method of homoclinic bifurcations are crucial to 
this paper, see [4, 26, 22, 23]. 
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714 XIAO-BIAO LIN 

Consider the following reaction-diffusion equation 

(1.1) cut -= 2uXX+f(u1x,1E), uER n a < x < b, 
with Neumann boundary conditions at x = a, b 

(1.2) ux(a,t) = ux(b,t) = 0, 
and initial condition 

u(x, , 6) = u(x, E) 

at t = 0. Here f: iRn x [a, b] x R -i Rn is C? with the following expansion: 
00 

(1.3) f(u,x,6) = Zifj(u,x). 
j=O 

Due to the presence of the small parameter e > 0, solutions of (1.1) may have 
internal, boundary and initial layers. Those are the regions of x-t space where UXX 
and/or ut are large so that the solutions do not converge uniformly as e -* 0. For 
the moment we ignore boundary layers, and give a short introduction to spatially 
regular and internal layers. The following is motivated by a discussion in [12, 13]. 

In the regular layers, a stationary solution u(x, e) of (1.1) approaches solutions 
of 

(1.4) fo(u,x) = 0 

as 6 -> 0. Assume that u = pi(x), i = 1, 2, a < x < b, are two solutions of (1.4), 
and as e -> 0, 

(1.5) u(x,E) {p (x), a< x < r1, p 2(X), r7< x <b. 

There is an internal layer at x = 7j. Using stretched variables r = , T = ewe 
write (1.1) as (when e = 0) 

(1.6) U, = u44 + fo(u,r7). 

Suppose that n = 0 can be chosen such that (1.6) possesses a stationary solution 
q(() that satisfies 

(1.7) 0 = u + fo(u, r) 

and approaches pl(nr) as _ -00 (p2(r0) as ( -> oc), q'(() -O 0 as oc 
The functions {p1 (x), q((), p2 (x)} are the 0th order expansion of a formal solution 
in regular and internal layers. The position of the stationary internal layer n = 710 
is determined by the existence of a heteroclinic solution to (1.7). The condition 
q(() > pi(O) as - >oo is the 0th matching condition between regular and 
singular layers. Higher order matching conditions will be specified later in this 
paper when higher order formal expansions are computed. 

Under some general conditions, which will be stated in ?3, it was proved [22, 23] 
that there is an exact stationary solution u to (1.1) near the 0th order expansions. 
Similar results were obtained in [21]. 

When n changes, generically the heteroclinic solution of (1.7) breaks. However 
the time dependent equation (1.6) may have a traveling wave solution u((, r) = 

q(, - VT, rj) where q(,, rj) satisfies 

(1.8) u~ + Vuf + fo(u, 7j) = 0. 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 715 

Here n serves as a parameter, and the wave speed V = V(n) depends on 7j. The 
function q((, 7j) approaches one of the pi(r/), and q approaches zero, as o ?00 

due to the matching of the internal and regular layers. The wave speed V and the 
wave front position n do not depend on the stretched time T, but they depend on 
the slow time t. To see this, let n = (t), = ,(t) and u('x7(t),t) = u((,t) be 
a solution to (1.1). Then (when = 0) 

(1.9) 0 = u + r'(t)uf + fo(u, j(t)). 

At each t > 0, we look for a heteroclinic solution of the above connecting p1 (r7(t)) 
to p2(r7(t)). Comparing this with (1.8), we have 

(1.10) dch(t) - 

V(1(t)). dt 
We can see that (1.10) determines rT(t). One should not be surprised to see that 
the wave speed V is the same in both x-t and (-r coordinates, since the scaling by 
6 cancels. 

We have just described the wave-front-like solutions to the 0th order. Recursive 
formulas for computing higher order expansions of u and n are also presented in 
this paper. In particular, we have found that the higher order expansions in the 
internal layers are uniquely determined by growth conditions of the solutions while 
the matching of such solutions with those in adjacent regular layers can be proved 
as a consequence of that. See [22] for a similar case. 

Let 0 < < 1 be a constant. Let the width of the internal layer be O(6'). The 
variable x = i is o(l) as e --> 0. But in the stretched variable, = = -= E - 00 
as 6 -+ 0. See [6, 7] for discussion of such intermediate variables. Define a piecewise 
smooth function W(x, t, e) by 

(P (x), a < x < (t)-6', 
(1.11) W(x, t,e) = p2(x), r7(t) +6"0 < x < b, 

q((x - r(t))/6), r7(t) - 0 < x < 7(t) + 0 

At the interior of each subinterval, W satisfies (1.1) with an error O(6'). At the 
points r7(t) + 60, W has a jump discontinuity of size O(60). Such a function is called 
a pseudo-solution to (1.1). In our next paper we will show that there is an exact 
solution to the original equation (1.1) that is near W(x, t, 6). A function is said 
to have a wave-front-like profile or to be a wave-front-like function if it approaches 
the solutions of (1.4) at regular layers, but approaches heteroclinic solutions in 
stretched variable at internal layers. The function W obviously has a wave-front- 
like profile. It follows that the exact solution of (1.1) near W has a wave-front-like 
profile. 

Recall that V(r7o) = 0. The wave speed V(n7) generally changes sign when passing 
- = 0. The case V < 0 if n > 4 is especially interesting. It shows that the wave- 

front-like solution approaches a stationary wave-front-like solution as time evolves. 
In the other case V > 0 when n > 4?, the stationary wave-front-like solution is not 
stable among the wave-front-like solutions. 

Suppose now the initial condition -u(x, e) also has a wave-front-like profile. That 
is, u(x, 0) has a jump at x = n and is continuous on [a, rj) and (ri, b], and using 
the stretched variable x = , the limit lim0?+ Tl(6E + r7, 6) = u(, 0) exists. 
We assume that as initial data for the ODE u, = fo(u, x), where x serves as a 
parameter, ii(x, 0) is attracted by pi(x), i 1 for x E [a, ri), i = 2 for x c (, b], and 
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716 XIAO-BIAO LIN 

as initial data for (1.6), u((, 0) is attracted by q((, rj) modulo a spatial shift. q((, rj) 

is stable in the sense of Evans, [8, 9, 10, 11]. The problem of determining when 
q (, rj) is stable is very important, but is not the concern of this paper, [20, 2, 25, 19]. 

Under the above assumptions, using stretched time r = t/e, we also derive formal 
series solutions in the initial layers. Special care has to be exercised to ensure 
that these solutions match with wave-front-like slow solutions, since the linearized 
equation has a zero eigenvalue. 

In this paper, the intermediate spaces DA(0) are used to study parabolic equa- 
tions. These spaces are powerful tools to treat fully nonlinear equations. Since our 
system is semi-linear, we only use some weaker results. All the results in this paper 
are valid with essentially the same proof if DA(0) is replaced by D(A6). An impor- 
tant feature in this paper is to use weighted norms in function spaces. Weighted 
function spaces have been used in [28, 29] to study the stability of travelling waves. 

The outline of this paper is as follows. We introduce notations and some basic 
lemmas in ?2. In ?3 we state a result from [22] that concerns the stationary wave- 
front-like formal series solution (Theorem 3.1). The result in ?3 is a special case of 
the result in ?4. Having a separate section helps to show what new hypotheses are 
needed to study the slowly moving wave-front-like solutions. In ?4, we study wave- 
front-like formal series solution (Theorems 4.3, 4.4, and Corollary 4.5). We show 
that these solutions have a slowly moving front and form a manifold that depends 
on parameters {4 V} , 1 < i < r -1. Here 0 EiV, is the formal series expansion 
of the initial wave front, r - 1 is the number of internal layers. The result agrees 
with other publications where the slow manifold is also parameterized by layer 
positions, [3, 17, 19, 1]. In ?5 we study the formal series solutions in the initial 
layer (Theorems 5.3, 5.5). We show that 0 is determined by the initial condition 
of (1.1), and W., j > 1, are determined by the matching of initial and regular 
(in time) expansions. In ?6, we prove that the formal series solutions in adjacent 
layers, obtained in ?4 and ?5, match with each other (Theorems 6.1-6.4). We also 
construct a pseudo-solution of any prescribed accuracy based on the matched series 
solutions (Theorem 6.5). Most of the technical lemmas are proved in ?7. 

Internal and boundary layers in singular perturbation problems have been an 
active area of current research. Various powerful methods have been developed 
to treat the layer solutions [14, 16, 15, 25]. Our approach is different from the 
others. We follow the pattern "matched formal series expansions-pseudo solutions- 
Newton's method" which has been used to treat singularly perturbed ODEs, see 
[22, 23]. The last step uses a lemma similar to the shadowing lemma in dynamical 
system theory. In our next paper we will introduce such a shadowing lemma for 
parabolic systems where the pseudo-solutions havre jumps in both x and t directions. 
A brief look at such a result reveals that the inverse operator of the parabolic 
system has a norm of 0(E-k), k > 1. A good initial approximation with residual 
smaller than 0(Ek) is needed which is naturally supplied by the matched asymptotic 
expansions. 

1.1. Acknowledgment. It is a pleasure to thank the referee for his valuable sug- 
gestions which resulted in an improvement of the manuscript. 

2. NOTATIONS AND BASIC LEMMAS 

2.1. Notations. As e --> 0, the solution u(x,t, 6) of (1.1) may not converge uni- 
formly at regions where uxx and ut are large. These regions are called singular layers 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 717 

t (SR)?0(R 1 (R) S) R)+ ... (SR) r 

Ir S) | (RS)1 .. (RS)' (SS)' (RS)"+' .. (SS)r 

FIGURE 1 

with respect to space or time. In particular, ut may be large near t = O. That region 
is also called the fast (or initial) layer where the stretched time r = t/E is appropri- 
ate to express the solutions. ux and uxx may be large near some x = r7, 0 < i <r. 
These regions are called boundary (internal) layers if i = 0, r (or 1 < i < r -1), 
where the stretched space variable x - is used. Regions that are not singular 
with respect to space or time are called regular layers. We use S or R to denote 
singular or regular layers. The symbol related to space is put before that related to 
time since in the dictionary order space is before time. Thus (SR)', (RR)i, (SS)' 
and (RS)' are used to denote the ith spatially singular, temporally regular region, 
etc. Figure 1 shows relative locations of all the possible layers. Superscripts on a 
solution are used to show the type of layers where the solution is expressed by the 
appropriate variables. 

u RRi(x,t, 6) = u(x,t, e), for (x,t) E (RR)', 
uSRi(, t, e) = u(6E + fi, t,lE), for (x, t) E (SR)i, 
uRSi(X, T, 6) = U(X, ET, 6), for (x, t) E (RS)', 
ussi(( T, 6) = U(6E + ri, 6T, e), for (x, t) E (SS)i. 

00 

Each layers is further expanded in powers of 6, URRi(X, t, E) = Z6iU RRi (XI t), 
j=O 

etc. 
The notation u (r) is used to denote the expansion of u(t) in the variable r. ii() 

is used to denote the expansion of u(x) in the variable (. -u is used to denote the 
initial condition for a solution u. 

Let Cbu (I iRn) I Cbu (R+ iR) and Cbu (-, IRin) be the Banach spaces of uniformly 
continuous and bounded functions with super norms. Let Cbu = {uu, u', ... , U(m) 
E Cbu} with the norm 

m 

(2.1) IUH[Cbm = E |U [1cbu. 
i=O 

Here Cbmu denotes Cbmu(IR,Rn) or Cbmu(R,IRn). We can show that Cbmu, m > 1, is 
dense in Cbum. 

For a continuous function w(() > 0, let Ei(w) be the Banach space of functions 
with the weight w((). 

ER(w) = {u: R - >R U( )/W(.) E Cbu(IR,R)}. 

||UH|E(w) = sup{ u(()/w(Q)J, EE R}. 

ERm(w) =uu,... u,(m) E E(w)}. 

||UH|Em(w) = zm;0 IVU(j)IIE(w). 

Similarly, ERm+ (w) and ER7r (w) are Banach spaces of weighted functions that are 
defined on R+ and R-. We use Em(w) to denote ERm(w) or ER'? (w) if no confusion 
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718 XIAO-BIAO LIN 

should arise. One of the most often used weights is 

(2.2) w(Q) = (1 + ycz JR, j > 0. 

Let 
Bi+ = {u E Cbm,(R+ IRn)) lim&c D u() - u(0) (+Xo) exists for a < m}, 
B RT = {u Cbu(R-IRn)IliM _ D u(() = u(')(- o) exists for a < m}. 
Bi7 = {u E Cbmu(2) in)) li + De u(() - u(o)(?o) exists for a < m}. 

One can easily verify that u(c) (?oo) = 0 if a > 1. 
Let w(() = (1 + Jlii)e-7'll, Iy > 0. Define, 

Bm (w) = {u E BR,+ u() -u(+oo) E Em+ (w)} 
BR_ (w) ={uE Bm , u(-)-u(-oo)CE ERm(w)}. 
Bm(w) = {u E BRm, u( - u(?oo) E ER? (w)}. 

The general notation Bm (w) will be used if no confusion should arise. Let the 
norms of B+, B, B be induced from Cbu respectively. It is clear that Btm BIB 
and Bm are Banach spaces with these norms. Let 

(2.3) 
11UBrBm(w) = ||U||Cm + IU - U(+0x) |Em (w) + |U - U(-O)||Em (w) 

Similarly definitions are given to HJUHB+ (w) and IJuHIBm (w). It can be verified that 

Bm (w), Bm (w) and BRm+ (w) are all Banach spaces with the specified norms. 
Let X be one of the Banach spaces: ERm+ (w), ER (w), B+n (w) or Bm (w), with 

m > 1. For Cl functions defined on R+ or R-7, denote BC = {u E Cl: u(0) = 0}. 
x n (BC) is a closed subspace of X, and a Banach space with the norm induced 
from X. 

The following lemma is useful when working with these weighted spaces and can 
be verified easily. 

Lemma 2.1. Let a > 0, 1-yI < a be real constants, j > 0 be an integer. Then there 
exists a constant K1 such that 

p p~~~~~~~~~00 ] e-a(-s) (1 + lslj)e-Ys ds + J e-(s-1) (1 + jsji)e-" ds 
-00 

< K,1I)+(+ll) 
-(a - 

2.2. Properties of elliptic equations. Assume that f: Rn R in is C0, and V 
is a real constant. Equation 

(2.4) u~ + Vuf + f(u) = 0 

is equivalent to a system in R2 : 

(2.5) 
U 

~VI 
vf ='-Vv - f(u). 

