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A Multiplicity Theorem for Hyperbolic Systems 
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In this paper we show, for a class of hyperbolic systems, that the dimension of 
the range of the spectral projection corresponding to a single characteristic root I,, 
is equal to the multiplicity of the spectral point A,, as root of the characteristic 
equation. 0 1988 Academic Press, Inc. 

I. INTRODUCTION AND STATEMENT OF MAIN RESULT 

Let k = Ax be a system of linear ODE in R” and let &, be a root of the 
characteristic polynomial with multiplicity m. As a consequence of the 
Jordan canonical form we know that there exist q such that Iw” can be 
decomposed as the direct sum of the two complementary subspaces 
N(A - &,Z)“@R(A - &,Z)(I where N and R denote the kernel and the 
range, respectively; moreover, the dimension of N(A - &Z)q is m. Similarly 
for an abstract autonomous evolution equation 1= Ax in a Banach space 
X it is important to know the dimension of the spectral projection 
associated to an isolated eigenvalue of A; for instance, in problems 
involving the center manifold, the knowledge of that dimension is essential. 

For special cases in which the spectrum a(A) of the operator A is given 
by zeros of an entire function h(il), the problem is to know whether the 
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dimension of the range of the spectral projection is equal to the multiplicity 
of 1, as a root of h(A). This question has been answered affirmatively by 
B. W. Levinger for retarded functional differential equations (FDEs) (see 
[3]). In this paper, we do the same thing for a class of hyperbolic systems 
which is a slight generalization of the hyperbolic systems studied in [4]. 
The generalized systems will include retarded FDEs and some of the 
neutral FDEs as special cases. Therefore, the resemblance in the theory and 
method of FDEs and hyperbolic systems is clear. We would like to thank 
Professor Lopes for calling our attention to this problem and Professor 
Hale for suggesting a collaboration on this paper. 

We consider the class of hyperbolic systems 

; [u(t, l)-Du(t,Z)] =Fu(t, .)+Gu(t, .) 

with the boundary condition 

u( t, 0) = Eu( t, O), 

where D and E are real matrices of appropriate dimension, 

WI = diag(Ux)),= ,, _.., n, kiE “(Co~ Cl, R)~ 
ki>O for i= 1, . . . . Nandk,<Ofor j=N+l,...,n 

c(x) = (cij(x))i,j= 1, . . . . n3 CijE C(CO, 4, R) 
u( t, x) E RN (or C”) 

o(t, X)E 5!rN (or CnpN), 

and 

F: ( W’%p[O, I])” + R”-N (or CnpN) 

G: ( W’*p[O, f-J)“-“-+ KFN (or CnpN) 

are linear continuous operators. Furthermore if 

are column vectors in ( W’*p [0, /I)“, then we define 
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as being the (n - N) x n complex matrix 

[Fu, + Gu, +. 3 Fu, + Go,]. 

This system may be rewritten as an abstract equation 

ti=Aw inX,=(L,[O,I])“x@“~N,l~p<oO, 

where w  = (u, u, d), 

with 

D(A)= {(u, u, d)CYp: (u, u)E(W”~[O, l-J)‘, u(O)=Eu(O), d=u(l)-Du(l)}. 

A special case where 

Fu( t, a) = Fu( t, I) 

Gu( t, .) = Gu( t, I) 

has been studied in [4], where F is an (n-N) x N matrix and G is an 
(n-N) x (n-N) matrix. 

