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Abstract. Recently, there has been some interest on the stability of waves where
the functions involved grow or decay at an algebraic rate |x|m. In this paper we
define the so called algebraic dichotomy that may aid in treating such problems.
We discuss the basic properties of the algebraic dichotomy, methods of detecting it,
and calculating the power of the weight function.

We present several examples: (1) The Bessel equation. (2) The n-degree Fisher
type equation. (3) Hyperbolic conservation laws in similarity coordinates. (4) A
system of conservation laws with a Dafermos type viscous regularization. We show
that the linearized system generates an analytic semigroup in the space of algebraic
decay functions. This example motivates our work on algebraic dichotomies.

1. Algebraic dichotomy

Dichotomies, ordinary or weighted, are essential in many applications of dynamical
systems theory. A definition of the ordinary dichotomy can be found in [4], where the
decay or growth rate of the flow on stable or unstable space is unspecified. We are
interested in the weighted dichotomies where the decay or growth rate of the flow is
controlled by monotone weight functions w(x) that approach zero or infinity as x → c
or d where I = (c, d) is the domain of interest (allowing c = −∞ and/or d = ∞).
Although the most important case is the exponential dichotomy where w(x) = eµx,
in applications, we may find systems with non-exponential growth or decay solutions.
For example, to solve some PDEs written in polar or spherical coordinates, we en-
counter Bessel’s equations and their variations of which the solutions decay to 0 or
grow to ∞ algebraically as x → ∞. For some PDEs with one dimensional spatial
domain, to study the stability of solutions, it is useful to limit solutions to spaces of
functions that decay to zero with certain given rate [30, 14, 38]. Method used in this
paper may be useful in those problems.

This paper is motivated by the study of the stability of conservation laws. In
[24, 26], conservation laws consisting of Lax shocks written in similarity coordinates
were considered. It is found that the linearized system has an algebraic dichotomy
and eigenfunctions to such system decay to zero algebraically. In this paper we will
define general spaces that are suitable to study systems with algebraic dichotomies.
We will apply our theory to Riemann problems of hyperbolic conservation laws and
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their viscous regularizations. By carefully choosing viscosity terms, we show that
the regularized systems can be posed in spaces of algebraic decay functions just like
the original hyperbolic system. And the linearized equation around viscous Riemann
solutions is sectorial, thus generates an analytic semigroup.

We assume that the weight function satisfies the following conditions:
(1) w(x) is positive and monotone in the domain (c, d) where the equation is well-

posed and the dichotomy exists. We allow c = −∞ and/or d = ∞.
(2) At x = c and/or x = d, w(x) may have a zero or a pole, i.e., where w(x) = 0

or ∞. The zero or pole is said to be finite or infinite if c or d is finite or infinite.

Examples of scalar equations, weight functions and their zeros and poles are:
(a) u′ = µ

x
u, x ∈ I = (0,∞) with β = <µ 6= 0.

In this case the weight function is w(x) = xβ. If β > 0 then w has a zero at 0 and
a pole at ∞. If β < 0 then w has a pole at 0 and a zero at ∞.

(b) u′ = µ
x(1−x)

u, x ∈ I = (0, 1) with β = <µ 6= 0.

The weight function is w(x) = (x/(1 − x))β . If β > 0 then w has a zero at x = 0
and a pole at x = 1. If β < 0 then w has a zero at x = 1 and a pole at x = 0.

(c) u′ = ± µ√
1+x2

u, x ∈ I = (−∞,∞) with β = <µ 6= 0.

The weight function is w = (x+
√

1 + x2)β. If β > 0 then w has a zero at −∞ and
a pole at ∞. If β < 0 then w has a zero at ∞ and a pole at −∞.

(d) In §7 we will discuss an example from a Laplace transformed PDE in dual
variable s. Although in some finite interval (xi, xi+1), none of the end points is a zero
or a pole of the weight function, the algebraic dichotomy is still important because
the power β is related to the dual variable s which is in a region unbounded to the
right.

We will focus on systems defined on R+, R− or R where the weight function has a
zero or a pole at ±∞. The growth or decay rate is measured by

a(x) = x +
√

1 + x2, a(x)−1 = a(−x) = −x +
√

1 + x2.

Both functions are positive, strictly monotone and asymptotically satisfy:

a(x) ∼
{

2x, x → ∞,

1/(2|x|), x → −∞.
, a(x)−1 ∼

{
1/(2x), x → ∞,

2|x|, x → −∞.

The weight function a(x)µ has properties similar to that of eµx:

(1.1)

dx√
1 + x2

=
da(x)

a(x)
,

∫
a(x)µ dx√

1 + x2
=

1

µ
a(x)µ + C, µ 6= 0.

The weight function a(x)µ is flexible to adapt to some other situations. For example,
the weight functions used in [38] and [14] are equivalent to 1+a(x) and a(x)+a(x)−1

respectively.
Norms in Cn will be denoted by | · | while norms in infinite dimensional Banach

spaces or norms of operators will be denoted by ‖ · ‖.
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Definition 1.1. A continuous function u : R → Cn is said to grow (or decay)
algebraically with the power µ > 0 (or µ < 0) as x → ∞ if there exists a constant C
such that

|u(x)| ≤ Ca(x)µ.

Define the Banach space Eµ of continuous functions u(x), with the following norm
being finite:

‖u‖Eµ = sup
x∈R

{|u(x)| · a(x)−µ}.

Similarly, we can define the space Eµ(J) for x ∈ J where J is an unbounded or
bounded interval in R.

Define the Banach space Êµ of continuous functions u(x) such that u ∈ Eµ(R+) ∩
E−µ(R

−) with the norm

‖u‖ bEµ
= max{‖u‖µ(R+), ‖u‖−µ(R−)}.

Remark 1.1. Assume that µ < ν. Then we have Eµ(R+) ⊂ Eν(R
+), Eν(R

−) ⊂
Eµ(R

−) and Êµ ⊂ Êν . However, we do not have Eµ(R) ⊂ Eν(R) or Eν(R) ⊂ Eµ(R).

A continuous function u : R → Cn is said to grow (or decay) algebraically with the
power µ > 0 (or µ < 0) as |x| → ∞ if there exists a constant C such that

|u(x)| ≤ C(
√

1 + x2)µ.

If u ∈ Êµ, then it is straight forward to verify that u(x) grow (or decay) algebraically

with the power µ > 0 (or µ < 0) as |x| → ∞. An alternative norm on Êµ can be
defined as:

‖|u|‖ bEµ
= sup

x∈R

{|f(x)| · (
√

1 + x2)−µ}.

See [14]. Notice that

(1.2)

a(x) + a(x)−1 = 2
√

1 + x2,

(
√

1 + x2)µ < a(x)µ + a(x)−µ, for µ ∈ R,

a(x)µ + a(x)−µ < 2(2
√

1 + x2)µ, for µ > 0.

If x ≥ 0, then

(1.3)
a(x)µ ≤

√
1 + x2

µ ≤ 2−µa(x)µ, µ ≤ 0,

2−µa(x)µ ≤
√

1 + x2
µ ≤ a(x)µ, µ ≥ 0.

Similar estimates hold for x ≤ 0. Thus we have

‖u‖ bEµ
≤ ‖|u|‖ bEµ

≤ 2µ‖u‖ bEµ
, µ ≥ 0,

2µ‖u‖ bEµ
≤ ‖|u|‖ bEµ

≤ ‖u‖ bEµ
, µ ≤ 0.

Let T (x, y), with T (y, y) = I, be the principal matrix solution of the homogeneous
part of the system in Cn:

(1.4) u′(x) = A(x)u(x) + g(x).
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Definition 1.2. Algebraic dichotomy: The principal matrix solution T (x, y) of the
homogeneous part of (1.4) is said to have an algebraic dichotomy on J = (−∞,∞)
with a power β > 0, constants K1, K2 > 0 and projections P (x) + Q(x) = I if P (x)
is continuous and the following properties hold:

T (x, y)P (y) = P (x)T (x, y),

‖T (x, y)P (y)‖ ≤ K1 (a(x)/a(y))−β , if y ≤ x,

‖T (x, y)Q(y)‖ ≤ K2 (a(y)/a(x))−β , if x ≤ y.

The ranges of P (y) and Q(y) are called the stable and unstable subspaces for T (x, y)
at y ∈ R, and are invariant under T (x, y).

If instead, there exist γ > δ such that,

‖T (x, y)P (y)‖ ≤ K1(a(x)/a(y))δ, y ≤ x ∈ J,

‖T (x, y)Q(y)‖ ≤ K2(a(x)/a(y))γ, x ≤ y ∈ J,

then T (x, y) is said to have a pseudo algebraic dichotomy, or an asymmetric di-
chotomy if γ + δ 6= 0. A dichotomy is symmetric if γ + δ = 0.

We sometimes use K = max{K1, K2} as the constant of the dichotomy for simplic-
ity. We say (1.4) has an algebraic dichotomy if T (x, y) has an algebraic dichotomy.

If u(x) satisfies a linear system u′ = A(x)u, then w(x) = eµxu(x) satisfies w′ =
(A + µI)w. A similar property holds if the exponential function is replaced by a(x)µ.

Lemma 1.1. If u(x) satisfies (1.4), then w(x) = a(x)µu(x) satisfies

(1.5) w′(x) = (A(x) +
µ√

1 + x2
I)w(x) + a(x)µg(x).

The principal matrix solution becomes T̃ (x, y) = (a(x)/a(y))µT (x, y). Moreover, if
(1.4) has a pseudo algebraic dichotomoy with powers γ > δ, then (1.5) has a pseudo

algebraic dichotomy with the powers γ̃ = γ + µ, δ̃ = δ + µ, the projections P̃ (x) =

P (x), Q̃(x) = Q(x) and constants K̃1 = K1, K̃2 = K2 remain the same.

Remark 1.2. Definition 1.2 works on finite intervals where there is no finite zero or
pole to the weight function of the dichotomy. For a scalar equation u′ = µ(x)u, the
solution is u(x) = e

R x µ(t)dtu(y)/e
R y µ(t)dt, and the weight function is precisely e

R x µ(t)dt.
This also suggest that the growth or decay should be measured by the quotient of two
functions at x and y respectively. In an interval (c, d), in order to have a zero at c and
a pole at d, it is necessary to have µ(x) ∼ k/(x − c) as x → c and µ(x) ∼ h/(d − x)
as x → d, µ(x) ∼ k/|x| if c = −∞, or d = ∞).