Therefore the phase space for (2.4) is R2I, comprised of points (u, u~). We say p is 
a hyperbolic equilibrium for (2.4) if (p, 0) is a hyperbolic equilibrium for (2.5). We 
say equation 

(2.6) u~ + Vuf + A(Q)u = 0 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 719 

has exponential dichotomy on an interval I C R if the system 

(2.7) = VI 
vf = -Vv - A(()u 

has an exponential dichotomy on I. Here A(.): I -- lXfR is a continuous matrix 
valued function. 

We say u(s) is a heteroclinic solution of (2.4) if (u(s), u~(()) is a heteroclinic 
solution for the equivalent system (2.5). 

Lemma 2.2. Assume that p E Rn, f : JRf -> JR is C? and there exists uo > 0 

(2.8) f (p) = 0, Reac{Df (p)} ? -uo. 

Then 

(2.9) u~ + Vuf + Df (p)u = 0 

has an exponential dichotomy on R with n-dimensional stable and unstable spaces. 
Let 0 < a < vV2 + 4o - IVI. Then the decay rate on the stable (or unstable) 
subspace is bounded by Ke-', > 0 (or Keg, < 0) respectively. 

Let pi, i = 1, 2, satisfy (2.8). Let q(() be a solution to (2.4) and is defined on R- 
with q(() -> pl as - -oc, and/or is defined on R+ with q(() __ p2 as o >o. 
Then 

(2.10) u~ + Vuf + Df (q(Q))u = 0 

has exponential dichotomies on R- or R+ respectively, with ThP (t) and ThP,(t) 
being n-dimensional subspaces in JR2n. Here PU (t) + P, (t) = I, t E R- or t E R+ , 
are the projections to the unstable and stable subspaces. Moreover, the decay rate 
a > 0 is the same as that of (2.9). In the case that q is a heteroclinic solution 
connecting pi and p2 , RPu (0-) n 7Ps (0+) is at least one dimensional, containing 
(qf (O),I q(d (O)). 

Lemma 2.3. (i) Let p E Rn satisfy (2.8), a be the constant as in Lemma 2.2. Let 
w(() be the weight function in (2.2) where 17y < , X = ERm(w) and g E X. Then 
there exists a uniq'ue soluttion u E ERm+2(w) to the equation 

(2.11) uee + VuF + Df (p)u = g. 

Moreover, 

(2.12) ||U||Em+2(W) < CHjgHjEm(w)- 

(ii) Let X be E+ (w) or ER` (w), and g E X. Assume that pi, i = 1, 2, and q(() 
are as in Lemma 2.2. Assume that u~(O) # 0 for all nontrivial bounded solutions 
u to the equation u~ + Vuf + Df(q)u = 0. Then there exists a unique solution 
u E E+2 (w) or ERL+2(w) to the boundary value problem 

u~ + Vuf + Df (q)u = g, 
u~(O) = 

Moreover, 

(2.13) ||U||Em+2(W) ? C(Hg9Em(w) + 1q10IRn). 
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720 XIAO-BIAO LIN 

Let pi E iR, i = 1, 2, satisfy (2.8). Let q(() be a heteroclinic solution to (2.4) 
connecting pl to p2. Let X = ER(w) where w(() is as in Lemma 2.3. Define 
Lq: X - X with D(Lq) = ERm+2(w) by 

(2.14) Lqu = u~ + Vuf + Df (q(Q))u. 

Lemma 2.4. Lq is a Fredholm operator with Fredholm index zero. AssuTme that 
dim Ker(Lq) = 1 then Ker(Lq) = span{qj and Range(Lq) -{IJ}'. Here T is the 
unique nontrivial bounded solution for the adjoint equation, up to a scalar multiple, 

(2.15) L dQ -ef 'Q4, - VI + DfT(q(()) = 0. 

(2.16) f1F = {u E X j 'IT()u(()d< = 0}. 
-00 

2.3. Properties of Parabolic Equations. Let A be a closed densely defined 
linear operator in a Banach space X. Suppose that A is sectorial and generates a 
CO analytic semigroup eA' in X. For 0 < 0 < 1, let DA (0) be the intermediate 
space between DA and X. 

DA(O) = {x E X| limt,o tlGAeAtx =O} 
llxll = supo<t<l Itle-AeAtx|x + IxIx, 
DA(0 + 1) = {xx E DA, Ax E DA(0)}. 

Let DA(1) = DA. Let 0 < < 0 < 1 and 0 < 0 - 3 < 1. Let F: DA(0) -- DA(!3) 
be a nonlinear, Lipschitz continuous function and x E DA(0), 0 < 0 < 1. Then 
there exist to > 0 and a unique classical solution u defined on [0, to] such that 

Ut = Au + F(u), 
u(O) = x, 

where 

(2.17) u c C([O, to]: DA (0)) n C1 ((o, to]: X) n C((o, to] : DA). 

Denote the solution by U(t). Then U: [O,to] -> DA(0) is Holder continuous 
with H6lder exponent 1 + 0 - 0. Assume that F E Cl with DF being Lipschitz 
continuous. Then DF(U(.)) : [0, to] -- L(DA(0): DA(/3)) is Holder continuous. 
Let g: [0, to] --> DA(t) be locally Holder continuous, then 