For this system we have that 

a(A)=po(A)= (MX@)=O}, 

where 

h(l) = det H(L) 

H(1)=-(1D6,+F,G-116,)X(.,O,l) ; 
0 

with X(x, y, 2) denoting the fundamental matrix of the system 

d u 
ZU 0 

= -K-‘(x)(lZ+ C(x)) 1 

0 
(1) 

and 6,: W’sJ’-+ C is the 6 function, i.e., 64( .) = d(l). Also, for any 1 such 
that h(l) ~0, the resolvent operator R(I:A) is given by 
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+ I . x(.. Y, ~)K(Y)-’ 
0 

where 

/l(l) :X, + C”- N is given by 

~(~)(1,&b)=~+(iDs,+F,G-~Z~,)suX(~,y,i.)K(y)-’(~~~)dy. (3) 

Several examples of hyperbolic systems with F= F .6, and G = G6, are 
given in [4]. Hyperbolic systems in Lebesgue spaces have been used by 
many authors in the study of FDEs. We mention the work of Krasovskii 
[9], Borisovic and Turbabin [6], Banks and Burns [7], and Marcus and 
Mizel [8]. However the system given in this paper is more general. Here 
we show how the hyperbolic systems contain FDEs [2]. 

EXAMPLE 1. Let N = 0 and n - N = n. The variable u is not present and 
the boundary condition u(t, 0) = Eu(t, 0) is empty. Consider 

-+(r,x)=&,*), -l<x<O,t>O 

and 

; ~(6 0) = j" 4(O) o(t, 01, 
-1 

(5) 

where ~(0) is a matrix valued function of bounded variation which vanishes 
at 8 = 0 and is left continuous in ( - l,O). The right-hand side of (5) defines 
a continuous operator G:C[-l,O]“+@“. Since (FV’~P[-l,O])n~ 
(C [ - 1, O])“, G can be considered as a continuous operator defined on 
(kV’xP[-l,o])n. 
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From (4), u(t, x) = w(t + x), - 1 < x < 0, t > 0. Substituting into (5), one 
has 

;w,t,=j” dq(B)w(t+tq 
-1 

which is the usual linear retarded FDE. 

EXAMPLE 2. We replace (5) in Example 1 by 

(5’) 

where q is as before, $ E L, [ - 1, 01” x n, and q is the dual number to p. 
Again o(t, x) = w(t + x) and one recognizes it as a neutral FDE. 

EXAMPLE 3. Another possible generalization is replacing (5) in Exam- 
ple 1 by 

46 O)= f A,At, -w,), t30, (5”) 
k=l 

whereO<wk~1,CJAkI<cO,and~,,,,IAkI~Oas&--*O+.Theclassof 
hyperbolic systems, thus defined, is a difference equation. 

If P denotes the spectral projection of A corresponding to a single 
characteristic root A,, then we can state the following: 

THEOREM. If I, is a root of h(l) of mutiplicity m, then we have: 

(i) XP = N(L,Z- A)“‘@ R(IZ,Z- A)“, 

(ii) N(3LoZ- A)” = P(X,) where 

R(1: A) dy and 6>0 

is such that a(A)n {zEC: lz-A,I <S} = {A,}, 
(iii) the dimension of N(Aol- A)” is m. 

Remark. The least number for X, = N(loZ- A)-‘@ R(l,Z- A)J is J= q, 
which is also the least number for P(X,)=N(1,I- A)J, and q may be 
obtained from Theorem 4 constructively. 
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II. PRELIMINARY RESULTS 

LEMMA 1. Zf B(y) is a k x n matrix whose 
functions on [0, I] such that the rows are linear& 
C( [0, 11, a=“), then 

entries are continuous 
independent elements of 

T: (L, CO, U)” -tU?giuen by Tf=l’B(y)f(y)dy 
0 

is surjective for every k > 1. 

Proof: If u is a k-rowed vector and 

s 

I 
aB(y)f(y) dy=O for every 

0 
f E (L,[O, l])“, 

then we have that aB( y) = 0 for y in [0, I]. Then c1= 0 because the rows of 
B(y) are linearly independent and the lemma is proved. 

LEMMA 2. If X(x, y, L) is the fundamental matrix of (l), then, for each 
j= 1, 2, 3, . ..) there exists a Cl-matrix Fj(x, y, A) such that: 

0) $X(x, Y, A) = f”;.cx, Y, A) .X-'(Y, 0, A) 

a 
(ii) - Fj(x, y, A)=j 

ay 
-&x(x, y, 1) 1 K-‘(y) X(Y, o,n). 