It is straightforward to verify that if y ≤ x, and α, β > 0, then

e−α(x−y) ≤ (a(x)/a(y))−β.

Therefore, if a linear system has an exponential dichotomy with the exponent α > 0,
then it also has an algebraic dichotomy with any β > 0.

By reversing the time x → −x in (1.4), we have

(1.6) ũ′(x) = Ã(x)ũ(x) + g̃(x),
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where Ã(x) = −A(−x), g̃(x) = −g(−x). The following simple facts can be checked

easily (the L2 type spaces Hµ and Ĥµ will be defined in §6).

Lemma 1.2. The principal matrix solution for (1.6) is related to (1.4) by T̃ (x, y) =
T (−x,−y). If (1.4) has an algebraic dichotomy with the power β, constants K1, K2

and projections P (x), Q(x), then (1.6) has an algebraic dichotomy with the same
power β, constants K2, K1. The projections to the stable and unstable subspaces are

P̃ (x) = Q(−x), Q̃(x) = P (−x). If g ∈ Eµ or Hµ for some µ ∈ R, then g̃ ∈ E−µ or

H−µ. If g ∈ Ĥµ then g̃ ∈ Ĥµ.

Sections 2 and 6 are devoted to estimates of the solution u of (1.4) if the forcing
term g is given in some function spaces with specified growth/decay rates. §2 deals
with spaces of continuous functions. §6 deals with spaces of L2 type functions. An
important property of the algebraic dichotomies is the roughness under perturbations,
which is also treated in §2.

In §3 we introduce the method of asymptotic factorization which is related to the
method of frozen coefficients and the WKB method. Our method works on some
problems typically treated by the WKB method [1]. The difference is after finding
the time-dependent exponents, we go back to solve the original equation rather than
solve the equations of the exponents.

The simple example on Bessel functions in §4 shows what can go wrong with the
method of frozen coefficients if not used correctly. In §5 we discuss an example
treated by Wu, Xing and Ye [38]. In §7 we study an example from Riemann solutions
of conservation laws. In §8, we discuss a singularly perturbed hyperbolic system in
similarity coordinates. We show it generalizes an analytic semigroup in spaces of
algebraic decay functions. And there exists η > 0 such that if <s > −η, then s is
either a normal eigenvalue or a resolvent point of the associated linear variational
system.

2. Algebraic dichotomy in spaces of continuous functions

2.1. Estimates of solutions. If a system has a dichotomy on R, then it has di-
chotomies on R±. By Lemma 1.2, it suffices to consider dichotomies on R+. We
also find if the forcing terms is expressed in the form f(x)/

√
1 + x2, then results of

this paper become much simpler. Without loss of generality we will assume that the
forcing term is of the form f(x)/

√
1 + x2 for the rest of the paper. Consider

(2.1) u′(x) = A(x)u(x) + f(x)/
√

1 + x2, x ∈ [0,∞).

Theorem 2.1. Assume that (2.1) has an algebraic dichotomy with the power β and
constants K1, K2. If f ∈ Eµ(R+) where β > |µ| and P (0)u(0) is given, then there
exists a unique solution u ∈ Eµ(R

+). Moreover,

(2.2) ‖u(x)‖Eµ(R+) ≤
(

K1

β + µ
+

K2

β − µ

)
‖f‖Eµ(R+) + K1a(x)−(β+µ)|P (0)u(0)|.

(2.3) ‖u(x)‖Eµ(R−) ≤
(

K1

β + µ
+

K2

β − µ

)
‖f‖Eµ(R−) + K2a(x)β−µ|Q(0)u(0)|.
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Proof. We first show the existence of the solution. Let u(x) = P (x)u(x) + Q(x)u(x),
where

P (x)u(x) =

∫ x

0

T (x, y)P (y)f(y)
dy√
1 + y2

+ T (x, 0)P (0)u(0),(2.4)

Q(x)u(x) =

∫ x

∞
T (x, y)Q(y)f(y)

dy√
1 + y2

.(2.5)

It is easy to see that if both integrals are convergent then u as defined is a solution.
To show that the integrals are convergent and to obtain estimates of solutions,

observe the integral term I1 in (2.4) satisfies

|I1| ≤
∫ x

0

K1 (a(x)/a(y))−β ‖f‖µa(y)µ dy√
1 + y2

= K1‖f‖µa(x)−β

∫ x

0

a(y)β+µ dy√
1 + y2

≤ K1‖f‖µ

β + µ
a(x)µ, if β + µ > 0.

Therefore,

(2.6) |P (x)u(x)| ≤ K1

β + µ
‖f‖µa(x)µ + K1a(x)−β |P (0)u(0)|, if β + µ > 0.

Similarly,

(2.7)

|Q(x)u(x)| ≤
∫ ∞

x

K2((a(x)/a(y))β ‖f‖µa(y)µ dy√
1 + y2

≤ K2

β − µ
‖f‖µa(x)µ, if β − µ > 0.

To show that the solution is unique, let u be a corresponding solution of (2.1) in
Eµ with f = 0 and P (0)u(0) = 0.

From the variation of constant formula, f = 0 and P (0)u(0) = 0 clearly imply that
P (x)u(x) = 0 for all x ≥ 0.

For any 0 ≤ x ≤ x0,

|Q(x)u(x)| = |T (x, x0)Q(x0)u(x0)|
≤ K (a(x0)/a(x))−β ‖u‖µa(x0)

µ

≤ K2‖u‖µa(x)βa(x0)
−β+µ.

Our assumption β > |µ| implies that the last expression goes to 0 as x0 → ∞. This
proves that Q(x)u(x) = 0.

Since f = 0 and P (0)u(0) = 0 imply u = 0, the solution u ∈ Eµ is unique.
�

In applications, we often look for solutions that decay to zero as x → ±∞, i.e.,

u ∈ Êµ(R with µ < 0.
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Theorem 2.2. If the homogeneous part of (2.1) has an algebraic dichotomy of power

β in R and if f(x) ∈ Êµ(R), µ ≤ 0, with β > |µ|, then (2.1) has a unique solution
u ∈ Eµ̂(R). Moreover,

‖u‖ bEµ
≤ (K1 + K2)

β − |µ| ‖f‖ bEµ
.

Proof. We starts from the integral expression

P (x)u(x) =

∫ x

−∞
T (x, y)P (y)f(y)

dy√
1 + y2

.

If x ≤ 0, then

|P (x)u(x)| ≤ K1‖f‖
∫ x

−∞
(a(x)/a(y))−βa(y)−µ dy√

1 + y2

≤ K1

β − µ
‖f‖a(x)−µ.

If x ≥ 0, then

P (x)u(x) =

∫ 0

−∞
+

∫ x

0

T (x, y)P (y)f(y)
dy√
1 + y2

= I1(x) + I2(x),

where |I1(x)| ≤ (a(x)/a(0))−β|P (0)u(0)| ≤ K1

β − µ
‖f‖a(x)−β,

|I2(x)| ≤ K1‖f‖
∫ x

0

(a(x)/a(y))−βa(y)µ dy√
1 + y2

≤ K1‖f‖a(x)−β a(x)β+µ − 1

β + µ
.

Since µ < 0, using the fact 1/(β + µ) > 1/(β − µ), we have for x ≥ 0,

|P (x)u(x)| ≤ |I1(x) + I2(x)| ≤ K1‖f‖ bEµ

a(x)µ

β + µ
.

Combined with the estimate for x ≤ 0, we have

‖P (·)u(·)‖ bEµ
≤ K1

β − |µ|‖f‖ bEµ
.

Similarly, from (2.5) we can show

‖Q(·)u(·)‖ bEµ
≤ K2

β − |µ|‖f‖ bEµ
.

The desired result follows from ‖u‖ ≤ ‖Pu‖ + ‖Qu‖.
�
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2.2. Roughness of algebraic dichotomies. An important property of the alge-
braic dichotomy is its roughness under perturbations. Let TB(x, y) be the principal
matrix solution for the following linear system.

(2.8) u′(x) = (A(x) + B(x))u(x), u ∈ Rn, x ∈ I.

Assume that the system u′(x) = A(x)u(x) has an algebraic dichotomy on I. The
interval we consider could be finite, infinite or semi-infinite. In the following theorem
we consider the case I = (0,∞) where 0 is neither a zero or a pole of the dichotomy.
The other cases can be treated similarly.

Theorem 2.3. Assume that u′ = A(x)u has an algebraic dichotomy with the power
β and constant K = max{K1, K2} on I = [0,∞) where 0 is not a pole or zero of the
dichotomy. Let B(x) be piecewise continuous and there exists a constant ζ > 0 such
that

|B(x)| ≤ ζ/
√

1 + x2, x ≥ 0.

Let −β < µ < 0 and C1 = 2K
β−|µ| . Assume that ζ is sufficiently small so that

C1ζ < 1, and C2ζ < 1 where C2 =
2K2

(β − µ)(1 − C1ζ)
.

Then (2.8) also has an algebraic dichotomy on I with projections P̃ (x) and Q̃(x), the

power β̃ and the constant K̃. Moreover, we have β̃ = |µ|,
K̃ = K(1 − C1ζ)−1(1 − C2ζ)−1 and

‖TB(x, y)P̃ (y)‖ ≤ K̃(a(x)/a(y))−β̃, y ≤ x,(2.9)

‖TB(y, x)Q̃(x)‖ ≤ K̃(a(x)/a(y))−β̃, y ≤ x,(2.10)

‖P̃ (x) − P (x)‖ ≤ C2ζ

1 − C2ζ
.(2.11)

Proof. The proof is adapted from a proof in [22] where exponential dichotomies are
considered. For any φ ∈ Rn, y ∈ I, we first show that the function F(y) maps
Eµ(y,∞) into itself:

(2.12) (F(y)u)(x) = T (x, y)P (y)φ +

∫ x

y

T (x, ξ)P (ξ)B(ξ)u(ξ)dξ

+

∫ x

∞
T (x, ξ)Q(ξ)B(ξ)u(ξ)dξ, y ≤ x < ∞.