(2.18) Ut = Au + DF(U(t))u + g(t), 
(2.18) 

~~~u(0) = o 

has a unique classical solution u that also satisfies (2.17). Moreover there exists an 
evolution operator T(t, s) such that 

t 
u(t) = T(t, 0)uO + j T(t, s)g(s)ds. 

These well known facts can be found in [5], [31] and [24]. 
The linear equation (2.18) is said to be exponentially stable if T(t, s) is defined 

for all 0 < s < t and if there exist constants K, a > 0, 0 < 0 - < 1, such that 

T|T(tts )D1A) < K1 +-(t-s)' t > s; 

IlT(t: S IIL(Alrr (0.r: DA 0 < K[l + (t - s)-0]. t > s. 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 721 

Lemma 2.5. Assume that (2.18) is exponentially stable and g: [0, oo) -+ DA(p) 

is locally Holder continuous and for some integer k > 0, 
1l9(t)IIDA(O) < C(1 + tk), t > 0. 

Then for each uo c DA(0), (2.18) has a unique solution that satisfies (2.17) for all 
to > 0 and 

jju(t)0 < C(1 ?+tk), t >0. 

Let w () be a weight function in (2.2). Let X = ER(w), ER+(w), ER-(w), 
BR(w), B+ (w) or B- (w). Let A: X -* X be defined as 

Au = u 

with DA = E(w) or BR(w) if X = ER(w) or BR (w), DA = E?(w) n BC or 

B? (w) n BC if X = ER (w) or BR (w). 

Lemma 2.6. A is a sectorial operator in X with DA dense in X. 

Lemma 2.7. Let X and A: DA -* X be as in Lemma 2.6. Then depending on 

the choice of X, ER (w), or BR (w), or E ?(w) n BC, or B? (w) n BC C DA( ). 

Let f: Rn -* Rn be C?. Assume that f(p1) = f(p2) = 0 and there exists 
V c R such that equation (2.4) admits a heteroclinic solution q(Q) connecting pl 
to p2. Let X = E(w) or B(w) and A: DA -* X be defined as Au = u~ as in 
Lemma 2.6. It can be verified that f: DA -* DA and f: X -* X are both C? 
Therefore, f: DA(0) -* DA(0) for any 0 < 0 < 1 is also C??. 

Consider 

(2.19) u, = u~ + Vuf + f (u), 

* U(0) = Uo TTO E DA(0), 0 < 0 < 1. 

For each uo, there exists T > 0 such that a unique classical solution exists in [0, T]. 
Also, q(Q) is a stationary solution to (2.19). Consider the linear variational equation 
around q(,). 

(2.20) 
u, = u~ + Vuf + Df (q(())u, 

(2.20) u(0) = Uo, Uo C DA(0)- 

Define Lqu = uss + Vus + Df (q(Q))u. As a perturbation to A, Lq is also a sectorial 

operator in X, cf. [27, page 80]. 

Definition 2.1. The solution q to equation (2.19) is said to be asymptotically (ex- 
ponentially) stable modulo spatial shifts if there exists an open set 0 C DA(0), q C 
0, such that for every u0 c 0, there is a constant c E R, such that 

Ju(T) 
- q( + c)1DA(0) < Ce 

- . 

The zero solution to equation (2.20) is said to be asymptotically stable modulo qe 
if for every u0 c DA(0), there is a constant c c R, u(r) - cq$IDA(9) < Ce-. 

Lemma 2.8. (Evans) (a) The stationary solution q of (2.19) is asymptotically sta- 

ble modulo spatial shifts if and only if the zero solution of (2.20) is asymptotically 

stable modulo q~. 
(b) The zero solution of (2.20) is asymptotically stable modulo qe if and only if 

there exists ao > 0 such that 

U{Lq} n {ReA > -a = {0}, 

and A = 0 is a simple eigenvalue with the eigenspace spanned by q~. 
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The following lemma puts a strong restriction on the essential spectrum of Lq. 

Lemma 2.9. (a) Let M be a constant n x n matrix, ty C R be the constant in 
(2.2) and Lu = uss + Vus + Mu. Then L is a sectorial operator on X = E(w), 
ER? (w), BR(w), or BR (w) with DL = ER2(w), (w) n BC, BR(w) or BR (w) n 
BC respectively. Assume furthermore that Re(cr(M)) < -uo < 0 and -y satisfy that 
no = (y2 + 21VyI)/4 < Co, then 

Re(cr(L)) < -uo + ?o 

(b) Let pi, i = 1, 2, satisfy (2.8) and q(Q) be a heteroclinic solution connecting pl 
to p2. Let X, ty and qo be as in part (a). Then a{Lq} n {ReA > -o +? r} consists 
of only isolated eigenva7ues, each is of finite algebraic multiplicity. 

Corollary 2.10. The zero solution u, = uss + Vus + fu(p')u, i = 1, 2, is asymp- 
totically stable in the space X. The stationary solution u = pi,i 1,2, for 
u, = u~ + Vuf + f (u) is asymptotically stable. 

3. STATIONARY SOLUTIONS THAT HAVE LAYER STRUCTURES 

The stationary solutions of (1.1) satisfy 

(3.1) c2Uxx + f (u, x,e) = 0. 

The first set of assumptions are used to construct a stationary solution to sys- 
tem (1.1) that exhibits internal and boundary layers and to obtain the asymptotic 
expansion of such a solution to any desired order in e. 

Assume that there is a partition of [a, b]: 

x? =a<x1 < ...< xr = b. 

On each [xi-1, xi], a C? function p'(x), 1 < i < r, is defined with fo(p'(x), x) = 0. 

Hi. Re a{fou(p'(x),x)} < O for xi-1 < xx, i=1, ,r. 

We introduce a stretched variable ( = (x - xi)/E in a neighborhood of each 
xi, 0 < i < r. The 0-th expansion of (3.1) can be written as 

(3.2) U(( + fo(u, xi) = 0. 

Assume that a C? function q%(Q) is defined for R E i if 1 < i < r-1, - E R+ if 
i = 0 and ( E R- if i = r, such that u = qiQE) satisfies (3.2). Also, qi(0) - pi(xi) 

as -* -oc for 1 < i < r and qi) * pi+1(xi) as -+ oc for 0 < i < r-1. 
Moreover, qi(O) = 0 for i = 0, r, cf. (1.2). 

The linear homogeneous equation 

(3.3) q$( + fou (qi( ), xi)q = 0, 

and its adjoint equation 

(3.4) O6 + foTu(qi(x),xi) 0, 

are important in our study. (Here r denotes the transpose.) 

H2. q (), I I, 1 < i < r-1, is the only bounded solution of (3.3) up to constant 
multiples. 

Because of H2, we can show that (3.4) has a unique bounded solution ( ( E 

RI 1 < i < r - 1, up to constant multiples. See [26]. Moreover, 4i decays exponen- 
tially as -*oo. 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 723 

H3. J r (()fox (q ))d O 1 < i < i<r-1. 
-00 

Hypothesis H3 is expressed by a Melnikov type integral that replaces a hypothesis 
expressed by potential functions in [12, 13]. If n = 1, (3.3) is self adjoint. Thus 
f = q'. The integral in H3 is equal to DxJ(x") where J(x) = f1 j)(x) fo(u, x)du as 
in [12, 13]. 

H4. Let q Ei(), e R+ for i = 0 and ( E R- for i = r, be any nontrivial bounded 
solution for (3.3). Then q$ (0) 0 0 for i = 0, r. 

We look for the position of the internal layers xi(e) = X . formal series 
solution Z=Ociu'0i(x) to (3.1) in regular layer (xi-(e), xi(e)), 1 < i < r, and 
formal series solution Z? 00 0J00((), 0 < i < r, to the equation 

(3.5) u + f (u, xi (e) + cE, e) = 0, 

where ( = (x - xi(E))/E. Let the superscripts "R" and "S" stand for spatial regular 
and singular layers. Each u0 (() satisfies a growth condition 

(3.6) lusi(0) < C(1 + 1W) 
as -* oc and a boundary condition 

(3.7) usi(0) = 0 
if i = 0, r. Let the inner expansions of the outer solutions be 

00 00 

ZciiUi 1 (() =- EjUR,i+1 (6E +xi (E)) 
j=O j=O 
00 00 
EZci E U2 ( X) =i (e)) 

j=O j=O 

The right hand sides in the above are formal expressions. Their expansions in e are 
well defined even if xi(e) is a formal series and U '(x) is not defined for x c R. See 
[22]. Each ii>, h = 1, 2, is in fact a polynomial of degree j. We say that the solution 
in the singular layer E Ju0Q(() matches solution E &0u(x) or E Riuj?i+ (x) if 

(3.8) iu () - <1((W ? C((1 ? ? O, 
US(- 2J2( < C((1 + ) ( > 0. 

To construct those series solutions, we shall use the result from [22]. We ver- 
ify that for an equivalent first order system in R2n, all the conditions in [22] are 
satisfied. From Lemma 2.2 and HI, u = pi(x) is a hyperbolic equilibrium for the 
equation 

(3.9) uee + fo(u, x) = 0, 
for xi-1 < x < xi. That is, (pi(x), 0) is a hyperbolic equilibrium for the equivalent 
system 

uf = vI 

(3. 10) vf = -fo (u, x). 

Also from Lemma 2.2, the unstable spaces are n-dimensional for all 1 < i < -1, 
and x. Thus the hypothesis HI in [22] is satisfied. 
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724 XIAO-BIAO LIN 

On the other hand, when x = xi, 1 < i < r - 1. Since q(0) -* p (x) or pi?1(xi) 
as --o or +oo, based on Lemma 2.2 again, the linearized equation 

(3.11) 
0e = fou (q" ((), x") , 

has exponential dichotomies on 1R- and R+. From H2, (q, (i), q, (i)) is the only 
bounded solution of (3.11) up to a constant factor. From [26], there exists a unique 
bounded solution (OIj,((), 4j(,)), up to a constant factor, to the adjoint equation 

ff = fo'u (qi ((), xi )70 (3.12) _ 

Cf. (3.3) and (3.4). Denote the right hand side of (3.10) by F(u, v, x). Then 

(3.13) F (u,v,x) = (-foj, ))0 

It is now clear that H3 implies [22, H3)]. 
Finally, it is clear that H4 implies that [22, H2)]. The result from [22] yields: 

Theorem 3.1. Under the hypotheses HI to H4, there exist unique formal series: 
00 

(3.14) EiZxi, < i < r, xi xi , x? = Xa= O for all j > 1, 
j=O 

oo 
(3.15) EjuRi (X), uRi(X) ==pi(x), 1 i < r, 

j=O 

(3.16) 

00 RI I, l<i<r-1, 
ZEjusi(E, ugs(,) = q'(E), with ER+ i =0, 
j=O 1( Ei-, i = r, 

such that (3.14) is the position of the singular layer xi(e), (3.15) satisfies (3.1), 
(3.16) satisfies (3.5), (3.6) and (3.7) if i = 0, r. The functions u0 and constants J 
xX are computable by systems of recursive linear algebraic equations. The functions 
0' are computable by a system of recursive linear nonhomogeneous differential 
equations. Moreover, the series solutions obtained above satisfy the matching con- 
dition (3.8). 

4. EXISTENCE OF WAVE-FRONT-LIKE SOLUTIONS 

4.1. Hypotheses and lemmas. To study time evolution solutions of (1.1), some 
more hypotheses will be made. Let Lq, Cbu Cbu be an unbounded operator 
defined by 

Lq (u)Q ) = ug + fou (qi(E), x )u. 
The domain D(Lql) = Cb2u(RIRn) for 1 < i < r - 1 and D(Lql) = Cb2u n BC, for 
i = 0, r. 

H5. There exists a constant aoo such that all the eigenvalues of Lqo and Lqr satisfy 
ReA < -cao. The operator Lqi, 1 < i < r - 1, has a simple eigenvalue A = 0 with 
an eigenvector q" (i), all the other spectra satisfy ReA <- ao 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 725 

Hypothesis H5 ensures the stability of q%(Q) as a solution to u, = u(( + fo(u, xi) 

in Cbu. 
Since A = 0 is a simple eigenvalue of Lqi, 1 < i < r - 1, we have 

(4.1) 01 I < i < r-, 

where Vi(Q) is the bounded solution for (3.4). The proof of (4.1) uses Lemma 2.4. 
If (4.1) were not valid, then q' is in the range of Lq". This contradicts the fact 
A = 0 is simple. Assume now 

H6. j f/4(Q)q (&)d < O 0r ( )fox(q( x') < > O for 1 < i < r-1. 
-00 -00 

Due to H3 and (4.1), H6 is only a sign condition. We shall see that H6 implies 
that the position of the wave front near xi moves towards x2. 

It is useful to note that (4.1) is always valid if n = 1. In that case, Lq" is self 
adjoint, thus Li(() = qi) 

We look for wave front positions that are in open intervals O' containing xi, 1 < 
i < r - 1. We state the following properties of O'. 

P1. pi(x) and p+ (x) can be extended smoothly to O' with 

(4.2) fo (pi (x), x) = 0, 
(4-3) Re I a(fou (Pj(x), x))} < O, j =i, i + 1. 

P2. There exists a C? function Vi: O -* R such that for each x c O', equation 

(4.4) u~ + Vi(x)uf + fo(u,x) = 0 

admits a heteroclinic solution qi(E, x), connecting pi(x) to p'+ (x), with (u(O) - 
q (O))Iq'(O). In particular, V2(x2) = 0 and q2(., xi) = qi'(). Moreover, Dxq2(., x) E 
Cbu for all j k > 0. 

P3. The linear equation 

(4.5) q$( + V'(x)q$O + fou(q((,x),x) = 0 

has a unique bounded solution q' (E, x), up to constant multiples. And the adjoint 
equation 

(4.6) O44 - Vi(x)fO + foru (q (E, x), x) 0 = 0 

has a unique bounded solution 0 ((,x), l i(0,x) = 1, up to constant multiples. 
Furthermore 0 (., x) is a C? function of x in the space Cbu 

P4. In the Banach space ER (w), L' u = u~ + V2(x)uf + fu (qi(&, x), x)u, 1 < i < 
r - 1, has A = 0 as a simple eigenvalue with eigenvector q(, x). All the other 
spectra of Lx satisfy ReA < -ao for some ao > 0. 

P5. For x c O', we have 

(4.7) 

{| fi (()x)q >0 , 1 < i < rf-1. 
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Also Vi(x) > O(= 0, < 0) if x < xi(= xi, > xi). And 

&vi (xi) _-I _ f 7 (() fox (q2("), x )d 
Ox < 0. 

Lemma 4.1. Assume that HI, H2 and H5 are satisfied. Then there exist open in- 
tervals Oi containing xi, 1 < i < r - 1 such that Properties P1-P4 hold. Moreover, 
if H3 and H6 are also satisfied, then Property P5 also holds. 

The proof of Lemma 4.1 will be given in ?7. 
Consider the nonhomogeneous equation, 1 < i < -1,: 

(4.8) u + V (x)uf + fo,(qi((, x), x)u + Viq (, x) =-g 