Proof. From (1 ), for each j = 1,2, . . . . we have 

; $qx, y, 1) = -K-‘(x)(ilZ+ C(x))-$Y(x, y, A) 
( ) 

-r’(x) -& X(x, y, A) 

with 

gxcv, Y, A)=0 

and then 

2X(x, y, A)= -jJXX(x,s, i)K-‘(s),g’ 1 a, y, 1) his; (6) 
Y  
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in particular, for j= 1, we have 

~x(x, y,A)= -j-k x,s,1)K-‘(s)X(s,0,A)ds.X-‘(y,0,1). 
Y  

Therefore, it is sufficient to take 

Fl(X, Y, 2) = - j’ JJ x, s, A) K-‘(s) X(s, 0,1) ds. 
Y  

Now, if the lemma is true for j- 1, we have from (6) that 

-.ip x,s,~)K-‘(Y)Fj-,(s,y,~)X-‘(Y,O,~)ds 
Y  

and, therefore, taking 

qx, y, A) = -j ix 3 x, s, A) K-‘(s) Fj- I(s, y, A) ds 
Y  

we complete, by induction, the proof of the lemma. 

LEMMA 3. Let Ali( i = 1, . . . . r, be k x k matrices functions, analytic in 
A. Let T,(Mi(A)) be defined as 

Mt(A) 

Td”i(n)) = 

i 

M;(l) flu;‘(A) . . . ; Mj”( A) 

hIi Ml(A) ... &p-1)(i) 

Mi(A) 
. . 

0 . .-: i 

9 

44 

where 12 1 is any positive integer. Then we have 

T,(Ml(n).M,(n)...M,(n))= T,(M,(~)).-.T,(M,(L)). 

Proof: For k = 2, the proof is a direct computation. The general case 
follows by induction. 

We shall use p(A) to denote any analytic function with p(0) # 0 if the 
specific feature of this function is of no importance. Let M(1) = Cz O 1’Mi 
be a k x k analytic matrix. Assume 

det M(I) = Amp(A), P(0) z 0. 

505/76/2-10 
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Define the truncation of M(i) as &A) = Cy!“=o AiMi. Polynomial matrices 
A(1) and B(A) can be found such that det A(A) = det B(I) = 1, and 

d(A) sf A(1) A%(A) B(A) = diag{d,(l), . . . . &(A)} 

is the Smith canonical form for fi(A) with 

being polynomials [ 11. The following theorem is known from Levinger 
[3]. We give a shorter proof based on a simpler idea than the original one. 

THEOREM 4. Suppose that I@(A)-’ has I = 0 as a pole of order q, then 
M(A) -’ also has A= 0 as a pole of order q. Moreover, for each J2 q - 1, 
T,(M(O)) has rankk(J+ 1)-m and k(J+ 1)-rank T,(M(O)) is a strictly 
increasing function of J if 0 < J < q - 1, q > 2. 

Proof Obviously det *(A) = L”‘p(A), p(0) # 0. Thus, q < m. Write 

Since q < m, Qi(A) and Am&(A))’ are analytic. Thus, M(1)-’ has I = 0 as 
a pole of order q. 

Since nd, = det &A) = det A(A) = Amp(A), we can write di(L) = 1$(A), 
i = 1, . . . . k, where j,+ ... +jk=m and O<j,< ... <jk=q. Let 
D(l) =defA(l) M(il) B(a) = b(l) + /I”+’ C(A). Consider the ith diagonal 
elements in @A), U(A), . . . . O(A’(13), respectively. They have the form of 
Pp(p(n), fP’p(l), . ..) Ap(l), p(A), since 0 < ji G m. So, the ith diagonal term 
is zero in D(O), D’(O), . . . . D (G i’(O), but nonzero in D(‘)(O). It is easy to see 
that all the other elements in the ith rows of D(O), D’(O), . . . . D(j”(O) are 
zeros. 