Using the algebraic dichotomy on I, we have,

(2.13) |T (x, y)P (y)φ| ≤ K(a(x)/a(y))−β|φ| ≤ K(a(x)/a(y))µ|φ|,
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|
∫ x

y

T (x, ξ)P (ξ)B(ξ)u(ξ)dξ| ≤
∫ x

y

K(a(x)/a(ξ))−β‖u‖µa(ξ)µ ζdξ√
1 + ξ2

(2.14)

≤ ζK

β + µ
a(x)µ‖u‖µ,

|
∫ x

∞
T (x, ξ)Q(ξ)B(ξ)u(ξ)dξ| ≤

∫ ∞

x

K(a(ξ)/a(x))−β‖u‖µa(ξ)µ ζdξ√
1 + ξ2

(2.15)

≤ ζK

β − µ
a(x)µ‖u‖µ.

Therefore

‖F(y)u‖µ ≤ K|φ|a(y)−µ +
2ζK

β − |µ|‖u‖µ.

Since 2ζK
β−|µ| = C1ζ < 1, F(y) is a contraction mapping in Eµ(y,∞). Let the unique

fixed point of F(y) be u(x, y, φ). Then it is a solution for (2.8) with

(2.16) |u(x, y, φ)| ≤ K

1 − C1ζ
(a(x)/a(y))µ|φ|, where C1 =

2K

β − |µ| .

Conversely, any solution u(x) of (2.8) satisfying u ∈ Eµ(y,∞) and P (y)φ =
P (y)u(y) is a fixed point for F(y).

Similarly, for any φ ∈ Rn, y ∈ I, the function H(y) maps E−µ(0, y) into itself:

(2.17) (H(y)v)(x) = T (x, y)Q(y)φ +

∫ x

y

T (x, ξ)Q(ξ)B(ξ)v(ξ)dξ

+

∫ x

0

T (x, ξ)P (ξ)B(ξ)v(ξ)dξ, 0 ≤ x ≤ y.

Observe that,

(2.18) |T (x, y)Q(y)φ| ≤ K(a(y)/a(x))−β|φ| ≤ K(a(x)/a(y))−µ|φ|,

|
∫ x

y

T (x, ξ)Q(ξ)B(ξ)v(ξ)dξ| ≤
∫ y

x

K(a(ξ)/a(x))−β‖v‖−µa(ξ)−µ ζdξ√
1 + ξ2

(2.19)

≤ Kζ

β + µ
‖v‖−µa(x)−µ,

|
∫ x

0

T (x, ξ)P (ξ)B(ξ)v(ξ)dξ| ≤
∫ x

0

K(a(x)/a(ξ))−β‖v‖−µa(ξ)−µ ζdξ√
1 + ξ2

(2.20)

≤ Kζ

β − µ
‖v‖−µa(x)−µ.

Therefore

‖H(y)v‖−µ ≤ K|φ|a(y)µ +
2ζK

β − |µ|‖v‖−µ.
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Since 2ζK
β−|µ| < 1, H(y) is a contraction mapping in E−µ(0, y). Let the unique fixed

point for H(y) be v(x, y, φ). The it is a solution for (2.8) with

(2.21) |v(x, y, φ)| ≤ K

1 − C1ζ
(a(y)/a(x))µ|φ|, where C1 =

2K

β − |µ| .

Conversely, any solution v(x) of (2.8) satisfying v ∈ E−µ(0, y), and Q(y)v(y) =
Q(y)φ, P (0)v(0) = 0 is a fixed point for H(y).

Let

W s(y) := {u(y, y, φ) : φ ∈ Rn}, W u(y) := {v(y, y, φ) : φ ∈ Rn}.
Then It is obvious that

(2.22)
W s(y) = {φs : TB(·, y)φs ∈ Eµ(y,∞)},
W u(y) = {φu : TB(0, y)φu ∈ RQ(0)}, −β < µ < 0.

Moreover, φ → u(y, y, φ) and φ → v(y, y, φ) are homeomorphisms from RP (y) to
W s(y) and from RQ(y) to W u(y) respectively.

We now show that

W s(y) + W u(y) = Rn.

For φ ∈ Rn, consider

w = u(y, y, φ) + v(y, y, φ)

= φ +

∫ y

0

T (y, ξ)P (ξ)B(ξ)v(ξ, y, φ)dξ +

∫ y

∞
T (y, ξ)Q(ξ)B(ξ)u(ξ, y, φ)dξ

= φ + I1 + I2.

From (2.15), (2.16) and (2.20), (2.21),

(2.23) |I1| ≤
ζK

β − µ
· K|φ|
1 − C1ζ

, |I2| ≤
ζK

β − µ
· K|φ|
1 − C1ζ

.

Therefore,

(2.24) |w − φ| ≤ C2ζ |φ|, C2 =
2K2

(β − µ)(1 − C1ζ)
.

Since C2ζ < 1, u(y, y, φ) + v(y, y, φ) : φ → w is a homeomorphism in Rn and we
denote the inverse by φ = Φ(y, w). We have

(2.25) ‖Φ(y, w)‖ ≤ (1 − C2ζ)−1|w|.
We now show that W s(y) ∩ W u(y) = {0}. Let (φ1, φ2) satisfy

u(y, y, φ1) = v(y, y, φ2).

Let φ = P (y)φ1 − Q(y)φ2. It can be verified that

w = 0 = u(y, y, φ) + v(y, y, φ).

Thus φ = Φ(y, 0) = 0. Consequently, P (y)φ1 = 0 and Q(y)φ2 = 0. Therefore
W s(y) ∩ W u(y) = {0}.
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Define

P̃ (y)w = u(y, y, Φ(y, w)),

Q̃(y)w = v(y, y, Φ(y, w)).

We have shown that P̃ (y) and Q̃(y) are projections associated to the splitting
W s(y) ⊕ W u(y) = Rn. The property

TB(x, y)P̃ (y) = P̃ (x)TB(x, y)

can be proved by the invariance of W s and W u. See (2.22).
To show (2.11), observe that

|(P̃ (y) − P (y))w| ≤ |u(y, y, Φ(y, w))− P (y)Φ(y, w)|+ |P (y)Φ(y, w)− P (y)w|

≤ |
∫ ∞

y

T (y, ξ)Q(ξ)B(ξ)u(ξ, y, Φ(y, w))dξ|+ |
∫ y

0

T (y, ξ)P (ξ)B(ξ)v(ξ, y,Φ(y, w))dξ|

The above is bounded by |I1| + |I2| as in (2.23). Using (2.24) and (2.25), we have

|(P̃ (y) − P (y))w| ≤ C2ζ |Φ| ≤
C2ζ

1 − C2ζ
|w|.

This proves (2.11).
From (2.16) and (2.25), we have for x ≥ y,

|TB(x, y)P̃ (y)w| = |u(x, y, Φ(y, w)|

≤ K

1 − C1ζ

(
a(x)

a(y)

)µ
1

1 − C2ζ
|w|.

This proves (2.9) with the constant K̃. The estimate (2.10) can be proved similarly.
�

Assume that the coefficients A(x, s), B(x, s) depend on a parameter s and is ana-
lytic in s. Then it is well known that the solution matrices T (x, y, s) and TB(x, y, s)
for systems

u′(x) = A(x, s)u(x),(2.26)

u′(x) = (A(x, s) + B(x, s))u(x), u ∈ Rn, x ∈ I,(2.27)

are analytic functions of s.

Corollary 2.4. If system (2.26) has an algebraic dichotomy with projections analytic
in the parameter s, then the perturbed system (2.27) has an algebraic dichotomy with

projections P̃ (x, s), Q̃(x, s) analytic in s.

Remark 2.1. The unstable subspace RQ̃) in R+ is not uniquely defined. The projec-
tions are analytic in s if the unstable subspace is chosen to satisfy

W u(y, s) = {φu : TB(0, y, s)φu ∈ RQ(0, s)}.
However, this additional condition is not unique. Other choice of W u(y, s) is possible
if it is transverse to the range of the stable subspace (which is unique).
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Proof. The proof is based on careful examination of the proof of Lemma 2.3, details
as follows.

Based on the analyticity of T (x, y, s), P (x, s), Q(x, s) and B(x, s) in s, from (2.12),
the contraction mapping F(y, s)u is analytic in s. Thus the fixed point u(x, y, s, φ) of
F(y, s) is analytic is s. More specifically, u(x, y, s, φ) can be obtained by an iteration
method of which each step we have an analytic function and the uniformly convergent
sequence of analytic functions converges to an analytic function. Similarly, the fixed
point v(x, y, s, φ) is analytic in s. The mapping φ → w defined as

w = u(y, y, s, φ) + v(y, y, s, φ),

is analytic in s, so is the inverse Φ(y, s, w). Finally, as the composition of analytic
functions, the projections

P̃ (y, s)w = u(y, y, s, Φ(y, s, w)), Q̃(y, s)w = v(y, y, s, Φ(y, s, w)),

are clearly analytic functions of s. �

If B(x) decays to zero faster than that assumed in Theorem 2.3, e.g., there exists
b, C1 > 0 such that

(2.28) |B(x)| ≤ C1/
√

1 + x2
(1+b)

,

then |B(x)| ≤ ζ/
√

1 + x2 with an arbitrarily small ζ on an interval [N,∞) if N
is sufficiently large. We conclude from Theorem 2.3 that TB(x, y) has an algebraic

dichotomy on [N,∞) with the power β̃ close to β. In the next theorem, we show under

(2.28) we can choose the power of the dichotomy β̃ = β on I = [N,∞). Observe that

(2.28) implies that |B(x)| ≤ 2bC1√
1+x2·a(x)b . In the following theorem we replace 2bC1 by

C for simplicity.

Theorem 2.5. Assume that u′ = A(x)u has an algebraic dichotomy with the power
β on I = [0,∞). Assume that B(x) is piecewise continuous and there exit C, b > 0
with b < β such that

(2.29) |B(x)| ≤ C√
1 + x2 · a(x)b

.

Let the constant N be sufficiently large such that C3 := 2CK/(β a(N)b) < 1. then

(2.8) has an algebraic dichotomy with the power β̃ = β on [N,∞), and the new

constant K̃ = K
1−C3

.