Here Vi(x) and qi(t, x) are the functions in P3, V1 R i is a parameter. Suppose 
that g C ERm(i + Jfjk),m, k > 0. 

Lemma 4.2. Assume that HI, H2 and H5 are satisfied. Let 1 < i < r - 1. Then 
there exists a unique C0? function V*i: O0 x EN'(1 + ljk) -R such that if V1 = 
V*i(x, g), then there is a unique solution u((, x, g) of (4.8) with u c ERm+2(1 + lfjk) 

and u(0) I q (0, x) . Moreover, u(., x, g) is C0? in (x, g) with respect to the indicated 
norms. 

In the rest of this section, we always assume PI-P4. Sometime P5 is also assumed 
as will be indicated in the text. 

4.2. Formal power series solutions in (RR)". Let the position of the i-th in- 
ternal layer be 

00 

(4.9) Ed%(t,e) = Zcir(t), 1 < i < r-1. 
j=O 

For convenience, let qo(t, e) = a, qr (t, e) = b. 
Assume that no(t) c Oi and no-1 (t) < no(t). In the interval (I-1 (t), o(t))) 

1 <i < r, we seek formal series solution 
00 

uRRi(X t,c) = EZ j,U i (X) 
j=o 

that satisfies (1.1). Since f does not depend on t, by induction, we can show 
that UJ}Ri does not depend on t. Expanding in powers of c, we have (drop the 
superscripts): 

(4.10) 0 = fo(uo(x),x), 
(4.101) 0 = fou (uo (x), X)u1 + fi (uo (x), x), 

(4.1Ok) 0 = fou(uo(x), x)uk +Uk-2,xx?+ ,,6Cc,6D I'lf6 (uo(x), x)u'. 

k-1 

Here ao = (a,, .* .. k- ) iS a multi-index, U = UC.. UC'k E jaj + 6?=k, Ccs 
j=1 

is a constant. 
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Let the solution of (4.10) be uo(x) = pi(x), 1 < i < r. Since O' satisfies P1, then 
fou(uo(x), x) is nonsingular. Thus, UjRRi, j > 1, can be solved successively from 
system (4.10)- (4.10k), k > 1. 

Theorem 4.3. Assume that Oi satisfies P1. Let qi (t) c Oi and n71(t) < ot) 
for 1 < i < r - 1. Then there exists a unique formal series solution uRRi(X, t, E) = 

0 
0 Ej uRRi (X) to 

0 = 6E2 x +fU,,) q n-,(t) < x < N() 

With ui = pi(x), it can be obtained from system (4.10)-(4.1Ok), k > 1, recursively. 

4.3. Formal solutions in (SR)'. First consider the internal layers, 1 < i < r - 1. 
00 

Let the position of the internal layer, at t = 0, be qi(0, I) = x,Ujr,j i.e., q (0) = 

j=0 

Assume in this section that { }0 is given. The problem of determining {1 }, 
will be discussed in ?5. Assume that 

(4.11) 7 c O', 1 < i < r-1 and qo <%`j 2<i<r-1. 

Let ( = [x - i c)]/c. We seek the layer position q(t, E) and the formal solution 
uSR(, t,cE) near the singular layer at x = ni(t,c). Since 

u(x, t, E) = uSRi((x -_ i7(t, E))/,E t, c), 
from (1.1), uSR%((, t, c) satisfies (drop the super-indices): 

(4.12) EUt = u~ + Dt?r(t, E)uf + f(u, cE ? (t, c), c). 

00 00 

Let u((, t,cE) = E Z iu (, t), (t,cE) = EZc (t). Expanding in powers of c, we 
j=O j=O 

have (f'(t) denotes d 

(4.13) 0 = 0 (t)uof + uo0 + fo (uo, (t) ), 

Uot = 1 (t)uo0 + fox (uo, o (t))n (t) 

(4.131) + ui( +? r (t)ui + foU(uo,q0(t))u1 

+ {fox(uo, 0o(t)0) + fi(uo, no(t))}, 

Uk-1,t = n (t)Uof + fox (uo, io (t)) k(t) 
(4.13k) 

? Uke +? q(t)Ukf + fou(uo ?7O(t))Uk 

k-1 
? E rj(t)uk-j, + E C 36D*D9+-7f6(uo, No(t))u'(7 

j=1 

Here a = (a1 - ... ,k-l), / = (Ol,--- , k-1) are multi-indices, 6 and -y are non- 
k-1 

negative integers, u' = uc1 ... u 7 - ... 74j1, ? . y ? (a; ? /3). = 

j=1 
k, Co^ is a constant. 

From P2, there exists a unique heteroclinic solution 

(4.14) uo((, t) = qi(E, (t)) 
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to (4.13) connecting p2(q(t)) topi+l(rTj(t)) with (uo(0,t) -q2(0))Iq (0), provided 
that 

(4.15) '(t) = Vi(Io(t)). 

With the initial condition q (t) = i(4.15) uniquely determines q (t) as long as 
0 c oi. From (4.14) and the last assertion of P2, we see that D3uo c Cbu for all 

j, m > 0. 
If we also assume P5, then x = xi is a stable equilibrium of (4.15) in O'. Since 

- c Oz, we have no(t) c Oi for all t > 0 and approaches xi as t -* oc. 
We compute the sequences {uj} J?? and {j }jo by induction. Assume that uj 

and j, 0? j < k-1, have been obtained, uj is written as 

uj ((, t) = Uj ((, xI Xi, I ... I xj ) 

where x = qo(t), Xl = p1(t), ... ,Xk-1 = 77k-l(t), and DyUj c Em(l + lJi) where 
y = (X,XI,... ,Xj), ?a = (ago,ca,... ,I j-j), m > 0, is an arbitrary integer. Also 
assume that qj(t) = VjI(x, xi,... ,xj) and qj(t) -* as t - 0. Let r;k(t) = Xk 

and q'(t) = Vk. We can write Uk-l,t = a, Vi(x,... ,x) where xo = x 

and Vo'(x) = V2(x). Equation (4.13k) can be written as 

Uk(6 + V (x)Ukf + fou(qi((, x), x)uk + Vkq(Q, x) 
( hk(Q, Uo, Ul, Uk-1, X,X1, ... , Xk), 

where 
k-1 

hk =fo(Uo, X)Xk + E Vj (X, ... , Xj)Uk-j,( 
j=1 

+ , CE s^DalDli +7f(Uo )Uarpa k_ 

1 
allk-1 Vei(X xe + Cc,3 6DIcfIDIOI f,6(Uo, x)Ur"o~ - -xi),..., 

and q =1 xl ,Xk1. 

From the induction assumptions, we can verify that Dchk c Em(I + Jfjk) for all 
m > 0, where ao = (aoi ... , ak) and y = (x,... , Xk). Therefore by Lemma 4.2, there 
exists a unique C? function Vk : O x R -* R such that if Vk = Vk(xXl xi , ... Xk)i 
then (4.16) has a unique solution Uk((, x, x1,... . Xk), Uk(O, X, ... .,xk)lq(0, x) and 

Dc Uk C Em(1 + ljk) 

for all m > 0. With the initial condition Xk(0) = i, equation 

(4.17) x ,Xk) 

has a unique solution Xk = ?lk (t). Let 

(4.18) Uk((,t) = Uk((,77o(t),... ,Tlk(t)). 

This is clearly a solution to (4.13k) and satisfies 

(4.19) IDcul E Em(1 + Jf l), ?, m> 0. 

Since hk is linear in Xk with 9hk = -fox(uo, x), and {hk-Vkq (Q, x) } c {i(, x) }, 
see the proof of Lemma 4.2, thus Vk/ is a linear function of Xk. 
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If P5 is also assumed, then 

aVk _ {,/ )((, x) q' ,( x) d( {J b`((,x)fox(q (,x),x)d(} <0O 

Recall that in this case, qj (t) -*X, 0 j < k - 1 as t -* oc. Also, when xj = 
X0, O < j < k - 1, Xk = X4 is a stable equilibrium solution to (4.17) and ?lk(t) -* Xi 

as t -* oc. See Theorem 3.1 for {xi}k_0. Finally Uk((,t) -*Uk (, X ,x4) as 
t - 00, the latter is uks(Q) in Theorem 3.1. 

Next, consider the boundary layers, i = 0, r. At the boundary layer (SR)? near 
00 

x = a, let x = a +?E, u(x, t, e) = USRO((,t,e) = EijURo(, t). The system for 
j=0 

{UjRO} is simpler than (4.13)-(4.13k) since the layer position does not move. After 
dropping the super-indices, we have 

(4.20) 0 = Uo(( + fo (uo, a), 

(4.201) Uot = u1( + fou(uo, a)u1 + fox(uo, a) ( + fi(uo, a), 

(4.20k) Uk-1,t=Uk( +fou(uo, a)uk+ ?E C6D1 1D-f6(uo, a)u '(- 

k-1 

Here at = (at, .... k1) Uc, = UC .. UCk-1, > 0, 6 + -y + E jaj = k and Cc,_b 
j=1 

is a constant. The boundary conditions 

(4.21) uj((0) = 0 

are imposed on _uj J??0. 
Since qo(() satisfies (4.20) and (4.21), set uo( ,t) = qo((). uo E Cbu(R+i,R) for 

all m > 0. Observe that the right hand side of (4.20j) does not depend on t. Thus, 
ujt = 0 for all j > 0. After rewriting (4.20j) and (4.21) to a first order system in 
R2n, we find they correspond to (5.10j) in [22, ?5]. We look for a solution satisfying 

(4.22) uj c E (1 ? i). 

This condition correspond to (5.11j) in [22]. Moreover Hypothesis H4 implies 
assumption H2 in [22]. From the results of [22], we conclude that there exists 
{ujRO?}jo 0satisfying (4.20)-(4.20j), j > 1, and (4.21) and the growth condition 
(4.22). In fact UjRO ((, t) = uj (E) as in Theorem 3.1 of this paper. Similar argu- 
ments also apply to (Sf)r. 

Theorem 4.4. (I) Assume P1-P4 and ZET r jE is given that satisfies (4.11), 
1?< i?< r-1, and Ed-1 = a, -Ej7jr = b. Let t > 0 be such that rq E Oi for 
0 < t < t. Then there exist unique formal series for 0 < t <t, 

(4.23) ri(t, e) =,Ej%/j(t), O < i < r, 1 (O) =rj 

(4.24) 
uSRi (, t,e) = Z j USRi(&, t), 0 < i < r, USRi(&, t) =q'(&, 710(t)), 
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730 XIAO-BIAO LIN 

with u Ri definedforE E R if 1 < i?< r-1, ( c R+ ifi= 0 EIR- if i =i r 
such that the followings are satisfied: (4.23) and (4.24) formally satisfy (4.12). 
uSRi(E, t) satisfies (4.19), and the boundary condition (4.21) if i= 0, r. 

The series EEiuSRi is computable recursively from (4.13)-(4.13k), k > 1, and 
Zc ?3 r(t) is computable recursively from (4.15) if j = 0 or (4.1 7) if ] > 1. 

(II) If P5 is also assumed then t = oo. Moreover, rj(t) -+ x' as t + oo, where 

EjxJ is the stationary front as in Theorem 3.1. Also uSRi((, t) - as 
t -+ oc, where EZuS (() is the formal series solution in the stationary singular 
layer as in Theorem 3.1. 

Corollary 4.5. Assume HI, H2, H4 and H5, then the results in Part (I) of The- 
orem 4.4 are valid. If furthermore, H3 and H6 are also assumed, then results in 
Part (II) of that theorem are also valid. 

Remark . From Corollary 4.5, Hypotheses H3 and H6 imply that the stationary 
wave-front-like solution in Theorem 3.1 is exponentially stable. If H6 is replaced 
by 

J , (E)q(E)dE j , (E)fox (q'(E)x") d > 0 for one of I < i < r-1, 

then &V (xe) > 0 and the solution is unstable. 
Ox 

5. SOLUTIONS IN THE INITIAL LAYER 

In the initial layer near t = 0, we use the stretched time T = t/E. (1.1) is now 

(5.1) Ur = c2uxx + f(u, x, c). 

5.1. Assumptions on the initial conditions. We assume that the initial data 
u(x, e) has a layer structure described as follows. There is a partition of the interval 

[a,b] 
a = < i7' < < K Tr = b 

with Thi E oi, 1 < i < r - 1. At each 4I, 1 < i < r - 1, using the stretched variable 

( = (x- TO)/E, we have u(x, e) = U(71i +e-, e) = 
i 

si(i c), (a-) /cE < < ? (bi)/E. 

Assume that 

H7. 
00 

(5.2) TI(xIE) = Z&' (x), 1K< x < K , 1 <i<r. 
j=0 

oo 

(5-3) 7si( e) = Zucj(i), 0? i ? r. 

j=0 

(5.4) >S0i(0) = O, j > O, i = O,r. 

The functions -uj7' is C0? and has a C00 extension to j7 i-l,;i]. 

Observe that uSi((, e) is defined for ( in an interval of size Q(E-1). As the result 

of a formal expansion, assume that u Si is C00, and is defined for ( IR, ER+ or R- 
Si ~~~-Si 

if 1 < i < r-1, i = 0 or i = r. For example, =uo () is the limit of u ((,ce) as 
e + 0, uniformly in any compact subset of (. 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 731 

Let the inner expansion of the outer power series be 

_j =0 uj,) = Z_ 0i j70ii( 7" + E) 1 < i < r, 
j R jR(i+l) ( + ), < i r-. 

- Ri 
Here, u; v((, v = 1, 2, is a polynomial of degree j. Observe to perform the formal 
expansion, the right hand sides only have to be defined in a neighborhood of zero. 

H8. Each =ucE Em(I + Jfji), for all m > 0; and the matching conditions with 
outer expansions are satisfied: 

uj (() - zI(() E E+ ((1 + Jij)eYI), 

where -y > 0 is a constant. 

General discussion of matching conditions can be found in [6, 7]. 
In the regular region, the 0-th order equation of (5.1) is 

(5.5) UT = fo(u,x), x E [7ji ,71]- 

Let Vi be the function in P2, (ii) so that the following equation 

(5.6) u = u + V"( 7u)uf + fo(u,i) 

has a stationary solution (heteroclinic solution, u, = 0) qi (t, v i) connecting pi(% ) 
top+?1(I), 1< i r-. Fori = 0,r, let qi(&,i) =qi(&), V'(71) = 0. Recall that 
q?(0, ( _> 0, and qr((), ( < 0, are stable stationary solutions of (5.6) satisfying 
boundary conditions at x = a or x = b, approaching pl (a) as - +oo or pr (b) as 

- -oo respectively. 
According to Lemma 2.6, D 2 is a sectorial operator in X = IR (W), so is its 

perturbation Au = uss + Vi (-7)us, 1 < i < r - 1. When i = 0, r, A is sectorial in 
X = BR? (w) with DA = BR (w) n (BC). Observe that u -+ fo(u, V) maps DA to 
itself. Let u(0) = u0 o DA. Local existence for solutions of (5.6) in BR(W), 1 < i < 
r - 1, or BR? (w), i = 0, r, has been established. In particular, u E 
C1( [0, to]: X) n C([0, to]: DA) . See [5] 

H9. (i) For each x E [ri-1, rq] the equilibrium pi(x) of (5.5) attracts -uT(x). (ii) The 
stationary solution qi (;) of (5.6) attracts uo (() in the space BR+ (w) or BR? (w) if 
i = 0, r; the stationary solution qi(', 7i.) of (5.6) attracts uo" (() in the space BR(w) 
modulo a spatial shift if 1 < i < r -1. 

H9, (i) is a reasonable assumption since HI and P1 imply that pi(x) is a stable 
solution for (5.5). H9, (ii) is also a reasonable assumption since from H8, we have 
Uc E B2 (w) and we can prove the following lemma. 

Lemma 5.1. qo(;, r70) and qr((, ifr), are asymptotically stable stationary solutions 
in BR+ (w) and BR_ (w) respectively. qi(;,rZi), 1 < i < r - 1, are asymptotically 
stable in BR (w) modulo spatial shifts. 

For x E oi, define 