Consider T,(A(O)) T,(M(O)) T,(B(O)) = T,(D(O)), J> q - 1. It is a 
k(J+ 1) x k(J+ 1) matrix. The first nonzero elements in the ith, (i + k)th, 
(i + 2k)th, . . . rows are located at the i + k . ji, i + k( ji+ l), . . . th columns 
(Fig. 1 ), until the column number exceeds k( J + 1). Obviously we have 
J+ 1 - ji such rows when considering the ith, (i+ k)th, . . . (i+ Jk)th rows 
in T,(D(O)), and all the other rows among them are identically zeros. Now 
letting i run through 1, . . . . k, we have (J+l)k-j,--j,- . . . -jk= 
(J + 1) k - m such rows and they are linearly independent. The remainder of 
the proof is straightforward. 
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FIG. 1. “I” indicates the first nonzero element in the ith, (i+k)th, . . . . rows located in 
D(Jr)(0), i.e., in the i + kj,, i + k(j, + 1 ), . . . . th columns. 

III. PROOF OF THE MAIN RESULT 

We will prove assertion (iii) only, because the first and the second asser- 
tions follow from the general spectral theory and the compactness of 
R(A:A). See [S]. 

In order to calculate the dimension of the range of the spectral projec- 
tion P, we start by making more explicit the several terms appearing in its 
expression. From (2), we have 

( -QZ)WLO,~) 

(3 

z WA)-’ P(nKL g, b) d4 

> 

where /?(A)($ g, 6) is given in (3). The other terms of R(I:A)(f, g, b) are 
entire functions of A and their integrals are zero. 

If 

G(I) = (A - &,)“‘ZYJ(A)-~ 

we have that G(A) is analytic in { 1 E @/[A - &I < S } and 

(7) 

1 
P(f, g, b)(x) = (m _ 1 )! anm- 1 -~[(x(x,O,1)(~)G(n)B(i)(f;g.b); 

(-D, 1) 34 0, A) 0 ; G(A) B(l)(f, g, b)>] . 
A=& 
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A short computation shows that the first component of the derivative 
above is given by 

where 
=x(x> 10) EL MA,)) B(S, g, b), 

X(x, 1,) is the n x mn matrix 

E is the mn x m(n- N) diagonal block matrix whose n x (n-N) blocks 
are CT), 

S,_ ,(G(&)) is the m(n -N) x m(n - N) matrix 

.c(n,) (“; ‘> G'(A,) (m; ‘) G"(i,) .._ (21;) G"'-"(A,) 

Wo) G’” - “‘(&,) 

G(A,) ... 

* . 

0 (YE.,) _ 
and B:X, + @m(npN) is given by 

It is easy to see, for j3 1, that 

/?(j)(&,)(S, g, b) = (3L0 D6, + F, G - &Id,, jDS,, -jls,) 

s 
$w, Y, 41=& 

X 
0 

i- I ~-v., Y, 4,=,, 

K-'(y) f(y) dy. ( > g(y) 

The second component of the derivative has a similar expression. 
The proof will be carried out in three steps. 



THEOREMFORHYPERBOLICSYSTEMS 

FIRST STEP. B:.X, + CmfnpN) is surjective. 

Proof: Since 

349 

where Q is the m(n - N) x mn matrix 

(A,Dd,+F, G-R,16,, (m- l)D&, -(m- 1)16,) 

(&DS,+F, G-&IS,, (m-2)06,, -(m-2)16,) 0 
. . 

0 (i,D&+F, G-A&,D6,, -16,) 

(&D61+F,G-A01c3/) 

We only need to show that 

is surjective for (f, g) E (L, [0, I])“, where 0 is the matrix Q without the 
last (n - N) rows, since we know that K-l is nonsingular. Notice that Q is 
a lower triangular block matrix with the diaginal blocks being 

diag( - (m - 1) A?,, . . . . -16,). 

Therefore it suffices to prove that 

I 
I 

0 ( > "f(Y) dy 

g(u) 

is surjective. 
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From Lemma 1, it is sufficient to prove that the rows of 

are linearly independent for j 2 0. Assume, by induction, this result is true 
for j- 1, and suppose 

with a, E C”, i = 0, 1, . . . . j; by Lemma 2, this linear combination of the rows 
can be rewritten as 

taj, uj- I, ..., x-‘(y, 0, A)=0 

which implies that 

t"j, aj- 1, -1-3 = 0. 