Remark 2.2. The dichotomy obtained in this theorem can be extend from [N,∞) to
the original interval [0,∞) by flowing the flow backwards in time. The power of the

dichotomy will not change, but the constant in the larger interval is not the same K̃.

Proof. The main steps of the proof are exactly as in the proof of Theorem 2.3. Define
F and H as before. The main difference is that we now have µ = −β < 0.

(2.13) is still valid with µ = −β.
The L.H.S. of (2.14) is bounded by

∫ x

y

K(a(x)/a(ξ))−β‖u‖µ
a(ξ)µ

a(ξ)b

Cdξ√
1 + ξ2

≤ CK

b
a(y)−b‖u‖µa(x)µ.
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The L.H.S. of (2.15) is bounded by
∫ ∞

x

K(a(ξ)/a(x))−β‖u‖µ
a(ξ)µ

a(ξ)b

Cdξ√
1 + ξ2

≤ CK

2β + b
a(y)−b‖u‖µa(x)µ.

Therefore

‖F(y)u‖µ ≤ K|φ|a(y)β +
2CK

β a(y)b
‖u‖µ.

If N > 0 is a constant such that 2CK/(ba(N)b) < 1, then F(y) is a contraction
mapping in Eµ(y,∞) for N ≤ y < ∞. The unique fixed point for which is denoted
by u(x, y, φ) and is a solution for (2.8) with

|u(x, y, φ)| ≤ K

1 − C3
(a(x)/a(y))−β|φ|, where C3 = 2CK/(ba(N)b).

Similarly, (2.18) is still valid with −µ = β.
The L.H.S. of (2.19) is bounded by

∫ y

x

K(a(ξ)/a(x))−β‖v‖−µ
a(ξ)−µ

a(ξ)b

Cdξ√
1 + ξ2

≤ KC

b
a(x)−b‖v‖−µa(x)β .

The L.H.S. of (2.20) is bounded by
∫ x

0

K(a(x)/a(ξ))−β‖v‖−µ
a(ξ)−µ

a(ξ)b

Cdξ√
1 + ξ2

≤ KC

2β − b
a(x)−b‖v‖−µa(x)β .

Using b < β, we have

‖H(y)v‖−µ ≤ K|φ|a(y)µ +
2CK

β a(x)b
‖v‖−µ.

If N > 0 is sufficiently large such that 2CK/(β a(N)b) < 1, then H(y) is a
contraction mapping in Eµ(N, y) for N ≤ x ≤ y. The unique fixed point for which is
denoted by v(x, y, φ) and is a solution for (2.8) with

|v(x, y, φ)| ≤ K

1 − C3
(a(y)/a(x))−β|φ|, where C3 = 2CK/(β a(N)b).

It Follows from the rest of the proof of Theorem 2.3 that TB(x, y) has an algebraic

dichotomy on [N,∞) with the power β̃ = −µ = β. �

Corollary 2.6. Assume that u′ = A(x)u has a pseudo algebraic dichotomy with the
powers γ > δ and constant K ≥ 1 on I = [0,∞).

(1) Let B(x) be piecewise continuous with

|B(x)| ≤ ζ/
√

1 + x2, x ≥ 0.

Assume that

γ − δ > 8K2ζ.

Then the perturbed systems has a pseudo algebraic dichotomy with the powers δ̃ < γ̃
such that

δ + 4K2ζ ≤ δ̃ < γ̃ ≤ γ − 4K2ζ.
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Let d = min{γ − γ̃, δ̃ − δ}. Then the projections and the constant satisfy

‖P̃ (x) − P (x)‖ ≤ 4K2ζ

d
,

K̃ =
K

(1 − 2Kζ
d

)(1 − 4K2ζ
d

)
.

In particular, as ζ → 0,

K̃ → K, P̃ → P, Q̃ → Q.

(2) If there exists b, C > 0 such that

|B(x)| ≤ C/
√

1 + x2
(1+b)

,

then (2.8) has a pseudo algebraic dichotomy with the same powers γ̃ = γ and δ̃ = δ
on I.

Proof. Let µ = −(γ + δ)/2, w(x) = u(x)a(x)µ. Then from (1.5),

(2.30) w′(x) = (A(x) +
µ√

1 + x2
I + B(x))w.

By Lemma 1.1, with B = 0, (2.30) has a symmetric algebraic dichotomy with the
power β = (γ − δ)/2. From Lemmas 2.3 and 2.5, if |B| is sufficiently small, (2.30)
with B 6= 0 has a symmetric algebraic dichotomy. The results of the lemma follow
after changing the variable back from w to u.

�

3. Asymptotic factorization and the Riccati equation

For a second order equation

u′′ + p(x)u′ + q(x)u = f(x),

if the coefficients p(x), q(x) are slow varying, we expect that the dynamics to be
governed by the eigenvalues λj(x) calculated at each fixed x. This is called the
method of frozen coefficients. We will introduce a method that extends the method
of the frozen coefficients.

The system can be written as

(3.1) (Dx − ν(x))(Dx − µ(x))u = f(x),

where
ν + µ = −p(x), νµ − Dxµ = q(x).

The function µ(x) satisfies the Riccati equation [1]:

µ′ + µ2 + p(x)µ + q(x) = 0.

The exact solution for the Riccati equation may be hard to find. Using the method
of frozen coefficients as the first approximation, which is a quadratic equation with
µ′ = 0, two asymptotic series solutions (µj, νj), j = 1, 2 can be computed to arbitrarily
small error terms ej , which are included in the equation:

(3.2) µ′ + µ2 + p(x)µ + q(x) = ej(x), j = 1, 2.
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Let u1 = (Dx − µ1(x))u, u2 = (Dx − µ2(x))u and νj = −p(x) − µj(x). Then
u = (u1 − u2)/(µ2(x) − µ1(x)). The second order equation is equivalent to the first
order system

(3.3)

u′
1 − ν1(x)u1 = f(x) +

e1(x)

µ1(x) − µ2(x)
(u1 − u2),

u′
2 − ν2(x)u2 = f(x) +

e2(x)

µ1(x) − µ2(x)
(u1 − u2).

Assume that the decoupled linear homogeneous system

u′
1 − ν1(x)u1 = 0, u′

2 − ν2(x)u2 = 0

has an algebraic dichotomy on R+. Then

Theorem 3.1. (1) If the remainder term
|ej(x)|

|µ1(x)−µ2(x)| ≤ δ/
√

1 + x2 with a sufficiently

small δ > 0, then the system (3.3) has an algebraic dichotomy on R+ with a power
close to the one determined by the decoupled system.

(2) If
|ej(x)|

|µ1(x)−µ2(x)| ≤ C/
√

1 + x2
(1+b)

for some C, b > 0, then (3.3) has an algebraic

dichotomy with the power equal to the one determined by the decoupled system.

If the remainder term is not small enough, we can use asymptotic expansions to
extract higher order terms from the Riccati equation until |ej(x)| is sufficiently small
so that Theorem 2.3 or Theorem 2.5 may apply.

The second order equation for u is often written as a first order system

u′ = v, v′ = −q(x)u − p(x)v + f(x).

If the system for (u1, u2) has a dichotomy with stable and unstable subspaces spanned
by (u1, 0) and (0, u2) respectively, then the system for (u, v) has an algebraic di-
chotomy with projections close to the splitting (u, v) → (u1, u2) where u1 = v −
µ1(x)u, u2 = v − µ2(x)u.

If the coefficients (p(x), q(x)) are slow-varying, we often approximate (µ1, µ2) by
the eigenvalues (λ1(x), λ2(x)). Then from (3.2), ej(x) = Dxµj . In the literature, this
is called the method of frozen coefficients, which works if Dxµj/(µ1(x) − µ2(x)) is
small as required by Theorem 2.3 or Theorem 2.5.

The method of factorization can be used to convert a second order singularly per-
turbed equation to a first order system of which the fast and slow variables naturally
split [4, 37, 16, 25].

4. Bessel Functions

The Bessel equation of order α contains a parameter α ≥ 0:

(4.1) x2 d2u

dx2
+ x

du

dx
+ (x2 − α2)u = 0.
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It has two linearly independent solutions – the first and second kind Bessel func-
tions, Jα(x) and Yα(x). It is known that,

Jα(x) = O(xα), Yα(x) = O(x−α), x → 0, if α 6= 0,

Jα(x) = O(x−1/2), Yα(x) = O(x−1/2), x → ∞.

We will check these asymptotic rates by the method of asymptotic factorization.
First consider x → ∞. The system

u′′ +
1

x
u′ + (1 − α2

x2
)u = 0

can be written as (D − νj(x))(D − µj(x))u = 0 if

Dµj + µ2
j + µj/x + 1 − α2/x2 = 0, νj = −µj − x−1.

Freezing the coefficients and setting Dµj = 0, we approximate µj by the eigenvalues:

µ1,2 ≈ − 1

2x
± iβ, β =

√
1 +

1/4 − α2

x2
, νj ≈ − 1

2x
∓ iβ.

The error term satisfies

Dµ1,2(x)/|µ1(x) − µ2(x)| = O(x−2 + |1/2 − α2|x−3)

The system (D − νj(x))uj = 0, j = 1, 2 that approximates (4.1) has an algebraic
dichotomy with the power β = 1/2. Based on the discussion in §3, the Bessel equa-
tion has two linearly independent solutions of O(x−1/2), x → ∞, consistent with the
properties of Jα(x), Yα(x).

To use our method on the asymptotic rates as x → 0, let ξ = 1/x, u = u(ξ) =
u(1/x). Bessel’s equation in the new variable becomes

(4.2) uξξ + ξ−1uξ + (ξ−4 − α2ξ−2)u = 0.

We wish to convert this to (D−νj(ξ))(D−µj(ξ))u = 0. The corresponding Riccati
equation is

µ′
j + µ2

j + ξ−1µj + ξ−4 − α2ξ−2 = 0.

Ignoring the µ′
j term renders an incorrect answer. To improve the accuracy, we set

µj(ξ) =
∑∞

1 cjξ
−j in the Riccati equation and find two solutions:

µ1(x) = αξ−1 +
1

2(1 − α)
ξ−3 + · · · , µ2(x) = −αξ−1 +

1

2(1 + α)
ξ−3 + · · · .