Lq2u = us + Vi(x)us + fou(qi(;,x),x)u, 0 K i < r. 
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See P2 for Vi(x) and qi((, x). Lqi is a closed linear operator if X = ER(w), 1 < 
i < r - 1, with D(Lqi) = E(w); or if X = ER?(w), i = 0 or r, with D(Lqi) 
ER2? (w) n (BC) . Consider 

(5.7) uT = Lqu, OK < i <r. 

Also the boundary condition u (0) = 0 is imposed if i = 0, r. 

Lemma 5.2. Equation (5.7) is asymptotically stable in E2? (w) if i = 0,r. It is 
asymptotically stable modulo q (., x) if 1 < i < r -1. 

5.2. Formal power series solutions in (RS)'. Let 
00 

uRSi(X, T, e) = S iujURSi(X, T). 

j=O 

From (5.1), expanding in powers of e and dropping the super indices, we have for 
X E [n-l xi 

(5.8) uO = fo(uo,x), 

(5.81) u17- = fou(uo, x)uI + fi(uo, x), 

(5.82) U2r = Uoxx + fou(uo, X)U2 + fouu ul2/2 + flu u1 + f2, 

(5.8k) Uk-r = Uk-2,xx + fou(uo,X)uk + E Ca6DIalf6f u. 

Here 6 > 0, a = (al, 
,ak-1), 

ua = u1l ... Uak-1, 6 + E jaj = k, 0Q6 is a 
constant. 

With x as a parameter, (5.8)-(5.8k), k > 1, are to be solved recursively with the 
initial data 

(5-9) Uj(x,0) = Uj(x), j > 0, 

where Uj (X) iS the 
-iu (x) in H7. Since pi(x) attracts Tuo(x), cf. H9, (i), the solu- 

tion u'(x, r) of (5.8) approaches pi(x) exponentially as r -- oo. From a standard 
perturbation theory, the linear variational equation 

UT = fou (uo, x)u 

is exponentially stable. We now proceed by induction. Assume that uj, 0 < j < 
k- 1, have been solved with jDXuj(x,T)jCm([O,,)) < Cjam, for all a > 0,m > 0. 
Rewrite (5.8k) as 

(5.10) Uk-- = fou(uo, X)Uk + hk(uo,u I.... ,Uk-1). 

It is easy to see that jD`hkjCm([O,)) < ox for all a > O,m > 0. Equation (5.10) 
with initial condition (5.9) then has a unique solution uk that satisfies 

(5.11) |D`Uk(X,T)jCm([OX00)) ?_ C 

for all a, m > 0, uniformly with respect to x. 
For a = 0, estimate (5.11) comes from the variation of constant formula and the 

exponential stability of the evolution operator for (5.10). For a $& 0, differentiate 
(5.10) with respect to x a-times and consider the equation for Dffuk. (5.11) then 
follows easily. We have proved the following. 
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Theorem 5.3. Assume HI, H7, and H9 (i). Then there exists formal series 
00 

uRSi(x,T C) = EEiURSi(X, T), UjRSi(X, 0) = 

j=O 

for </i1 < x < Thi, 1 < i < r, such that uRSi formally satisfies (5.1). The series 
can be obtained by recursively solving the system of ODEs (5.8)-(5.8k), k > 1, with 
the initial condition (5.9). Furthermore, each O i is Cm bounded jointly in x and 
oT for all m > 0. 

5.3. Formal series in (SS)' and matching of (SS)' with (SR)'. The position 
00 

of the wave front 4i (t,C) = E'7r4 (t) depends on its initial condition ?i7(0,C) = 
j=O 

00 

S Usi7;. We will show in this section that {i7 }j% is determined by the matching 
j=o 
of expansions in (SS)' and (SR)'. In the fast time variable T = t/c, from a formal 
expansion, 

00 

(5.12) 7t(rT,C) = 3e: T1(T) d- 7i(t ,) = 7ri (CT,C) 

j=O 
00 00 

Each 77 j (T) is a polynomial of degree j. In fact, from 5 U 77 (T) -= 7r7j (ET), 

j=O j=O 
we have 

(5.13) 71 (T) =(0)T 
f=o 

where (t) denotes the t-th derivative with respect to t. In particular, 

(5.14) 771(?) = j ij(?) = ThY 
00 

The stretched variable ( = (x -I 5 7?7j (T))/E is used to express the solution 
j=O 

uSSi((, T, e). When T = 0, in the new variable, the initial data are 
00 00 

-S _ 
lE-S defu uSi(s ) =ECUjk,) d U(X,C) =Tt(CE +SCJ4I:C) 

j=O j=O 
00 

-i0 -i' Recall the definition of -Si:dS Let now rio = rR. Realtedfiiino ((, C) = E CiuQ(() It is easy to see 
j=O 

that 
00 

-Si (e)=-USi ( i e 

j=o 

(5.15) UO(O) = uo(( + 71i+), 

(5.151) Ui (0 = U1 (( + 711) + uo4( +7 717,2v 

(5. 15k) Uk (()= Uk ((+#71l) + . .+ u04(( +771i )1k+1. 
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Observe that in (5.15k), the ... comprises of terms containing only { }jk 3=. 
Let the solution in (SS)" be 

00 

ussi( IT E) = uSSi((x_ r'(T,c ))/d ,T) = Zc J:ujsS((,T) 
j=o 

that satisfies 

(5.16) U = u~ + -DT r'/ (rT e) ue + f (u, E+ r1t (rT e), e). 

Observe that 

1 *. 
00 00 i 

(5.17) DT 71(T = Zi ;1)N{)(T) = (Ei(ITtj)(O)Tt]!) 
j=o j=O f=O 

where (1) denotes derivatives with respect toT. Notice that 77j+ () is a polynomial 
of degree j. Expanding (5.16) and using (5.13) and (5.17), we have a system for 

Z?0 OjuS. (Recall 77i(l)(O) = Vi (7i) from (4.15), and V'(i7'q) = 0 for i = 0, r.) 

(5.18) UOT = u0 + Vi (71i)uo0 + fo(uo,ijZ), 

UlT = Ul4 + V" (7i)ui + fou (uo, -i)ui 
(5.181) 

+ 2(1)(T)uof + fox(uo,;qh-)((+ 7il (T)) + fi (uowD, 

UkT = Uke + Vi (ij)Uk( + fO(u(O, Vj)Uk 

1)+ 7 (T)k-j,( + V'Cco,6D'al D1f31?Yf6 (uo, ;-)u' 
j=1 

Here e = (C,e... .,ak), UC = Ua' ...u%_y, 3 = (,. * 0 * * ,k), ... = *** k I 
k-1 

y6 > 0 are integers, 6 + -y + Z(aj + fj) j + kfk = k, Capa6 is a constant. The 
j=1 

initial conditions for u0,u1,... ,uk are given in (5.15)-(5.15k), k > 1. 
The existence of local solutions for (5.18)-(5.18k), k > 1, follows from the theory 

of abstract parabolic equations and analytic semigroup. Let Au = u~ + V (r7")u~. 
Let 1 < i < r - 1 first. Consider (5.18) in X = BR(w). Then A is sectorial with 
DA = BR2 (w). Since uo((, 0) = % (Q) E DA, (5.18) admits a unique solution 

(5.19) u E Cl Q0, to] : X) n C([o, to] : DA) 

for some to > 0. If i = 0 or r, the same conclusion hold but X = BR? (w) and 
DA = BR? (w) n (BC). However, due to H9, the solution uOssi((, T) exists for any 
to > 0 and approaches q (, + c, 4i) as T -+ ox, for some constant c E JR. When 
1 < i < r - 1, (5.18k), k > 1, is considered in X = ER(w) and A is sectorial 
with DA = ER(w). When i = 0,r, X = ER?(w) and DA = ER0 n (BC). Since 
Uk((, 0) = UTt) c DA, and it can be seen by induction that the right hand side 
of (5.18k) is in DA(l), (5.18k) admits a solution u that satisfies (5.19). Since 
the evolution operator of (5.18k) is not asymptotically stable, and the nonhomoge- 
neous terms are of O((1 + T)k) in DA(l), in general, we can show jukIE2(1+l1lk) = 
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O((l + T)k+l ). However, a better result can be obtained by considering the match- 
ing of (SS)' and (SR)'. In our case, Uk((, T) exists for all T E [0, oc) and satisfies 
IDfDUkQ, T)| + ID3Uk((, T) I< C(1 + J(jk + Tk) for a < 1, 3 < 2. 

00 

For the purpose of matching we expand uSRi((, t, C) = E cJuSRi((, t) in the fast 
j=O 

time T = t/C. 
00 

uSRi ( r e) =USRi(( C) = ECi *jSRi (,T). 

j=o 

Since u(x, t, e) =u SRi((x 77 (T, C))/C,T,C), U SRi(,T,C) formally satisfies the 
00 

same equations as (5.16), therefore E i U SRi ( T) formally satisfy system (5.18), 
j=O 

(5.181), ..., (5.18k) . Also from 

00 00 

5 ji ((vRT) E= ji SRi ((vT) j=O j=O 
and DMuORi(;, t) E Em(1 + Jfji) for all ?,m >0, u is a polynomial in T, in the 
form 

(5.20) u jRi =EU, with I Uje IEm (+l?1e) < CT , for all m > 0. 
e=o 

In particular, U SR (1i + +T). 

Observe here that {ujRi}j has not been determined since {7 j}1 is still un- 
known. But knowing {pj}Jk suffices to compute {UjRi}k and (t)k 

We now prove by induction that by successively choosing {r7j jO ?'1 (Wj+I affects 
initial condition Tuj((), cf. (5.15j)), system (5.18)-(5.18j) has a unique solution 
{Ujsi} ? 0 such that 

k 

(5.21) us= s ujy with IlUi JJE2(1+1Ile) < 0(1 + T 
j=o 

and 

(5.22) luie- u*i IE2(1+111) < C(1 + Tj-f)e-^Y. 

First, if 1 < i < r - 1, (5.18) has a stable stationary solution qi(;, 77) that 
attracts u0 modulo spatial shifts. cf. H9. Thus, there exists a unique ~71 such that 
with uo((, 0) = Uo(s) = U(W + D), 
(5.23) jjuSi(-,T) - qi(, 'i)lB2(W) < Ce-T, T > 0 

where wQ() = e-'l' and y > 0. If i = 0,r, qiQ(,7%) is stable. We choose 7 = 0, 
(5.23) is still valid. Now (5.23) is even stronger than (5.22), j = t = 0. The extra 
control of the rate of approaching uo(?oo, T) as -+ ?oo will be used in ?6. At 
this point, {UjRi}>0=0 and {,1j}>1= have also been determined. 

Assume that { U}Siik-ii and {r W}.k_0 have been determined and (5.21), (5.22), 
0 < j < k - 1, are satisfied. Therefore, 77j(t), t > 0, 0 < j < k, and all their 
derivatives at t = 0 are determined as well as {U7 i}0 and {fujRi} . From (5.13) 

This content downloaded from 152.1.252.217 on Mon, 11 Aug 2014 15:44:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


736 XIAO-BIAO LIN 

and (5.17), 77 (T) and 771 (T), 0 < j < k, are determined, which will be used 

in (5.18k). We now rewrite (5.18k), which is satisfied by ukSj' andu ks as the 
following: 

Uk-, - Uk( - Vi(7 ;)ukf - fou (uO, W)Uk = gk (UO ** Uk-1 

Ukt - UkF -Vi ON1 ) Ukf -fOu (k0, Ti) Uk = gk (Uo,* Uk-1)- 

Sincegk (Uo, . . . , Uk- 1) is a polynomial in (u1,... , uk-1) and (u1j,... , uk- 1,), us- 
ing (5.20)-(5.22) we can verify that 

k 

gk(UO,.* ,Uk-1) -9k(o,*.... ,Uk-1) = Zgkj 
j=O 

with II9kjIIE1(1?IIflIa) < C(1 + Tk-i)e-T. Let Au = Uk- Uk. 
Denote 

L'u = uss + V (77r)u + fou(uo I , )u, 

AuT - L~Au =k + kj 
Au, - L u = [fou(uo,W) - fou(o )] Ukj + 9kj 

j=O j=O 
(5.24) k 

= 5Gkj. 
j=O 

At this point all the terms in the right hand side of (5.24) are known. Observe that 
the initial data for Au has the form Uk((, 0)- *k ((, 0) = (() + u (( + 7D)h+l 
where So E E2(1 + JfIk). Recall that 70 = a r = b, =Ofor allj > 1 if i = 0,r. 

Lemma 5.4. (i) Let 1 < i < r - 1. Consider 

(5.25) 
U'r~~~ L'u + h, 

(5.25) u((0) p(+) +-o (+t -) 

where h :IR+ E' E(1 + lJi ) is continuous with jh(T)lE1(1+1j13) < C(1 + Tf)e-YT 

and (o E E2(1 + Jji). Then there exists a unique 77 E JR such that there exists a 
unique solution u to (5.25) with Iu(T)IE2(1+I1I1) < C(1 + Te)e-^7 . 

(ii) Let i = 0 or r. Consider (5.25) with WI = 77 = 0, where h: JR+ - 

ER?(1 + fjji) is continuous with Ih(T)IEi?(i+je13) < C(1 + Tf)e-YT and o c 
ER2 (1 + fj i) n (BC). Then there exists a unique solution u to (5.25) such that u: 
R+ -+ EE (1 + Jfji) n (BC) is continuous and IU(T)IE2 (1+I1I1) < C(1 + Tf)e- Y. 

k 

We now write z\uk = 5 AUkj where AUki satisfies 
j=O 

(5.26) u, - L u = [foi(u0, 7) - fou (U io 4 )] Ukj +9kj = Gkj 
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Let 1 < i < r - 1 first. Since ,o E E2(1 + Jfjk) and IGkjIEp(1+1Il13) 
< 

C(1 + Tk-j)e- , from Lemma 5.4, (i), there exists a unique Cj, 0 < j < k, such 
that the unique solution AUkj of (5.26), (5.27) satisfies 

(5.28) IAukjIE2 C(?1~13) ? 1 + Tki)e Ye 

Let i = 0 or r next. Then p(() = uk(() = ukn() E ED;(1 + Lfi)k) 0 (BC) and 

IGkjIEi?(1+Il13) 
< C(1 + Tk-i)e-Yr and Cj = 0, 0 < j < k. From Lemma 5.4, 

(ii), the unique solution AUkj of (5.26), (5.27) satisfies the Neumann boundary 
condition at ( = 0 and 

(5.29) IAUkjIE2 (1 J) < C(1 + Tk-i)e Y`. 

In all the cases let nj+l = E cj and uj= AUkj+ Ukj* FRom (5.20), we have 
(5.21) for j = k. Thus, (5.21) and (5.22) have been proved by the induction. 

We summarize the results in 

Theorem 5.5. Assume Hi- H5. For each 0 < i < r assume the initial data 
-Si u (I, e) = E ci=u (() satisfies H7 and H9, (ii). Then there exist formal series 

(5.30) u (e,T,c) = EZ u iU(i, T), ussi (i 0) = uj 

(5.31) E 7:7t 71i =71 

Here /7i is determined by the layer position of the initial data. (5.30) formally 

satisfies (5.16) where 77 (T,) = r (c-r,) is the expansion of the layer position in 
the variable r = tlE, see (5.12). Furthermore (5.30) is recursively determined by 
(5.18)-(5.18k), k > 1, with the initial conditions (5.15)-(5.15k), k > 1 in the 
space ujSS E E2(1 + Jfji), where W., j > 1, is chosen such that for any integers 
a ?2, < < 1, 

la SS01 + &Kussi I < (1 + 1 ij + Ta), 

iuj- u SRi| < 0((1 + J(ji + Ti)eYr, 

for some y > 0. 

6. MATCHING OF LAYER SOLUTIONS, CONSTRUCTION OF PSEUDO SOLUTIONS 

6.1. The matching of (RS)' and (RR)'. 

Theorem 6.1. There exists -y > 0 such that for any integers a, /3, j > 0, 

a (UjRSi (X, T)_U-RuRi (X)) I< C?Oje-", 

uniformly for all x E [ Vi1, ], 1 < i < r. 

When j = 0, Theorem 6.1 is a consequence of the exponential stability of 

pi(x), 1 < i < r, as a stationary solution to (5.8). By induction, we can prove 
that the nonhomogeneous term and the coefficient fo0(uo,x) in (5.8k) approach 

the corresponding terms in (4.10k) exponentially as r -* oo. The desired result 