Now, taking derivatives in y and using Lemma 2, again, we have 

taj, uj- L 9 -..> 4 =o 

and the first step is proved. 

SECOND STEP. The matrix S, _ ,(G(&)) has rank m. 

ProoJ First of all notice that S, _ r( G(&)) is equivalent to 
T,,- ,(G(&)). Next notice that as a consequence of Theorem 4, 
T, ~ r(H(&)) has kernel of dimension m, and from Lemma 3 and (7) we 
have 

T,- ,(ff(&)) T,- ,(G(&)) = Tm- ,W(&) G(M) = 0. 
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Then 

rank T,,~,(G(IZ,))<m. 

On the other hand, since det G(1) = (A - &,)m(n-N- “p(A) with p(&) # 0, 
we see that if n - N = 1 then S, _ ,(G(&)) is invertible and has rank m. 
Moreover, if n - N>, 2 then by Theorem 4 again 

but 

rank T,,,-,-,,-,G(I,)=m(n-N- 1)2 (8) 

* 

1 

(m(n-N-2)- l)! 

where the number of columns on the right side of this matrix is 
m(n - N- 2)(n - N). Then from (8), it follows that 

rank T,-,(G(A,))am(n-N- l)‘-m(n-N-2)(n-N)=m. 

Therefore rank T,,- l(G(&) = m in any case. 

THIRD STEP. The range of the spectral projection has dimension m. 

Proof First of all using the previous steps we conclude that 

ES,,-,(G(&))B:X, + Cmn 

has an m dimensional range, because E is one-to-one. If {al, . . . . a,} 
denotes any basis of this range, then 

{(x(x, Ad al; t-D, 0 x(4 &J aI), . . . . W-T 2,) a,; t-D, 0 W, M aA> 

is a basis of the range of the spectral projection. In order to complete the 
proof we have to show that the above sequence is linearly independent in 
XP, and for this it is sufficient to show that (c?/~A.~) X(x, 0, A)a = 0 implies 
a = 0, for every k > 0; but this follows trivially from (6) and an inductive 
argument and the theorem is proved. 



352 NEVES AND LIN 

REFERENCES 

1. F. R. GANTMACHER, “The Theory of Matrices,” Vol. 1, Chelsea, New York, 1959. 
2. J. HALE, “Theory qf Functional Differential Equations,” Springer-Verlag. New York, 1977. 
3. B. W. LEVINGER, A folk theorem in functional diNerential equations, J. Differential 

Equations 4 (1968), 612-619. 
4. 0. F. LOPES, A. F. NEW& AND H. S. RIBEIRO, On the spectrum of evolution operators 

generated by hyperbolic Systems, J. Funct. Anal. 67 (1986), 32@344. 
5. A. E. TAYLOR, “Functional Analysis,” New York, Wiley, 1958. 
6. Ju. G. BORIYXIC AND A. S. TURBABIN, On the Cauchy problem for linear inhomogeneous 

differential equations with retarded argument, Dokl. Akad. Nauk. SSSR 185 (1969), 
741-744. 

7. H. T. BANKS AND J. A. BURNS, “An Abstract Framework for Approximate Solutions to 
Optimal Control Problems Governed by Hereditary Systems, ” International Conference on 
Differential Equations (Univ. Southern California, Los Angeles, Calif., 1974), pp. l&25. 
Academic Press, New York, 1975. 

8. M. MARCUS AND V. J. MIZEL, Semilinear hereditary hyperbolic systems with nonlocal 
boundary conditions. II, J. Math. Anal. Appl. 77 (1980), 1-19. 

9. N. N. KRASOVSKII, “Stability of Motion. Applications of Lyapunov’s Second Method to 
Differential Systems and Equations with Delay,” Stanford University Press, Stanford, 
Calif., 1963. 