By Theorem 2.5, it suffices to keep µj(ξ) ≈ ±αξ−1 in order to obtain the leading
powers of the dichotomy. Since νj = −µj − ξ−1, the first order approximating system

(D − νj)uj = 0, j = 1, 2,

has two solutions
u1(ξ) ∼ C1ξ

−α−1, u2(ξ) ∼ C2ξ
α−1,

Recall that u = (u1 − u2)/(µ2(x) − µ1(x)). Thus, system (4.2) has two solutions
u ∼ ξ±α. Changing back to x = ξ−1, the Bessel equation of order α has two solutions
u(x) ∼ C1x

−α, u(x) ∼ C2x
α as x → 0, consistent to the asymptotics of Jα(x) and

Yα(x).
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5. The n-degree Fisher type equation

This example is based on the work of Leach, Needham, Kay [17] and Wu, Xing, Ye
[38]. Consider the n-degree Fisher type equation:

(5.1) ut = uxx + un(1 − u), n ∈ N, n > 1.

For each n > 1 there exists c∗(n) > 0 such that (5.1) has a traveling wave solution
φ(x − ct) connecting u = 1 to u = 0 if and only if c ≥ c∗(n). The equation for φ is

(5.2) φ′′ + cφ′ + φn(1 − φ) = 0.

If c > c∗(n), the equilibrium point φ = 1 is a hyperbolic saddle while φ = 0 is non-
hyperbolic with an one dimensional center manifold. It is known that φ(z) decays to
zero algebraically with the power of 1/(n − 1).

(5.3) φ(z) ∼
(

c

(n − 1)z

)1/(n−1)

, as z → ∞.

The linear variational system is U ′′+cU ′+(nφn−1−(n+1)φn)U = g(z). Without loss
of generality, we drop the smaller term (n + 1)φn and study the algebraic dichotomy
for a simplified system,

(5.4) U ′′ + cU ′ + nφn−1U = g(z).

We show that it has an algebraic dichotomy on R+. For each fixed z, the characteristic
values for (5.4) are

µ±(z) = −c

2
±
√(c

2

)2

− nφn−1(5.5)

∼ −c

2
±
√( c

2

)2

− nc

(n − 1)z
.

µ− ∼ −c < 0, µ+ ∼ − n

(n − 1)z
.

Although µ+(z) < 0, it approaches zero as z → ∞.
Let V = U ′, and make the change of variable (U, V ) → (U1, U2):

U1 = V − µ−U, U2 = V − µ+U.

U ′
1 − µ+U1 = g(z) − ∂zµ

−(z)

µ+ − µ− · (U1 − U2),

U ′
2 − µ−U2 = g(z) − ∂zµ

+(z)

µ+ − µ− · (U1 − U2).

By studying the flow on the center manifold, we can show that φ′ ∼ −1
c
φn. From

(5.5),
∂zµ

±(z)/(µ+ − µ−) = O(z−2), for large z.

By Theorem 2.5 and Corollary 2.6, without affecting the powers of the dichotomy,
system (5.4) is approximately

(5.6) U ′
1 − µ+U1 = g(z), U ′

2 − µ−U2 = g(z).



18 XIAO-BIAO LIN

For sufficiently large (z, z0), the solutions to the homogeneous part of (5.6) are
asymptotically

U1(z) = U1(z0)

(
a(z)

a(z0)

)−n/(n−1)

, U2(z) = U2(z0)e
−c(z−z0).

Since the exponential decay implies the algebraic decay, we conclude that the system
has a pseudo-dichotomy where the decay rate on the first subspace is slower than the
decay rate on the second subspace.

Remark 5.1. Wu, Xing and Ye [38] proved the existence of an algebraic dichotomy for
the linearized system using the method from Coppel [4]. They also studied stability of
the traveling wave solutions in the space of functions that decay to zero algebraically.

6. Algebraic dichotomies in L2 spaces

To use algebraic dichotomies on the Laplace transformed equations, we will extend
the results of Section 2 to the L2 type Hilbert spaces.

Definition 6.1. Let Hµ be the Hilbert space of locally L2 functions with the following
weighted norm being finite.

‖u‖µ =

(∫

R

a(x)−2µ|u(x)|2 dx√
1 + x2

)1/2

.

Similarly we can define Hµ(J) if J is an interval of R.

Let Ĥµ be the Hilbert space of locally L2 functions with the following weighted
norm being finite.

‖u‖ bHµ
=

(∫ 0

−∞
a(x)2µ|u(x)|2 dx√

1 + x2
+

∫ ∞

0

a(x)−2µ|u(x)|2 dx√
1 + x2

)1/2

.

For any ε > 0, Êµ−ε ⊂ Ĥµ. However Êµ ⊂ Ĥµ is not true. For example, the

function (
√

1 + x2)µ−ε ∈ Ĥµ for any ε > 0, but not for ε = 0.

An equivalent norm for u ∈ Ĥµ can be defined as:

‖|u|‖ bHµ
=

(∫ ∞

−∞
(1 + x2)−µ|u(x)|2 dx√

1 + x2

)1/2

.

Based on (1.3) for x ≥ 0 and similar estimates for x ≤ 0, we have

‖u‖ bHµ
≤ ‖|u|‖ bHµ

≤ 2µ‖u‖ bHµ
, µ ≥ 0,

2µ‖u‖ bHµ
≤ ‖|u|‖ bHµ

≤ ‖u‖ bHµ
, µ ≤ 0.

Theorem 6.1. Assume that (2.1) has an algebraic dichotomy on R+ with the power
β and constants K1, K2. Assume that f ∈ Hµ(R

+), β > |µ| and P (0)u(0) is given.
Then

(1) there exists a unique solution u ∈ Eµ(R+) with

(6.1) ‖u‖Eµ(R+) ≤ (
K1√

2(β + µ)
+

K2√
2(β − µ)

)‖f‖Hµ(R+) + K1|P (0)u(0)|.
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(2) There exists a unique solution u ∈ Hµ(R
+) with

(6.2) ‖u‖Hµ(R+) ≤ (
K1

β + µ
+

K2

β − µ
)‖f‖Hµ(R+) +

K1√
2(β + µ)

|P (0)u(0)|.

Proof. The proof of the uniqueness is similar to that of Theorem 2.1 and shall be
omitted. We will prove that u = Pu+Qu is a solution by proving the convergence of

P (x)u(x) =

∫ x

0

T (x, y)P (y)f(y)
dy√
1 + y2

+ T (x, 0)P (0)u(0),(6.3)

Q(x)u(x) =

∫ x

∞
T (x, y)Q(y)f(y)

dy√
1 + y2

,(6.4)

under suitable norms.
Proof of part (1): The integral term I1 in (6.3) satisfies

|I1(x)|2 ≤
(∫ x

0

K1(a(x)/a(y))−β|f(y)| dy√
1 + y2

)2

≤ K2
1

(∫ x

−∞
a(x)−2βa(y)2βa(y)2µ dy√

1 + y2

)(∫ x

−∞
a(y)−2µ|f(y)|2 dy√

1 + y2

)

≤ K2
1

2β + 2µ
a(x)2µ‖f‖2

µ, if β + µ > 0.

Therefore

|P (x)u(x)| ≤ K1a(x)µ

√
2(β + µ)

‖f‖µ + K1a(x)µ|P (0)u(0)|.

Similarly, from (6.4),

|Q(x)u(x)| ≤ K2a(x)µ

√
2(β − µ)

‖f‖µ, if β − µ > 0.

The desired estimate for |u(x)| in (6.1) follows from those of |P (x)u(x)| and |Q(x)u(x)|.
Proof of part (2): Define a new variable z for every pair of y ≤ x by

(6.5) a(z) =
a(x)

a(y)
, y ≤ x ⇒ a(z) ≥ 1 and z ≥ 0.

Then for each fixed x,

(6.6)

a(y) = a(x)/a(z),

dy√
1 + y2

= −da(z)

a(z)
.

Define f ∗ : R+ → Rn as f(y) = f ∗(a(y)). Then

(6.7)

∫
a(y)2µ|f(y)|2 dy√

1 + y2
=

∫ ∞

a=1

a2µ|f ∗(a)|2 da

a
.
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The integral term I1 in (6.3) satisfies

|I1(x)| ≤
∫ x

−∞
K1

(
a(x)

a(y)

)−β

|f(y)| dy√
1 + y2

(6.8)

= K1

∫ ∞

z=0

a(z)−β |f ∗(a(x)/a(z))|da(z)

a(z)

From a generalized Minkovsky’s inequality,

(6.9) ‖I1‖µ ≤ K1

∫ ∞

z=0

a(z)−β‖f ∗(
a(·)
a(z)

)‖µ
da(z)

a(z)
,

where the Hµ norms above are taken on functions of x for each fixed z.

As a function of x, we have dx/
√

1 + x2 = da(x)/a(x), and by the definition of Hµ

norm, as function of x,

‖f ∗(
a(x)

a(z)
)‖2

µ =

∫
a(x)−2µ|f ∗(

a(x)

a(z)
)|2 dx√

1 + x2
(6.10)

=a(z)−2µ

∫
(a(x)/a(z))−2µ|f ∗(a(x)/a(z))|2 d(a(x)/a(z))

a(x)/a(z)

= a(z)−2µ‖f‖2
µ.

Substituting into (6.9), we have

‖I1‖µ ≤ K1

∫ ∞

z=0

a(z)−β−µ‖f‖µ(da(z)/a(z))

= K1‖f‖µ

∫ ∞

a=1

a−β−µ−1da

=
K1

β + µ
‖f‖µ, if β + µ > 0.

Therefore

‖Pu‖µ ≤ K1

β + µ
‖f‖µ +

K1√
2(β + µ)

|P (0)u(0)|.

Similarly, we have

‖Qu‖µ ≤ K2

β − µ
‖f‖µ, if β − µ > 0.