then follows easily. Details are omitted. 
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738 XIAO-BIAO LIN 

6.2. The matching of (SS)' and (SR)i. The matching of expansions in (SS)i 
and (SR)' has been obtained in ?5.3. For convenience, we state the result in the 
following 

Theorem 6.2. Let Au ; = USi- * SRi where S ujRi is the expansion of 
0 

6iUjRi((, t) in the variable r = t/E. Then there exists y > 0 such that for any 
nonnegative integers a < 2, 3 < 1, 

{ 1&4 iAuy l + I&XAuIl} ? Cj (1 + L ji + Tj)e- 
r 

6.3. The matching of (SR)' with (RR)' and (RR)'+1. Let the inner expansion 
of the outer formal solutions in (RR)' be 

00 00 00 

EejaRRi( t= siu RRi (,Et + Ef s (t)), I < i <r, 

61) j=O j=O = 
(6.1) i-00 00 00 

eiiRR iu (g )=euRR(i+ 1) (e,E + ce1 (t)), O < i < r -1 

j=O j=O e=o 

Recall that 7780(t) = a, 77r/(t) = b and rg?(t) = 7r (t) = 0 for all ? > 1. From (6.1), 
we find that iii, iV = 1, 2, is a polynomial in ( of degree j, with its coefficients 
depending smoothly on r7(t), t < j. Thus, 

OM Ei Eg(j + 1(jk), v = 1,2, 

with the norm bounded uniformly with respect to t > 0. 
Concerning the matching of (SR)' and (RR)', we want to show that there exists 

-y > 0 such that the following estimates hold. 

(6.2) 

(ujSRi(., t)-Ujjl?i( t))MEr ((1+Il13)e--YI1) < Camj, 1 < i < r, 

&a(Uj Ri(.t)-U;j2 '( t))Em ((l+J)e-) <?Cmjj 0?<i<r-1 

for all a, m, j > 0 uniformly uniformly with respect to t > 0 in the weighted norms. 
Only the proof of the second estimate, 0 < i < r - 1, will be presented since the 
proof of the first is similar. 

00 

Notice that E :ii32 ((, t) formally satisfies 
j=o 

cit = iiu + Dtr7(t, E)iiu + f(ii, cE + r7(t, c), c). 

This has the same form as (4.12). Expanding in power series of c, the equations for 
{jii.2Ri}g? are precisely (4.13), (4.131), ..., (4.13k). When j = 0, the equation 
is 

(6.3) 0 = Vi(x)iiou + iiou + fo(iio, x). 

The above has a solution &o ((, t) = p'(?7o(t)) (which is in fact independent of (). We 
can prove by induction that u;(j, t) =j (E I xI . ., xj ) where x = 771 (t), . . ,xi = 
?7j (t). Also D' Uj C Em (1 + ji) where y = (x, .. .,jx) and v = (vo, v, . . ., v). 
These properties are similar to those of Uj, see ?5. 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 739 

The assertion is clearly valid if j = 0. Suppose it is valid for 0 < j < k - 1. Then 
Uk satisfies the following equation, similar to (4.16), 

(6.4) 

Uk~ + Vi (X)iik + fou(uto, X)iik + Vkiiof = hk(i, 0o, Uk-I, xl, ..., Xk), 

where h has the same form as hk in (4.16) except Uj is replaced by Uj. No- 
tice that the homogeneous equation associated to (6.4) has an exponential di- 
chotomy in ER, and the nonhomogeneous terms are in Em(1 + J(jk). Thus (6.4) 
has a unique solution 

Uk(.,x,...I,X) 
E Em(1 + tik) that depends smoothly on 

(x, ... I,Xk), see Lemma 2.3, (i). Since Uk E Em(1 + Jfjk) is a solution to (6.4), thus 
Uk = Uk (-, x,. . ., xIk). The proof is complete. 

For 0 < i < r-1, let AUk df Uk-Uk. We claim that Au = AUj df 

Uj (;,x,. . . ,xj)-Uj (;,x, xj) satisfies 

(6.5) D AUj = 0((1 + ;i)e-^l(), 

where y > 0 is a constant, D' = D' . D" * Dy. For k = O and v = 0, Au0= 
qi((; x) - p,+ (x) = Uo (;, x) - Uo (, x). Obviously we have Auo = O(e-). When 

def k = 0 and v = 1, z = DxAUO satisfies 
0 = V'(x)Ze + Zee + fou(p+ 1 (x),x)Z + fox(qi(, x),x) - fox(pi(x),x) 

+ [fou(qi(;, x), x) - fou(p'(x), x)]Ox qi(Q, x) + Ox&V'(x),AUo. 
The associated homogeneous equation for Z has an exponential dichotomy in ER 
and the nonhomogeneous terms are of O(e-^l(). If -y is smaller than the exponential 
coefficient of the dichotomy, then Z = O(e-^l(), see Lemma 2.3, (i). Assuming now 

def 
k = 0 and v > 1, we can write a similar equation for Z = D'AUo and prove (6.5) 
by induction on v. 

Suppose now (6.5) has been proved for 0 < j < k - 1, k > 1. Then Auk satisfies 

(6.6) 

Z~ + Vi (x) Zf + fou (uo, x) Z 

=hk((, Uo, .. *I* Uk-l, Xi .. *I* Xk) -hk ((, JO, I .. *, Uk-l, Xi .., Xk) 

+ [fou(io, x) - fou(qi(, x), X)]Uk + Vk [io- x)]- 

For 1 < i < r - 1, (6.6) is considered for R E JR. The right hand side and its 
derivatives with respect to y = (x, XI,... , Xk) are in Em(1 + Jfjk) and 
Em((1 + Jfjk)e-^Y), due to the induction assumption. Recall that uo = pi+l 

and Lpi+l has an exponential dichotomy on JR. From Lemma 2.3 (i), (6.6) has 
a unique solution Z that is in both Em+2(1 + Jfjk) and Em+2((1 + Jfjk)e-74) and 
is differentiable with respect to y. However, it is known that Uk, Uk, therefore 
AUk E Em+2(1 + Jfjk). We then have DvA Uk = DvZ E Em+2((1 + Jfik)e-^Y). 
When 1 < i < k - 1, (6.5) has been proved by induction. 

For i = 0, Auk satisfies (6.6) for ( E ER+ and the boundary condition 

(6.7) Z(0, y) = -Uk(0,ky), 

where y = (x,x1,.. . ,Xk). From Lemma 2.3 (ii), (6.6) and (6.7) have a unique 
solution Z that is in ED;m++2(1 + llk) and ED;m++2((1 + Jjk)e- ) together with all its 
derivatives. However, we know that AUk is a solution of (6.6)and (6.7) and is in 
Em+2(1 + Jfjk). Thus AUk = Z. By induction, (6.5) has been proved for i = 0. 
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740 XIAO-BIAO LIN 

Since equation (6.6) and (6.7) depend continuously on y that is in a compact 
subset of Rk?+, the norms of AU and all its derivatives in the function spaces are 
uniformly bounded with respect to y. When a = 0, the second estimate of (6.2) 
has already been proved. Recall that AUk (, t) = AUkQ(, y). Since the derivatives 
of r7 (t) are bounded uniformly with respect to t > 0, when a $& 0, the desired 
assertion follows from (6.5) and the chain rule of differentiation. 

Theorem 6.3. Let Aui = USRi - iRRi 1 < i < r or uSRi -iRRi O < i <K I 

where iiu and i are defined in (6.1). Then there exists y > 0 such that for 
all integers a, 3, j > 0, 

AU' ujI < Ccoj(I + J(Ji)e-7lf 

uniformly with respect to t > 0. 

6.4. Matching of (SS)' with (RS)' and (RS)'+1. We use the inner variable 
* 

= (x-77 (T, c))/c to expand the outer solutions 

(6.8) 
00 00 

Eiu RSi(E iTi(T,E),T) =ZEiRRSi(( T) 1K i Kr 
j=0 j=0 

00 00 

ciu7si+1(E+ j2i(T ,) T) =Z<i i2((,T), 0?i < r-I. 
j=0 j=0 

Both expansions formally satisfy (5.16) as does ussj((, T, c). Therefore, both satisfy 
00 

(5.18)- (5.18k), k > 1, just as Ziujss. It suffices to show the matching of 
j=0 

expansions in (SS)i and (RS)'+1, 0 < i < r - 1. Let the indices be dropped so that 
iu denotes i0. Then 

(6.9) uoT = f0(j0o i) u2(0) = u' i+1(-i), 

(6.10) ugssi = ussi + Vi (ni)uSSi + fo(USSi;Ii). 

Let ( - +oo in (6.10). Since uo E B2+(e-^Y), uo0 and uo0 0 as -+ oc. We 
have uo (+oo, T) = fo(uo(+oo,,T),;rR) with uo(oo, 0) = uo(oo) = iR4i+l(Thi) This 
is the same as (6.9). Therefore 

uSsi(oo,T) = uoRm,T), T > 0. 

Since ugssi: R+ B2(e-^Y) is bounded, we have 

(6.11) UOSSi(,T) - uO(,T)1E2 (e-a4) <C 

uniformly with respect to r > 0. 
Let Auj = uOSi - 20s. We now show by induction that 

(6.12) 

AUj = Z Auje, with IAUj IE2 ((1+?eF)e-) < C(1 + 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 741 

Suppose (6.12) has been proved for 0 < j < k-1. For 1 < i < r -1, Auk satisfies 

AUk, = AUkee + Vi(*)AUkf + fou(iuo,i )AUk 

(6.13) + [fou(Uosi 71i) - fou(uo ,i)]UkS 
+ gk(UO,... * Uk-1) -gk(UO, ,Uk-1)- 

For i = 0, Auk satisfies the equations 

AUki = AUkee + V7(')AUkf + f0u(U0s, 7 )AUk 

(6.14) + [f0o(UoSi ) - fou(ii0oi7)]iik 

+ gk(UO,. * Uk-1) -gk(UO *... i *lk-l) 

(6.141) AUk(O,T) = -iijRSi(0,T), at ( = 0, 

where Vi = 0, rij = a. Observe that 9k iS a polynomial on ul,... ,Uk1,Ul,,... 

Uk-1, and 71, ... ., 7i. By the induction assumption, the nonhomogeneous term of 
(6.13) has the form 

k 

(6.15) Gk = ZGkj, with IGkjIE.((1+(3)e) ?0(1 + TkY), 

j=O 

if 1 < i < r - 1. The nonhomogeneous term in (6.14) has the same form as in 
(6.15), but the norm has to be replaced by the norm in ER'+ ((1 + ?j)e-74). 

We need similar decompositions of {Qij }? 0 and { Auj (, 0)}? ''. The expansion 

of E cju RSi+l into E Ciij can be divided into two steps. Let 

00 00 

fiUj ) = ZEj uRSi+l(C+ ?1,T) 
j=O j=O 

00 00 00 

, j - ( = S ciEuj ( + EC ?71+ (T)5 )- 

j=0 j=0 e=o 

We then have 
k 

(6.16) Uk((,T) = 5CQD},fui(Q+ ?fl(T))[77] - 5Uk6. 
ii a ) C,6 D U =o,T) 

Here 6 > 0 is an integer, [71]Q = [7 2j-r)] ... [7 i?l(T)]Qk, 0Q6 iS a constant and 
k 

6 + Z jaj = k. Uk6 consists of derivatives of ui6 only and 
j=1 

(6.17) jUk61Em((1+jIj6)) < Cmk6(1 + Tk-6), m > 0. 

In comparison, E Cj-T (() is also defined in a similar way 

00 00 00 

E ciTE =0 E- i ( + E56nf+1) 
j=O j=o f=o 
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742 XIAO-BIAO LIN 

Exactly like (6.16), we have 
k 

(6.18) Uk(s) = ECcD1xU6a + -71)7J] Z Uk6= 

|Uk6IEm (1+?116) < Cmk6- 

Recall that 77(0) = <and Cu6Q)-U6((, O) Em((1?IeI)e--e) ?0, cf. H8. We have 

k k 

(6.19) AUkQ ,0) = ZAUkj(,i 0) -: 5[ Uk j(i - kj, 0)], 
j=O j=O 

with 

(6.20) jAUkj(, 0)1Em((1+Ilj3)e--Y) < C. 
For 1 < i < r - 1 we solve 

(6.21) AUkj, = AUkj(( + V (71 )Aukj + fou(iio, 71)\AUkj + Gkj, 
AUkj (i, 0) = Ukj iukj ((, 0)- 

For i = 0, we solve 

(6.22) Aukj-r = AUkjJ + Vi (7/i) IAukjf + fou (uOSSi 7;i)Aukj +Gkj 
AUkj ((, O) = Ukj ( i)Ukj ( 0) 

(6.221) AUkji(0,T) =-Ukj(0, T). 

Let 1 < i < r - 1 first. Since ito - pi+1(4i) as r -+ oc, equation (6.21) is 
exponentially stable in the space ER2((1 + Jfji)e-^"). Therefore, from Lemma 2.5, 
with 0 = 1, 2= 

JAUkjlE2((1+1l13)e-aY) < C(1 + Tkj). 

Thus (6.12) has been proved for 1 < i < r - 1. 
Let i = 0. We consider (6.22) in ( > 0. The estimate in (6.15) is replaced by 

IGkj|E ((1+J)e-<) ? C(1 + Tkij). 

To solve (6.22) and (6.221), let iikj(O, T) = poj(T). We have Da oj(r)I < 
C(1 + Tk-ji), a = 0, 1. Let 4I((,T) be the solution to the elliptic system with 
a boundary condition at ( = 0, 

(De + v + fou (qi( )7i) ,i7)4 = 0 
4) (O, -r) =-j (r) 

Then from Lemma 2.3(ii), there exists a unique solution 4) such that 

Or >E2 ((<+(J)e-) C 0(1 + Tki),j a= 0 1. 

The solution AUkj = 4) + P, with 

TT = @(e + V'(-')'Fe + fou(uoSS'j)Tn) + Gkj 
- 4), 

+ [fou(uossi,ji )-fou(q (g,) i 
(0, T)= 0, 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 743 

Since the linear equation for T is asymptotically stable, and the forcing terms are 
in E; with norms bounded by C(1 + Tk-j), from Lemma 2.5 again, 

2 < C(1 + Tkij). 

This proves the case i = 0. The matching of (SS)' with (RS)'+1,I < i < r -1, 
has been proved by induction. The matching of (SS)' with (RS)', 1 < i < r, can 
be treated similarly. 

-RSi ~ ~ ~ ~ ~ ~ ~ ~ Si-S Theorem 6.4. LetAiuj = US UjRSiv 1 <KiK<r oru uS-uR,2 OK<i Kr-i, 
where ui and i0s5 are defined in (6.8). Then there exists -y > 0 such that for all 
integers a < 2, < < 1, 

10 zu'd + 1OdzXujl < Cj(l ?+ JtJi + Ti)e 1'1. 

6.5. Constructing a pseudo solution. A pseudo solution is a piecewise smooth 
function that almost satisfies (1.1) with a small residual error 

cUt - 62UXX -f (u, x, 6), 

in the interior of each subregion where the function is smooth, and a small jump 
error at each of their common boundaries. By truncating the formal series, we can 
construct pseudo solutions with arbitrary accuracy. 

Let 
m m 

U RRi,m (XI ,) -Z tuRi (x), = SRim(~,t,6) = EiuSRi(, t), 
j=O j=O 

m m 

U RSi (X,TE) = ZEiu0s2(x,T), USSim(~,T,E) uSSi (t , T),j SSi( 
j=O j=O 

m m 

qtir M(t ,) = 5 . 63r(t), rhi,m(T,) n 5 T) 

j=O j=O 

We use rn,m and ji m as abbreviations for rqiXm(t, E) and 'li m(T, 6). Let 0 < 3 < 1 
be a constant. Let the width of the initial and internal/boundary layers be 0(6E'). 
Define the subregions 

(RR)irn = {t > 6Q X C (-i-1Xm + EQ ,i,m - CO)}, 1 <i < r, 

(SR)T2m = {t > x1C3 X C (T1i'm 6/13, r1i'm +?6/ 3)n[a, b]}, O<i<r, 

(RS)irn = {O ? t < EQ) X c (ri-l,m+l ? 3 *i,m+l 3 
63)} 1 < i <r 

(SS)ir l = {0 < t < .Q3 E (qTi,m+1 - EQ3 ji,m+l +? 6)} 0 < i <r. 

Theorem 6.5. For all m > 0 let 

(6.23) 
URRi,m(X, t, 6), if (X, t) c (RR)i' m 

uSRi,m( ,1 t, ), if (X, t) C (SR)irm, 

Um(x, t, 6) = ~u(RSi(, ( , 6), if (X, t) C (RS)irm, 

uSSi,m( 6 -, ), if (X,t) C (SS)iM. 
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Then Um is a pseudo solution to (1.1) with residual error being Q(0/(m+1)) in each 
layer where Um is smooth. The jump errors of Um, OtUm, ax Um and Ax2Um are 
of Q(E63(m+1)) along the common boundaries of adjacent layers. The function Um 
satisfies Neumann boundary conditions, and almost satisfies the initial condition 
with an error Um(x, O,6) - u(x,6e) = - (E(m+l)). 

Proof. The residual errors can be evaluated by substituting Um into (1.1) and 
expanding in powers of e. For example, in (SS)i'm, the error is bounded by 

CEm+l sup{l + 1Htm+l + 1,,im+l ?11 < (d3-1 < (d 
<31} ? Cc3(tm+l) 

The estimates of jump errors use the matching of adjacent layers. For example, 
the jump between (SS)irn and (RS)i+l'm at the boundary 

r= {X =,I l + I 0 <T < (d-1} 

= {&=(d-1, o0<Tf?<(d1}, 

m+1 
where x = X is 

(6.24) 
tm 

Z6i (uSiQi ) - ujRS,i+1 (X,T)) 
0 

m m 

Z6iE (uSSiQ&,T7) -USi(R,S ))+ ? EZj6(i RSiT) ( URSi+1 (XIT))L 
0 0 

The first term of the above is bounded by 
m 

0(Z,j sup{(I + JfJi + JTrl)e--'}) = O(e-'E) 
0 

where -y > 0 is a constant, due to the matching condition Theorem 6.4. For the 
second term, observe that 

m m 
RS,m+l 1i,m+l T) = EjURS,m+1 (6? r72,T) ? O(63(m+)) 

0 0 
m 

= E 6JuR2S T) ?O+(6/3(m+1)). 
0 

Here the O(3(m+1)) terms are caused by truncating 71 i. This gives the desired 
estimate on the jump error. The other jump errors can be estimated similarly. C 

Finally we mention that using composite expansion techniques we can construct 
pseudo solutions with only residual error but no jump error in the entire region 
t > 0, x E [a, b]. See [22] and [6, 7] for more details. 

7. PROOF OF THE LEMMAS 

Proof of Lemma 2.2. Consider a system in R2, that is equivalent to (2.9): 

(7.1) =f vI 
v = -Df (p)u -Vv. 

This content downloaded from 152.1.252.217 on Mon, 11 Aug 2014 15:44:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 745 

Let A be an eigenvalue for J = (ID0() V )* Then, 

n 

det(AI-J) = fl(A2 + VA +?i), 
i=1 

where ,i, 1 < i < n, are the eigenvalues for Df(p). Since Re1li < -uo, it is 
elementary to show that A2 + VA + pli = 0 has two roots {Ail, Ai2} with ReAil < 
-V -/V2 ?4u < KV2 ? 4 - V < ReAi2. Therefore (7.1) has exponential 
dichotomy with stable and unstable spaces both n-dimensional, so does (2.9). 

Since Df (q(Q)) -* Df (pi), i = 1 or 2 as - * -oo or +oo, by a perturbation 
theory of exponential dichotomy, cf. [26], (2.10) has exponential dichotomies on 
R- and IR+ respectively. The stable and unstable spaces, JZPs(t) and )ZPU (t) are 
n-dimensional. The rate of decay on )ZPs(t) and )ZPU (t) can be any constant 
0 < a1 < a. Since a can be arbitrary close to Vv2 + 4o - IVI, so is a1. D 

We now consider the following systems 

(7.2) =~V 
u. -Vv-Df(p)u+g, 

(7.3) =v -Vv-Df(q(Q))u+g. 

Let T(Q, s) be the solution operator for (7.3). 

Proof of Lemma 2.3. (i) Let g C X = ER (w). Let Lpu = uss + Vus + Df (p)u, 
with D(Lp) = ERm+2(w). Prom Lemma 2.2, system (7.2) that is equivalent to 
Lpu = g has an exponential dichotomy on JR. Let Pu and Ps be the projection to 
the unstable and stable spaces. Let 

(7.4) 

( v ) ( 0i) = j eJ(&S)FS ( g(s) ) ds + J eJ( S)Fu ( (s) )ds. 
Using the exponential estimates on leJ(- s) FPsI and IIeJ( Js)FPuH and Lemma 2.1, 
we can verify that (u, v) E ERm+2 (w) x ERm+1 (w) and (u, v) solves (7.2). Details 
will be omitted. Therefore R4(Lp) = X. On the other hand, if u is a solution to 
Lpu = 9, then (u, u~) E ERm+2(W) x ERm+ 1(w) is a solution to (7.2). It is standard 
to show (u, u) is given by (7.4). This proves that Ker(Lp) = {0}. 

(ii) Let g E X = E+ (w). All the solutions of (7.3) with u E E++2(w) are given 
by 

( v ) =T(, 0) (?) + ? T(, s) ( g(s) )ds 

+ ?J TQ(,s)Pu ( (s) ) ds, 

where (uo, vo) E ZFPs(0). Let H(u, v) = v be the projection from IR2n iRTn X iRn 

to iR. We can show that -I: 1ZPs > in is a homeomorphism. If not, then there 

exists a nontrivial (uo ? EZFPs(0), such that vo = 0. Thus, there exists a nontrivial 
'VO, 
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bounded solution to (2.10) with u~(0) = 0. This is a contradiction. Based on what 

have been proved, there exists a unique ( UO ) E 7ZFP such that 
\VO/ 

(7.5) IJ ( ) vo = -n T(O, s)Pu (g(s) )ds 

The desired solution can be obtained by such ( UO ) 
The case X = ER (w) can be treated similarly. 
Finally the estimates on !IUHIEm+2(W) in both cases (i) and (ii) come from Banach's 

closed graph theorem. D 

Proof of Lemma 2.4. Consider (7.3) but with R E IR, g E X = ER (w). Equation 
Lqu = g is then equivalent to (7.3). From Lemma 2.2, (7.3) has exponential di- 
chotomies on IR+ and IR-. Also if g = 0, (qe, qE) is the only bounded solution to 
(7.3), up to constant multiples. It follows from the same argument as in [26], which 
treats the case w 1, that (7.3) has a solution (u, v) E ER+2 (w) x ER+1 (w) if 

and only if 0 ) , ( 42 )) = 0, where ('b1,'b2) is a unique (up to constant 

multiples) bounded solution to the adjoint equation of (7.3) 

(7.6) 
V) 

= DfT(q(Q))V2, 
*2 = -Vb1 + V'b2- 

It is now clear that (9, 2) = 0 g C EZ(Lq). The equation for Vb2 iS Vb26 - VV.24 + 
DfI(q(Q))'02 = 0. O 

Proof of Lemma 2.5. Using the definition of the exponential stability right before 
Lemma 2.5, we have 

JIT(t,O)uo11e < Ke-tHlluollo < C, 

1 T(t, s)g(s) dsll < T(t t+ s )T(t+s s)g(s)Iods 

j XT (t I2 + (t-S)3-0) . C(1 sk) ds <i Kea(t-s)/2K( ? 2s 

< C(1 + tk). 

The desired estimate of u(t) follows from the variation of constant formula. D 

Proof of Lemma 2.6. For any -y E IR, the locus of P - {A21ReA = 21-yl + 1} is a 
parabola. Let E = {larg(A - a1)I < + 6}, 0 <6 < 2 be a sector. Let a, > 0 be 
sufficiently large such that E n P = 0. Then A E E implies that ReVX > 2 1yl ? 1, 
where VX is in the branch with I arg vA1 < -r/2. 

(i) Let g c X = ER(w), w = (1 + Jij)e--Y(, A E E. Consider u~ - Au = g, and 
its equivalent system 

(7.7) v 5?Ag/ v ' 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 747 

The eigenvalues for H = ( VrA?I ) are At = ?V'X, each is of multiplicity n. 

Also IReAlt > 21-yl + 1. Therefore (7.7) has an exponential dichotomy on R , with 
n-dimensional stable and unstable subspaces. 

For the matrix H, 1ZF, = { ( w ) wCw E Rn} that is associated to eigenvalue 

VX and )ZPS = { ( lw ) W E Rn} that is associated to eigenvalue -v'A. Thus, 

Ps(S ) ( (v - )/2)and Pu ( ) ( (u?)/2 ) with IPuF + IPsl < C. 

The constant C is independent of A E E. Thus, in the following, the constant K is 

independent of A E E. 

(eH Fsl < Ke-Rev/, \ > 0, 

leHFul < KeRe,, v < 0. 

Using (7.8), we can show that the integrals in (7.9) converge and define a solution 

to (7.7). 

(7.9) 

( $ ) I 00 (g(s)/ ) loc( g(s)/F ) 

In fact, using the estimates (7.8) and Lemma 2.1, we have 

U 1 ( ) <~) ?j KeRe(s- 11911E(w) (1 ?+ lslj)e1sds 

< Kj |191 E(w) ( + ?slj))e-d 

(Rev'A - 1.yl)i+l l (1l 

Here K1 is a constant that depends on j. From ReV '> 21yI + 1, we have Rev/X- 

-Yx > 1 and ReV'X --y > 1Re V'. Therefore the above is bounded by 

2K11gH1E(W) (1 ? 

RevT IN vTA 

Since a, > 0, IargA < arg(A -u)? < 2 + 6, and IargVAl < 4 + < 2. Thus, 

ReY > vl' cos(4 + -) = Co I 0v. From this 

( u < | 2K,11g91E(w) (1 + 1tlj)e-Yf v }OA 
Thus llUllE(W) < C1Y1911E(w)< 1 1911E(w). The solution in (7.9) is also unique 

in ER(w) since (7.7) has an exponential dichotomy on DR. This proves the Lemma 

when X = ER(w). 
(ii) Let g E X = ER+ (w),A E E . Consider u~ - Au = g with the boundary 

condition u (0) = 0. If ( " ) ER+(w) is a solution for (7.7), it can be expressed 
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as 

( U ) eHe ( VO )?+fe(& )F ( g(s)/ vA )ds 

+ J eH(-s)p ( (s)/ ) ds. 

Here ( ?) ZFPs has to be determined so that v(O) = 0. To this end, choose 
vo 

VO = -11 e-HsFu ( g()/VX ) ds 

and uO = -vO, then UO cv ) Ps. Similar to (i), ( UO ) < CJJgJJER+(W)/JAJ. (VO /O R2 

With this ?) we have 

u <~~ CJJ9JJ(w)1Xj < CJgJER+(w)/JA - olI. ( V ) IE()- ER+ 
This proves the case X = ER+ (w). The same argument can be used for the case 
X = ER-(w). 

(iii) Let g E X = BR(w), A E E. If (u) C BR (w) is a solution to (7.7), it is ex- 

pressed by (7.9). Let g = g(oo)+gi (), where g(oo) = lim gQ(). Then gi E ER(w) 

It follows that( v) = ( + )+( ) where ( U2 ) = ( 9(0 )/A ) is a 
constant solution and 

( V1 ) I-oo= J e~(~s)F~ ( g1(S)JX ) Icods ? J u ( 9 ) ds. 

From (i), JJU11JER(W) < CJJ91JJER(W)/I I\ Also, JU21 < Jg(oo)J/JAJ. Thus, IIUIIBR(W) < 

CllgllBR(W)/JAI < CllgllBR(w)/IA- 1a |. This proves the case X = BR (w). The cases 
X = BR? (w) can be handled similar to (ii). D 

Proof of Lemma 2.7. (i) Let w = 1 + I j, X = ER(w) and DA = ER(w) first. Let 
UO c ER' (w), v = Df uo E ER (w). Let 

I(t) = tl/2AeAtUo = tl/2D 2eAtuo = tl/2D~eAtV. 

Using the fundamental solution for the heat equation 

IJ(, t) = t1/2 DE (2 v ) 
-exp(-T)v 

x)dx 

(2Vr-1 / exp(--)v(J-2x)(- )dx. 
exp(-t)vQ 
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ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 749 

2 

Let =4t 
= x= 4ta. 

o 
12v"7I(( t) I < I - e tv (t + V4/H,) dq 

-j e vQ V- 4)drAI 

= | j e - [v (? + 4j)-vQ)]dq1 
P00 

- j e- [v - 4-tr) - vQ)]d 

2V+/(1 ?+ Jlj)-1I(Q, t)l < I ? + e-lv(Q + 4t?) - v()J(l + Jj)-'dj 

+ jM + J e-ljv(Q - 4tr) - v(()J(l + J4jj)-1drj 

= Il(Q,t) +I2(Q,t). 

We show lim supIj((,t) = 0. Similar arguments will show lim supI2 (,t) = 0, 

thus lim II(t)E(w) = 0. For any 6> 0, choose M so large such that 

P00 r00 

(7.10) J e-1v((1 + 1)-1dr < J e-drq JVIE(W) < 

JM 1?M 
4 (7.11) | e-'Iv(( + Vt)l(l + 1(+ tl-')-l 1- l dlq 

< C | e- IVIUE(w) (I +(/ tq) )dq < 4 

For that fixed M, let t, be small such that for 0 < t < t, 

(7.12) 
M 
/ e njv(t + Vtq)(l + 14 + V4t,lj)-l -v(()(l + 1(1j)-11dq1 < -- 
o~~~~~~~~~~~~~~~~ 

This is possible since v(()w1 (() is uniformly continuous. Also if t, is even smaller, 
then 

(7.13) 
M 

jM 
eIv(Q + V4t)jj(1 + 1? + 4tj)-l 

- 
(1 + 11j)-11dq 

? ]/; e t'vlE(w)(1- 1 L )< 

since 1 -* 0 161 , uniformly with respect to ( as a -> 0. 
From (7.10)-(7.13), we see lim sup I, (, t)- 0. 

(ii) Let X = ER+ (w), DA = ER2+(w) n BC, and uo E ER+ (w) n BC. Let iuo be 
the even extension of uo to ( E JR. Then iuo E ER(w). To find eAtuo, we solve 
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750 XIAO-BIAO LIN 

The restriction of iu(t) to > > 0 is eAtuo. Using the results from (i), we find that 

tl/2AeAtuoIER+(w) < Itl/2D 2i(t)IER(W). The latter approaches 0 as t -> 0+. Thus 

uO E DA(2). 
(iii) The other cases can be treated similarly. C 

Proof of Lemma 2.9. (a) Let A E C be such that ReA > -uo. Let g E X and 
consider (L - A)u = g. The equivalent system is 

(7.14) 
=V 

(1 = (AI-M)u-Vv + g. 

Let J M -VI ) Since Rea(AI - M) > 0, it can be verified that 

J is hyperbolic with n-dimensional stable and unstable subspaces. Assume that 
r1 + iw E a(AI-M), and ,u E J. Then u = [-V ? V2 + 4r1 + 4iw]/2. One can 
verify that Re V2 + 4r1 + 4iw > Re jV2 ? 4q. Thus, I Rep I > V-2? 4r - VI. If 
ReA + ?o >710 for some 71o > 0, then let yo = /V2?4ro - IV, we have 

ejPsF1 < Ke-7o?, '> 0, 
IeJ(Pul < Ke00o, < O, 

for some K > 0, where P, and Pu are the projections to stable and unstable 
subspaces of R2n . Therefore, if -y is the constant used to define w, with 1Hyl < -yo, 
(7.15) 

( v ) , = f e 
(&0)is ( ( ) d,/ ? J ( e ) dr 

is the unique solution to (7.14) that is in ER(w). It is easy to show that IUIE2(W) < 

Cl91E(w). Thus, A E p(L). This proves the case X = ER(w). 
Now consider X = ER? (w) and g E X. Replace g by its even extension g and 

consider (7.14). The solution ( ) can be expressed by (7.15) and is even in 

( E DR. Consider its restriction on ( E IR+, then u E ER (w) n BC. 
(b) From part (a), if ReA > - ? r0o, equation u~ + Vuf + Df (p2)u - Au = 0 

has exponential dichotomies on R- and IR+. Therefore 

(7.16) ~= V 

(V = [AI-Df(q)]u-Vv 
has exponential dichotomies on 1R and JR+ with projections P1 (t) + Pu (t) = I, t E 
R- and JR+ respectively. If A is such that RPuF(0-) n RPF (0+) = {0}, then (7.16) 
has exponential dichotomy on DR. Similar to part (a), we can show A c p(Lq). 
If A is such that ZPu(0-) n JZPF(O+) $& {0}, then A is an eigenvalue of finite 
multiplicity. D 

Proof of Lemma 4.1. (i) P1 comes from HI by the implicit function theorem and 
the continuous dependence of eigenvalues on the parameter x. 