Estimate in (6.2) follows by combining those of ‖Pu‖µ and ‖Qu‖µ.
�

Corollary 6.2. Assume that (2.1) has an algebraic dichotomy on R− with the power
β and constants K1, K2. Assume that f ∈ Hµ(R−), β > |µ| and Q(0)u(0) is given.
Then

(1) there exists a unique solution u ∈ Eµ(R−) with

‖u‖Eµ(R−) ≤ (
K1√

2(β + µ)
+

K2√
2(β − µ)

)‖f‖Hµ(R−) + K2|Q(0)u(0)|.
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(2) There exists a unique solution u ∈ Hµ(R
−) with

‖u‖Hµ(R−) ≤ (
K1

β + µ
+

K2

β − µ
)‖f‖Hµ(R−) +

K2√
2(β + µ)

|Q(0)u(0)|.

Theorem 6.3. Assume that (2.1) has an algebraic dichotomy in R with the power

β > 0 and assume that f ∈ Ĥµ(R) with µ < 0, β > |µ|. Then

(1) there exists a unique solution u ∈ Êµ(R) such that

(6.11) ‖u‖ bEµ
≤ (K1 + K2)√

β − |µ|
‖f‖ bHµ

.

(2) There exists a unique solution u ∈ Ĥµ(R) such that

(6.12) ‖u‖ bHµ
≤ 2(K1 + K2)

β − |µ| ‖f‖ bHµ
.

Proof. Proof of Part (1): Notice that

Ĥµ(R) = H−µ(R−) ∩ Hµ(R+).

Consider x ≤ 0 first. By

P (x)u(x) =

∫ x

−∞
T (x, y)P (y)f(y)

dy√
1 + y2

,

|P (x)u(x)|2 ≤ K2
1

(∫ x

−∞

a(y)β

a(x)β
|f(y)| dy√

1 + y2

)2

≤ K2
1

(∫ x

−∞

a(y)2β

a(x)2β
a(y)−2µ dy√

1 + y2

)(∫ x

−∞
a(y)2µ |f(y)|2dy√

1 + y2

)

≤ K2
1

a(x)−2µ

2β − 2µ
‖f‖2bHµ

.

Therefore

|P (x)u(x)| ≤
K1‖f‖ bHµ√
2(β − µ)

a(x)−µ, x ≤ 0.

In particular,

(6.13) |P (0)u(0)| ≤
K1‖f‖ bHµ√
2(β − µ)

.
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Next, consider x > 0. The integral term I1(x) in (6.3) satisfies

|I1(x)|2 ≤ K2
1

(∫ x

0

a(y)β

a(x)β
|f(y)| dy√

1 + y2

)2

≤ K2
1

(∫ x

0

a(y)2β

a(x)2β
a(y)2µ dy√

1 + y2

)(∫ x

0

a(y)−2µ |f(y)|2dy√
1 + y2

)

≤ K2
1

a(x)2µ − a(x)−2β

2β + 2µ
‖f‖2bHµ

.

One can verify that

|T (x, 0)P (0)u(0)|2 ≤ K2
1a(x)−2β |P (0)u(0)|2

≤
K2

1a(x)−2β‖f‖2bHµ

2(β − µ)
.

Using A + B ≤
√

2(A2 + B2) for any positive numbers A and B, we have

|I1(x)| + |T (x, 0)P (0)u(0)| ≤
K1a(x)µ‖f‖ bHµ√

β − |µ|
, x > 0.

Therefore

‖Pu‖ bEµ
≤

K1‖f‖ bHµ√
β − |µ|

.

We can similarly prove that

‖Qu‖ bEµ
≤

K2‖f‖ bHµ√
β − |µ|

.

Estimate (6.11) follows from those of ‖Pu‖ and ‖Qu‖.
Proof of Part (2): We first consider the x ≤ 0. We starts from

(6.14) |P (x)u(x)| ≤ K1

∫ x

−∞

(
a(x)

a(y)

)−β |f(y)|√
1 + y2

dy, x ≤ 0.

Define the new variable z by (6.5). Then for each fixed x, (6.6) is satisfied.
As a function of x, we have dx/

√
1 + x2 = da(x)/a(x). Let f ∗(a(x)) = f(x). Then

using (6.7),

‖f ∗(a(·)/a(z))‖2
H

−µ(R−)

=

∫
a(x)2µ|f ∗(a(x)/a(z))|2 dx√

1 + x2

= a(z)2µ

∫
(a(x)/a(z))2µ|f ∗(a(x)/a(z))|2 d(a(x)/a(z))

a(x)/a(z)
= a(z)2µ‖f‖2

H
−µ(R−).
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From (6.14) and a generalized Minkovski inequality,

‖Pu‖H
−µ(R−) ≤

∫ 0

z=∞
K1a(z)−β‖f ∗(a(·)/a(z))‖H

−µ(R−)(−da(z)/a(z))

≤ K1

∫ ∞

a=1

a−β+µ−1‖f‖H
−µ(R−)da ≤ K1

β − µ
‖f‖H

−µ(R−).

Next consider x > 0. The integral term I1(x) in (6.3) satisfies

‖I1‖Hµ(R+) ≤
K1

β + µ
‖f‖Hµ(R+),

as in the proof of part (2) of Theorem 6.1. Using (6.13), we can show that

‖T (·, 0)P (0)u(0)‖Hµ(R+) ≤ K1|P (0)u(0)|
∫ ∞

0

a(x)−2β−2µ dx√
1 + x2

≤ K1√
2(β + µ)

|P (0)u(0)|

≤
K1‖f‖ bHµ√

2(β + µ)
√

2(β − µ)

≤ K1

2(β + µ)
‖f‖ bHµ

.

Therefore

‖Pu‖ bHµ(R) ≤
2K1

β − |µ|‖f‖ bHµ
.

We can similarly show that

‖Qu‖ bHµ(R) ≤
2K2

β − |µ|‖f‖ bHµ
.

Estimate (6.12) follows from ‖u‖ ≤ ‖Pu‖+ ‖Qu‖.
�

7. Riemann solutions of conservation laws in similarity coordinates

In this section, we present an example from Riemann solutions of hyperbolic con-
servation laws where algebraic dichotomies naturally occur.

A Riemann solution: u = û(X/T ), û : R → Rn, X ∈ R, T ≥ 0, is a solution to the
Riemann problem of the conservation laws

uT + f(u)X = 0, u(X, 0) =

{
u`, if X < 0,

ur, if X > 0.

Consider the Riemann solution that satisfies the following hypotheses:
(H1) The system is strictly hyperbolic on an open set Ω that contains the Riemann

solution û, i.e. the eignvalues of Df(u) are real and distinct if u ∈ Ω.
(H2) The Riemann solution has n consecutive Lax i-shocks: Λi, i = 1, . . . , n, with

the speed s̄i. Let s̄0 = −∞ and s̄n+1 = ∞, then ū(X, T ) = ūi if s̄i < X/T < s̄i+1.
By definition, if Λi is a lax i-shock with the speed s̄i, and then the eigenvalues
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νi−1
1 < · · · < νi−1

n of Df(ūi−1) and the eigenvalues νi
1 < · · · < νi

n of Df(ūi) are real,
distinct and satisfy

νi−1
i−1 < s̄i < νi−1

i , νi
i < s̄i < νi

i+1.

(H3) The Rankine-Hugoniot jump condition is satisfied at each shock Λi, i.e.:

f(ūi) − f(ūi−1) = s̄i(ūi − ūi−1).

(H4) Majda’s stability condition is satisfied at each Λi. By definition, this means
that if the eigenvectors corresponding to νi

j are ri
j, then the following n vectors in Rn

are linearly independent:

ri−1
1 , . . . , ri−1

i−1, ū
i − ūi−1, ri

i+1, . . . , r
i
n.

By the change of variables x = X/T, t = log T , the conservation laws become:

(7.1) ut + (Df(u) − xI)ux = 0, u : R → Rn, x, t ∈ R.

The Riemann solution becomes stationary to (7.1). We can study its eigenvalues
and we can use the spectral method to find sufficient and necessary conditions for the
stability of Riemann solutions.

Assume that the location of the shock in (x, t) coordinates is at xi for the shock
Λi. It means in the (X, T ) coordinates the speed of the ith shock is X/T = s̄i = xi.
As a convention, x0 = −∞, xn+1 = ∞.

i+1

i−1
R R

i

j = 1,...,i−1

j = i,...,n j = 1,...,i

j = i+1,...,n x

t

ΛΛ Λi−1 i

Figure 7.1. The left and right going characteristics in Ri−1 and Ri.

In Ri = (xi, xi+1), where u = ūi, condition (H2) implies that there are i character-
istics moving to the left and n−i moving to the right. Let νj(ū

i) be the jth eigenvalue
then νj(ū

i) /∈ Ri, and

(7.2) ν`(ū
i) < xi < xi+1 < νr(ū

i), ` = 1, . . . , i; r = i + 1, . . . , n.

Consider the linear variational system around the Riemann solution:

(7.3) Ut + (Df(ūi) − xI)Ux = g(x, t).

At the shock Λi, let ∆ui = ūi − ūi−1,and let X i(t) be the variation of the shock speed
xi. Linearize around the Rankine Hugoniot condition: f(u(xi+, t)) − f(u(xi−, t)) =
(ẋi(t) + xi(t))(u(xi+, t) − u(xi−, t)), we have

(7.4) [Df(ūi) − xiI]U(xi+, t) − [Df(ūi−1) − xiI]U(xi−, t) = (Ẋ i(t) + X i(t))∆ui.
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Instead of study the evolution of (U, {X i}n
i=1), we write the jump condition as

(7.5) [Df(ūi) − xiI]U(xi+, t) − [Df(ūi−1) − xiI]U(xi−, t) = 0, mod (∆ui).

This together with (7.3) determine the evolution of U(·, t) without having to know
X i(t), i = 1, . . . , n.

Applying the Laplace transform to the linear system (7.3) and (7.5), we obtain the
system in dual variable s:

sÛ + (Df(ūi) − xI)Ûx = ĝ(x, s) + h(x),(7.6)

[Df(ūi) − xiI]Û(xi+, s) − [Df(ūi−1) − xiI]Û(xi−, s) = 0, mod (∆ui).(7.7)

Condition (H1) implies that in (xi, xi+1), Df(ūi) has n real eigenvalues/eigenvectors
νj(ū

i) and rj(ū
i). Let

U i(x) =
∑

j

ui
j(x)rj(ūi), where U i(x) := U(x) for x ∈ Ri.