(ii) Equation (4.4) has a heteroclinic solution q(Q) when x = xi and V2(x2) = 0. 
Melnikov's method is used to determine the existence of heteroclinic solutions (u, v) 
near (q, q,) for the following system 

(7.17) =f Vv 
=~ -fo(u, X) -Vv. 
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Here V E JR and x are parameters. Based on HI, H2 and Lemma 2.2, the lin- 
ear variational equations for (7.17) around (u,v) = (q,q,) has exponential di- 
chotomies on R- and IR+ with JzpS(o+) n0 zpu(o-) spanned by {(qE,(0), qE, (0))}I 
when V = 0 and x = xi. Let G(x, V) denote the function that measures the 
distance between Wu(pl) and WS(p2) along the direction (il (0),, 4'2i(O)) based 
on the point (q(0),q,(O)). cf. (7.6). Notice that (4'il(0),4'2i(O)) is transverse to 

Tq(o)WU(P') + Tq(o)Ws (p2), thus, G(x, V) is well defined. From [26], 

aG(s o) X 0' (() fox (qi (() I x')d < 

( 7.18 ) 8 : =| f r ( (()d 

From (4.1), 0G(xV,O) 
$ 0. Therefore there exist Vi(x) such that G(x, V2(x)) = 0 

av 
for x in a neighborhood of xi. The method in [26] also insures that the heteroclinic 
solution qiQ(, x) depends smoothly on x. 

(iii) Define Lxo by the left hand side of (4.5). When x = x, L': Cbu bu 
Fredholm with index equal to zero, see [26]. From [30, page 115], if x is in a small 
neighborhood of xi, L' is Fredholm with index zero. Also dimICL' < dim ICL' 
Since q, E KIL', we have dim ICL' = 1 for all x E Oi. Therefore (4.6) has a unique 

bounded solution 0i (, x) up to constant multiples. 
It remains to show that by choosing 1./i (t, x) = 1, 4i is a smooth function of 

x. Let { U1 = (q, (0) I q,, (0)) I U2,. .. I Un } be an orthogonal basis for ZFPu (O-) and 

{U1 = U1, U2, ... , U4} be an orthogonal basis for 1ZFPs(0+) of the system 

(7.19) =v = f0u(qi((,x),x)u-Vi(x)v, 

when x = xi and Vi(x) = O. System (7.19) has exponential dichotomies on R- and 

JR+ when x E Oi. Let Pu (x, t) and Ps (x, t) denote the projections to the unstable 

and stable spaces. Pu (xi, t) = Fu(t) and Ps (xi vt) = Ps(t). 
Assume that x is near xi so that Vi(x) is near zero. For each Ui, 2 < i < n, 

there exists a unique AUi E cZPsF(O-) such that Ui + AUi E cZPuF(x, O-). Also for 

each Ui, 2 < i < n, there exists a unique A\Ui E ZFPu(0+) such that Uj + /Ui E 
ZFPs(x, 0+). The functions A\Ui and A\Ui are smooth functions of x. See [18] for 

details. For i = 1 let U1 + AXU1 = (q, (0, x), q', (0, x)). AXU1 is also smooth in x. In 

particular, IAXUiI + IA Ui O(x - xI) for all i. This proves that if x - x is small, 

ZFPu(x, O0) +?JPF(x, 0+) = span(Ul + A?,\ .. Un + AUn U2 + AU2 ... Un + AUn)I 

depends smoothly on x. The adjoint equation of (7.19) can be found in (7.6) 

where V = Vi, q = q . Let (Oil(X),4'i2(x)) be the unique bounded solution to the 

adjoint equation with I|i2(0)I = 1. Let Uo = ('Oil(0), Oi2(0)) that is orthogonal 
to ZFPu(0-) + ZFPs(0+). By a standard projection method, there exists a unique 

/\UO cE Pu (x, 0-) + ZPs (x, 0+) such that Uo + /\UO is orthogonal to ZPu (x, 0-) + 

ZFPs(x,O+). It can be shown that (7.6) has a bounded solution with the initial 

data UO + /\UO, cf. [18]. A normalized solution ('Oil (0, x), 'i22(O, X)) with the initial 

data ('il (0, x),'k2 (0, X)), I'2 (0, X) I = 1, can obtained by rescaling. Let 4i (0, x) = 

5i2 (0, x). This proves the smooth dependence of 0i (O, x) on x. 

(iv) From Lemma 2.9, (b), {L'I} n {ReA > -uo + rio} consists of isolated 

eigenvalues of finite order. When x- x, V2(x) = 0, from H5, A = 0 is a simple 
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eigenvalue, all the other eigenvalues satisfy ReA < -ao. Since eigenvalues depend 
continuously on x. Thus, if 0 < ao = min{iao, Io - o1}, there exists e > 0 such that 
if Ix - Xl <6e then A = 0 is the only eigenvalue in {ReA > -ao} and is simple. 

(v) From H6, (4.7) is valid if x = xi. Since both integrals in (4.7) depend 
continuously on x, thus (4.7) is valid for Ix -xl < e if e > 0 is small. The formula 
for V(x') follows from (7.18). 

Ox 

Proof of Lemma 4.2. L' is a Fredholm operator in ER(w) with index zero. From 
Lemma 4.1, (iii), Ker{L'} = span{q'(., x)} is one-dimensional. Therefore 

Range{L' } = {O (., x) } 
is of codimension one. Consider the mapping F: (x, u, V1) -* (g, h) as follows 

L4u - Vqiq x) = g, 
(7.20) (u-ql(,xx) = h , 

F Oi x ER2 2(W) x R --> ER(w) x R is Co, in fact, linear with respect to 
u E ERm+2(w) and V1 E DR. It can be verified that OF/O(u, V1) is a linear homeo- 
morphism in the indicated norms. We only need to show that (u, V1) is uniquely 
solvable from (7.20) for any (g,h) c ERm(w) x R. If we choose V1 = (,Oi (,x),g) - 

i(,x),then g-Vq E Range{}. Any two solutions of the first of 
(7.20) differ by a multiple of qc E Ker{L'}, that can be determined by the second 
of (7.20). Let h = 0 and denote the solutions by Vi = V*(x,g) and u = u(.,x,g). 

The smoothness of V*W(x,g) and u(., x, g) on (x, g) also follows from the Implicit 
Function Theorem applied on the function F. D 

Proof of Lemma 5.1. According to Lemma 2.9, (b), C1 = a{Lq%} 0 {ReA > -o + 
?10} consists of only eigenvalues. When i = 0, r, from H5, Lq% has no eigenvalues in 
C1 in the space Cbu(JR+, R'). Thus, it also has no eigenvalues in Ci in the space 
BR?(w). This proves the case i = 0,r. When 1 < i < r - 1, from H5 again, 
in Cbu(R, IR'), the only eigenvalue of Lq% in C1 is A = 0, simple. Thus the only 
eigenvalue of Lqt in BR(w) is also A = 0, simple. From Lemma 2.8, qi( Ji) is 
asymptotically stable modulo spatial shifts. D 

Proof of Lemma 5.2. The proof is exactly like that of Lemma 5.1. D 

REFERENCES 

1. N. Alikakos, P. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space 
dimension, J. Differential Equations 90 (1991), 81-135. MR 92a:35152 

2. S. B. Angenent, J. Mallet-Paret, and L. A. Peletier, Stable transition layers in a semilmear 
boundary value problem, J. Differential Equations, 67 (1987), 212-242. MR 88d:34018 

3. J. Carr and R. L. Pego, Metastable patterns in solutions of ut = E2U- f(u), Comm. Pure. 
Appl. Math. 42 (1989), 523-576. MR 90f:35091 

4. S.-N. Chow, J. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. 
Differential Equations, 37 (1980), 351-373. MR 81m:58056 

5. G. Da Prato and P. Grisvard, Equations d'evolution abstraites non lineaires de type 
parabolique, Ann. Mat. Pura. Appl., 120 (1979), 329-396. MR 81d:34052 

6. W. Eckhaus, Matching principles and composite expansions, Lecture Notes in Mathematics 
594, Springer-Verlag, New York, 1977, 146-177. MR 58:6857 

7. W. Eckhaus, Asymptotic analysis of singular perturbations, North-Holland, Amsterdam, 
1979. MR 81a:34048 

8. John W. Evans, Nerve Axon Equations: I Linear Approximations, Indiana Univ. Math. J., 
21 (1972), 877-885. MR 45:1616 

This content downloaded from 152.1.252.217 on Mon, 11 Aug 2014 15:44:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ASYMPTOTIC EXPANSION FOR LAYER SOLUTIONS 753 

9. John W. Evans, Nerve Axon Equations: II Stability at Rest, Indiana Univ. Math. J., 22 
(1972), 75-90. MR 48:1729 

10. John W. Evans, Nerve Axon Equations: III Stability of the Nerve Impulse, Indiana Univ. 
Math. J., 22 (1972), 577-593. MR 52:14697 

11. John W. Evans, Nerve Axon Equations: IV The Stable and the Unstable Impulse, Indiana 
Univ. Math. J., 24 (1975), 1169-1190. MR 52:14698 

12. P. C. Fife, Pattern formation in reacting and diffusing systems, J. Chem. Phys., 64 (1976), 
554-564. 

13. P. C. Fife, Singular perturbation and wave front techniques in reaction-diffusion problems, 
SIAM-AMS Proceedings, 10 (1976),23-50. MR 58:25358 

14. P. C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF, Regional Con- 
ference Series in Applied Mathematics, 53, SIAM, 1988. MR 90c:80012 

15. P. C. Fife, Diffusive waves in inhomogeneous media, Proc. Edinburgh Math. Soc., 32 (1989), 
291-315. MR 90j:35109 

16. P. C. Fife and L. Hsiao, The generation of solutions of internal layers, J. Nonlinear Anal. 
TMA 12 (1988), 19-41. MR 89c:35078 

17. G. Fusco and J. Hale, Slow motion manifolds, dormant instability, and singular perturbations, 
J. Dynamics and Differential Equations 1 (1989), 75-94. MR 90i:35131 

18. J. K. Hale and X.-B. Lin, Heteroclinic orbits for retarded functional differential equations, J. 
Differential Equations 65 (1986), 175-202. MR 88g:34113 

19. J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan Journal of 
Appl. Math. 5 (1988), 367-405. MR 90a:35112 

20. C. Jones, Stability of the travelling wave solution of the FizHugh-Nagumo system, Trans. 
Amer. Math. Soc. 286 (1984), 431-469. MR 86b:35011 

21. C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly 
perturbed systems, J. Differential Equations, 108 (1994), 64-88. 

22. X.-B. Lin, Shadowing lemma and singularly perturbed boundary value problems, SIAM J. 
Appl. Math., 49 (1989), 26-54. MR 90a:34126 

23. X.-B. Lin, Heteroclinic bifurcation and singularly perturbed boundary value problems, J. Dif- 
ferential Equations, 84 (1990), 319-382. MR 91d:34055 

24. A. Lunardi, On the evolution operator for abstract parabolic equations, Israel J. Math., 60 
(1987), 281-314. MR 89f:47066 

25. Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction- 
diffusion equations, SIAM J. Math. Anal. 18 (1987), 1726-1770. MR 88j:35089 

26. K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equa- 
tions 55 (1984), 225-256. MR 86d:58088 

27. A. Pazy, Semigroups of linear operators and applications to partial differential equations, 
Springer, New York, 1983. MR 86b:47075 

28. D. Sattinger, On the stability of travelling waves, Adv. Math., 22 (1976), 312-335. MR 
55:8561 

29. D. Sattinger, Weighted norms for the stability of travelling waves, J. Differential Equations, 
25 (1977), 130-144. MR 56:6123 

30. M. Schechter, Principle of functional analysis, Academic Press, New York and London, 1971. 
MR 56:3607 

31. E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous func- 
tions, J. Math. Anal. Appl., 107 (1985), 16-66. MR 86g:34086 

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAR- 

OLINA 27695-8205 
E-mail address: xb1inQxb1sun.math.ncsu.edu 

This content downloaded from 152.1.252.217 on Mon, 11 Aug 2014 15:44:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 713
	p. 714
	p. 715
	p. 716
	p. 717
	p. 718
	p. 719
	p. 720
	p. 721
	p. 722
	p. 723
	p. 724
	p. 725
	p. 726
	p. 727
	p. 728
	p. 729
	p. 730
	p. 731
	p. 732
	p. 733
	p. 734
	p. 735
	p. 736
	p. 737
	p. 738
	p. 739
	p. 740
	p. 741
	p. 742
	p. 743
	p. 744
	p. 745
	p. 746
	p. 747
	p. 748
	p. 749
	p. 750
	p. 751
	p. 752
	p. 753

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 348, No. 2 (Feb., 1996) pp. 411-822
	Front Matter [pp. ]
	Berezin Quantization and Reproducing Kernels on Complex Domains [pp. 411-479]
	A Construction of the Level 3 Modules for the Affine Lie Algebra A<sup>(2)</sup><sub>2</sub> and a New Combinatorial Identity of the Rogers-Ramanujan Type [pp. 481-501]
	A Multivariate FAA Di Bruno Formula With Applications [pp. 503-520]
	Isomorphisms of Adjoint Chevalley Groups Over Integral Domains [pp. 521-541]
	Regularity and Algebras of Analytic Functions in Infinite Dimensions [pp. 543-559]
	An Index Theory for Quantum Dynamical Semigroups [pp. 561-583]
	A Cascade Decomposition Theory With Applications to Markov and Exchangeable Cascades [pp. 585-632]
	Harmonic Bergman Functions on Half-Spaces [pp. 633-660]
	A Tranversality Theorem for Holomorphic Mappings and Stability of Eisenman-Kobayashi Measures [pp. 661-672]
	An Existence Result for Linear Partial Differential Equations With C<sup>∞</sup> Coefficients in an Algebra of Generalized Functions [pp. 673-689]
	Characterizations of Generalized Hermite and Sieved Ultraspherical Polynomials [pp. 691-711]
	Asymptotic Expansion for Layer Solutions of a Singularly Perturbed Reaction-Diffusion System [pp. 713-753]
	Regularity Theory and Traces of A-Harmonic Functions [pp. 755-766]
	On CR-Mappings Between Algebraic Cauchy-Riemann Manifolds and Separate Algebraicity for Holomorphic Functions [pp. 767-780]
	Radial Solutions to a Dirichlet Problem Involving Critical Exponents When N = 6 [pp. 781-798]
	Factorizations of Simple Algebraic Groups [pp. 799-822]
	Back Matter [pp. ]