On each Ri, (7.6) reduces to a system on ui
j(x), j = 1, . . . , n which can be solved

by integration factors. Using (7.2), it is easy to show that the homogeneous part of
the reduced system has an algebraic dichotomy in each Ri with the power <s. See
[24, 26].

We look for Û(x, s) in the weighted L2 space L2
η, η ∈ R, defined as follows:

‖U‖L2
η

:=

(
n∑

i=0

n∑

j=1

‖ui
j‖2

)1/2

, where

‖ui
j‖ :=

(∫

Ri

∣∣(x − νj(ū
i)
)η

ui
j(x)

∣∣2 dx

|x − νj(ūi)|

)1/2

.

Assume η > 0. Then as x → ±∞, u0
j(x) and un

j (x) decay to 0 algebraically of order
|x − νj |−η.

The next is to fit the solutions ui
j on Ri according to the jump conditions (7.7).

It has been shown that the system for Û(x, s) can be solved if we assume that the
determinant d(s) of a characteristic matrix is nonzero. On the other hand the zeros
of the characteristic equation d(s) = 0 correspond to the eigenvalues of the linear
system [21, 24, 26].

Sufficient conditions for the stability of the Riemann solutions have been studied
by many authors [34, 19, 20, 21] in BV and L1 norms. We look for conditions that are
sufficient and necessary for the stability of Riemann solutions. By using the algebraic
dichotomy, it is shown in [26] that

(1) in the space L2
η, the linear variational system generates a C0 semigroup T (t), t ≥

0. If U(0) = U0, then the solution of the initial value problem can be expressed as:

U(·, t) = T (t)U0 +

∫ t

0

T (t − s)g(·, s)ds.

(2) We say σ0 is the coordinate of a resonance line if

inf
ω
|d(σ0 + iω)| = 0.
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The largest real parts of the eigenvalues and the coordinates of the resonance lines,
denoted by Γ, is finite.

(3) If γ > Γ and g(t) = O(eγt) then U(t) = O(eγt).
The concept of resonance lines, defined in [26], is related to the pseudo-eigenvalues

and the Gearhart-Prüss Theorem on the growth rate of C0 semigroups on Hilbert
spaces. The growth rate in (3) is optimal, cf. [36, 5].

8. Conservation laws with Dafermos type viscous regularization

Consider the Riemann solutions in similarity coordinates as in (7.1):

ut + f(u)x − xux = 0, u : R → Rn, x, t ∈ R.

Assume that f ∈ C3(Rn) with bounded derivatives. If a diffusion term εuxx is added
to the system,

(8.1) ut + f(u)x − xux = εuxx,

the resulting system is equivalent to the Dafermos regularization in the original vari-
able (X, T ),

uT + f(u)X = εTuXX .

For (8.1), Schecter and Szmolyan proved that for small ε, structurally-stable, classical
Riemann solutions which consist of n rarefaction and Lax shock waves have Riemann-
Dafermos solutions u(x, ε) nearby [35]. The proof of these results uses geometric
singular perturbation theory [13]. It is known that linearized system around u(x, ε)
of (8.1) generates an analytic semigroup in the space of super-fast decay functions,

u = O(e−αx2

), cf. [23]. However, such function space excludes solutions that decay to
zero algebraically in x. As seen in §7, such solutions naturally occur when studying
linearized system near a Riemann solution in similarity coordinates.

In this section a stronger regularization term will be added to (7.1),

(8.2) ut + f(u)x − xux = ε(1 + x2)uxx,

so that its the linear variational system can generate an analytic semigroup in the
space of algebraic decay functions.

System (8.2) has some similar properties to (8.1). Suppose ū(x) is a structurally-
stable [31], classical Riemann solution to (7.1) which consists of rarefaction and Lax
shock waves. Then for small ε, system (8.2) has regularized smooth solution uε(x)
nearby. The method of proof is similar to that used by schecter [32] that treats Dafer-
mos regularization of Riemann solutions of conservation laws consisting of shocks, and
will not been given here. Assuptions on uε will be specified shortly. Equation (8.2)
will be called a Dafermos type regularization since the stationary solutions of which
correspond to similarity solutions u = u(X/T ) in the original coordinates (X, T ).

The purpose of introducing uε is to provide a tool for studying the nonlinear sta-
bility of the Riemann solutions of the conservation laws. While the linear stability
is completely solved by the spectrum method, the semigroup T0(t) obtained in [26]
only maps L2

η to L2
η. It is not smooth enough to handle nonlinear terms. For exam-

ple variation of constant formulas cannot be used to write integral equations for the
solutions of the nonlinear conservation laws. On the other hand, if the semigroup
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Tε(t) generated by the linear variational system of (8.2) is analytic, it has enough
smoothness to handle nonlinear problems. In particular, the variation of constant
formula works and many dynamical systems tool can apply.

For any 0 < θ0 < π and a ∈ R, let

Σ(θ0) = {λ ∈ C : | arg(λ)| ≤ θ0},
Σ(θ0) + a = {λ ∈ C : | arg(λ − a)| ≤ θ0}.

We call a linear operator A in a Banach space X a sectorial operator if it is a closed,
densely defined operator, and there exist some M ≥ 1 and a ∈ R such that

(i) for some π/2 < θ0 < π and a ∈ R, {Σ(θ0) + a} ∩ {λ 6= a} ⊂ ρ(A);
(ii) there exists a constant M such that

‖(λ − A)−1‖ ≤ M

|λ − a| for λ ∈ Σ(θ0) + a, λ 6= a.

A necessary and sufficient condition for Tε to be an analytic semigroup is that its
infinitesimal generator is a sectorial operator in appropriate function spaces. See
[8, 11, 29] for reference of the sectorial operators and related analytic semigroups.

According to Hale and Lunel [10], page 278, an eigenvalue of a closed linear operator
T on a Banach space is called a normal eigenvalue if it is an isolated point of the
spectrum of T , and the corresponding generalized eigenspace is finite dimensional. A
normal point of T is either a normal eigenvalue or a resolvent point of T .

Let µ < 0 be a constant independent of ε. In the space u ∈ Ĥµ(R), define Aε to be
the linear variational operator of (8.2):

Aεu := ε(1 + x2)uxx + xux − Df(uε)ux − Df(uε)xu,

where

D(Aε) := {u|u ∈ Ĥµ, ux ∈ Ĥµ−1, uxx ∈ Ĥµ−2}.
We would like to show:

(1) that Aε is a sectorial operator in Ĥµ(R);
(2) in the complex plane, the region <s ≥ −η, η > 0 consists of normal points

only, i.e., if s is in that region, then either s is a normal eigenvalue or a
resolvent point for the operator Aε, ;

(3) the eigenvalues of Aε either come from the Riemann solutions of the conser-
vation laws (slow eigenvalues) or from the traveling waves that approximate
shocks (fast eigenvalues); and

(4) solutions of the initial value problem for the hyperbolic conservation laws are
limits of the solutions of the initial value problems of (8.2) as ε → 0.

If we can prove (1)-(4), and if the viscous shock waves uε → u0 as ε → 0, then
the limit u0 is a weak solution to the conservation laws. If the solutions uε are
nonlinearly stable, so is u0. The approach outlined above provides a new method to
study nonlinear stability of the Riemann solutions based on its linear stability.

Only parts (1) and (2) will be proved in this paper. The convergence of viscous
solutions to Riemann solutions has only been proved recently [3]. Much stronger
assumptions will be needed to prove (3) and (4) and the proofs are likely to be
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difficult. But to prove (1) and (2), the assumptions used in this section are rather
weak:

(H): System (8.2) has a solution uε ∈ C3(R) that satisfies

|uε| ≤ C1, |uε
x| ≤ C2/ε, ε → 0.

(HH): There exists N > 0 such that the Riemann solution ū(x) of (7.1) is constant
if |x| ≥ N : ū(x) = u`, if x ≤ −N and ū(x) = ur if x ≥ N . Moreover, for |x| ≥ N , the
Riemann solution is strictly hyperbolic and the regularized solution uε(x) satisfies

|uε − ū| ≤ C1ε, |uε
x| ≤ C2, as ε → 0.

For σ0 > 0, define the following region in the complex plane:

P(σ0) = {σ + iω : σ ≥ (σ0) − ω2/(4σ0)}.

Lemma 8.1. Let τ = σ+ iω, z = x+ iy be two complex numbers with
√

τ = z, where
σ ≥ 0 and the principal value of the square root is used. Then

(1) for any M > 0, if τ ∈ P(M2), then <√τ ≥ M . See Fig. 8.1.
(2) For any 0 < θ < π/2, if z ∈ Σ(θ), then <(z) ≥ cos(θ)|z|.
(3) For any M > 0 if τ ∈ P(M2) ∩ Σ(2π/3), then

(8.3) <(
√

τ − M/2) ≥ 1

4
|
√

τ − M/2|.

M

2MP(     )

2O M σ

ω σ=
ω

σ

C A

T

R

B

Q

π/3

N P

MM/2O

Figure 8.1. The first figure shows if τ ∈ P(M2), then <√τ ≥ M .
The second figure illustrates the proof of (3).

(4) If <s ≥ −η for some η > 0, then for any b > 0,

<
√

b2 + εs − b

ε
≥ −η

2b
+ O(ε).

Proof. Proof of (3): Since
√

τ ∈ Σ(π/3), the points of
√

τ are in the region right to the
path APQB where OP = M/ cos(π/3) = 2M . See Fig. 8.1. After shifting to the left
by M/2 the points are in the region to the right of the path CNRT where ON < 2M .
The sector CNRT is contained in Σ(θ) with cos(θ) > (M/2)/(2M) = 1/4.
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Proof of (4): If ε is sufficiently small, then b2 − εη > 0. Since <εs ≥ −εη, from part
(1) of this lemma, we have

<
√

b2 + εs ≥
√

b2 − εη = b − εη

2b
+ O(ε2η2).

The estimate in (4) follows from this. �

8.1. Aε is sectorial in Ĥµ(R). In this subsection, we assume that hypothesis (H) is
satisfied. For the point s, we assume that

M ≥ 1 and τ = εs ∈ P(M2) ∩ Σ(2π/3).

Then from Lemma 8.1, <√εs ≥ M, |εs| ≥ M , and (8.3) hold. The resolvent equation
Aεu − su = g becomes

ε(1 + x2)uxx + (xI − Df(uε))ux − (D2f(uε)uε
x)u − su = g(x),(8.4)

uxx −
su

ε(1 + x2)
=

g(x)

ε(1 + x2)
− xux

ε(1 + x2)
+

Df(uε)ux + (D2f(uε)uε
x)u

ε(1 + x2)
.

Define the n-dimensional vector valued functions:

u± := ux − λ±(x)u ∈ Ĥµ−1,

where λ±(x) =
±√

εs

ε
√

1 + x2
.

Then ux =
1

2
(u+ + u−),

and u =
ε
√

1 + x2

2
√

εs
(u− − u+).(8.5)

Observe that ∂x(
1√

1+x2
) = −x

(1+x2)3/2 . Therefore

u±
x ±

√
εs

ε
√

1 + x2
u± = uxx −

su

ε(1 + x2)
±

√
εs

ε

xu

(1 + x2)3/2

=
g(x)

ε(1 + x2)
− xux

ε(1 + x2)
±

√
εs

ε

xu

(1 + x2)3/2
+

Df(uε)ux + (D2f(uε)uε
x)u

ε(1 + x2)
.

Expressing (ux, u) by (u+, u−) and observe that uε
x = O(1/ε), we have

| xux

ε(1 + x2)
| + |

√
εs

ε

xu

(1 + x2)3/2
| + |Df(uε)ux + (D2f(uε)uε

x)u

ε(1 + x2)
|

≤ C

ε
√

1 + x2
(|u+| + |u−|).

System for (u+, u−) can be written as a system of 2n equations:

(8.6)

(
u+

u−

)′
= (A(x, s) + B(x, s))

(
u+

u−

)
+

(
f(x)/

√
1 + x2

f(x)/
√

1 + x2

)
,
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where (u+, u−) ∈ Ĥµ−1, both sides are evaluated in Ĥµ−2 and

A(x, s) = diag(−
√

εs

ε
√

1 + x2
, . . . ,−

√
εs

ε
√

1 + x2
,

√
εs

ε
√

1 + x2
. . . ,

√
εs

ε
√

1 + x2
),

|B(x, s)| ≤ k

ε
√

1 + x2
, for some k > 0, f(x) =

g(x)

ε
√

1 + x2
.

It is easy to see that (u+′, u−′)τ = A(x, s)(u+, u−)τ has an algebraic dichotomy with
the power

β =
<√εs

ε
≥ M

ε
.

We have shown that |B(x, s)| ≤ δ/
√

1 + x2 with δ = k/ε for some k > 0. Using
Theorem 2.3, if M is sufficiently large, then (8.6) has an algebraic dichotomy with
the power

β̃ =
<√εs

ε
− M

4ε
.

More specifically, as in Theorem 2.3, let

C1 =
2K

M/(4ε)
, C2 =

2K2

(M/(4ε))(1 − C1k/ε)
.

If we choose M to be sufficiently large so that C1k/ε < 1/2. Then the condition
C1δ < 1 is satisfied. Also

C2δ ≤ 4δK2

M/(4ε)
< 1,

if M is sufficiently large. By Theorem 2.3 has an algebraic dichotomy with the
power β̃ ≥ 3M/(4ε). Moreover, we can choose M > 0 sufficiently large so that the

projections P̃ (x, s) − P (x, s) = O(1/M) can be arbitrarily small. The constant K̃ is
uniformly bounded with respect to large M and small ε.

Theorem 8.2. Assume the hypothesis (H), then there there exists a sufficiently large
M > 0, independent of ε such that if εs ∈ P(M2) ∩ Σ(2π/3), then the resolvent

equation (8.4) has a unique solution u ∈ Ĥµ with

‖u‖ bHµ
≤ C

|s − M2/(4ε)
‖g‖ bHµ

, where εs ∈ P(M2) ∩ Σ(2π/3).

Aε is sectorial where the sector is O(1/ε) from the origin of the complex plane.

Proof. Since g ∈ Ĥµ, then f(x) = g(x)/ε
√

1 + x2 ∈ Ĥµ−1, with

‖f‖ bHµ−1
≤ 2

ε
‖g‖ bHµ

.

Since µ is independent of ε, M/(4ε) > |µ − 1| if ε > 0 is sufficiently small. Then

(6.12) in Theorem 6.3 applies to this system because β̃ > |µ − 1|. There exists a

unique solution u± ∈ Ĥµ−1. It follows from (8.5) that u ∈ Ĥµ.
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We now track the coefficients of the inequalities involved. By (6.12),

‖u±‖µ−1 ≤
2(K1 + K2)

β̃ − |µ − 1|
‖f‖µ−1

≤ 4(K1 + K2)

ε(β̃ − |µ − 1|)
‖g‖µ.(8.7)

Since ε|µ − 1| ≤ M/4, then by Lemma 8.1,

4(K1 + K2)

ε(β̃ − |µ − 1|)

≤ 4(K1 + K2)

<√εs − M/4 − M/4

≤ 16(K1 + K2)

|√εs − M/2| ,

≤ 16(K1 + K2)|
√

εs + M/2|
|εs − M2/4| .

Using |√εs| ≥ M , we have

‖ε
√

1 + x2

2
√

εs
u±‖µ ≤ Cε

|√εs|‖u
±‖µ−1

≤ Cε|√εs + M/2|
|√εs||εs − M2/4|‖g‖µ

≤ C

|s − M2/(4ε)
‖g‖µ.

From (8.5), we have

‖u‖ bHµ
≤ C

|s − M2/(4ε)
‖g‖ bHµ

, where εs ∈ P(M2) ∩ Σ(2π/3).

�

Note that s is outside a disk of radius O(M2/ε). This is consistent with the fact
that some eigenvalues that correspond to eigenfunctions whose support are near the
shocks are of O(1/ε).

8.2. The region <s ≥ −η consists of normal points. In this subsection, we
assume that the hypothesis (HH) is satisfied. Assume <s ≥ −η for a constant η > 0.

The resolvent equation Aεu− su = g can be expressed as a second order system of
equations:

uxx +
xI − Df(uε)

ε(1 + x2)
ux −

su

ε(1 + x2)
=

g(x)

ε(1 + x2)
+

(D2f(uε)uε
x)u

ε(1 + x2)
.
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The equation is typically written as the first order system of equations using (u, v =
ux) as the phase variables in R2n,

(8.8)

ux = v,

vx = −xI − Df(uε)

ε(1 + x2)
v +

su

ε(1 + x2)
+

(D2f(uε)uε
x)u

ε(1 + x2)
+

g(x)

ε(1 + x2)
.

A better way to rewrite the second order equation into a first order system is to
use the method of frozen coefficients. Due to the strict hyperbolicity, in (−∞,−N)
and (N,∞), Df(ū) has n eigenvalues νj(x) associated with the left/right eigenvectors
(`j, rj), where `j is a row vector and rj is a column vector. Then (u, g) can be written
in coordinate forms:

Df(ū)rj = νjrj, `jDf(ū) = νj`j , `jrk = δjk,

u =
∑

j

uj(x)rj(x), g =
∑

j

gj(x)rj(x),

`ju = uj, `jv = ujx, `jg = gj .

In the regions (−∞, x1) and (xn,∞) where ū(x), νj(x) and rj(x) are constants, define

bj(x) =
x − νj

2
√

1 + x2
,

u±
j = ujx − λ±

j (x)uj, where λ±
j =

−bj(x) ±
√

b2
j (x) + εs

ε
√

1 + x2
,

then ujx =
λ+

j u−
j − λ−

j u+
j

λ+
j − λ−

j

,

and uj =
u−

j − u+
j

λ+
j − λ−

j

=
ε
√

1 + x2

2
√

b2
j (x) + εs

(u−
j − u+

j ).

We have the following system for (u+
j , u−

j ), j = 1, . . . , n:

(Dx − λ∓
j )u±

j = ujxx +
x − νj

ε(1 + x2)
ujx −

s

ε(1 + x2)
uj − Dxλ

±
j (x)uj

=
gj(x)

ε(1 + x2)
+ `j(

Df(uε) − Df(ū)

ε(1 + x2)
ux + (

(D2f(uε)uε
x)

ε(1 + x2)
− Dxλ

±
j (x))u).

System for (u+
j , u−

j ), j = 1, . . . , n, can be rearranged as

(8.9)

u+
jx = λ−

j u+
j +

∑

k

(bk+
j+u+

k + bk−
j+u−

k ) + fj(x)/
√

1 + x2,

u−
jx = λ+

j u−
j +

∑

k

(bk+
j−u+

k + bk−
j−u−

k ) + fj(x)/
√

1 + x2.
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where fj(x) =
gj(x)

ε
√

1+x2
, and the small terms are defined as

∑

k

(bk+
j±u+

k + bk−
j±u−

k ) = `j(
Df(uε) − Df(ū)

ε(1 + x2)
ux + (

(D2f(uε)uε
x)

ε(1 + x2)
− Dxλ

±
j (x))u),

where u =
∑

j ujrj , ux =
∑

j ujxrj, and then expressing (uj, ujx) by u±
j .

Lemma 8.3. If |x| ≥ N , and ε is sufficiently small, then

bk±
j± = O(

1√
1 + x2

).

Proof. It is straight forward to check that if x ≤ x1 − 1 or x ≥ xn + 1 then |uε
x| is

uniformly bounded with respect to ε and x.

Note that |Dxbj(x)| ≤ C

1 + x2
, |Dxλ

±
j (x)| ≤

C|
√

b2
j + εs|

ε(1 + x2)
,

|(D
2f(uε)uε

x)

ε(1 + x2)
− Dxλ

±
j (x)| ≤

C|
√

b2
j (x) + εs|

ε(1 + x2)
,

|
∑

j

ujrj| ≤ C
∑

j

ε
√

1 + x2

|
√

b2
j + εs|

(|u+
j | + |u−

j |).

Thus |`j(
(D2f(uε)uε

x)

ε(1 + x2)
− Dxλ

±
j (x))u| ≤ C√

1 + x2

∑

j

(|u+
j | + |u−

j |).

Note that |Df(uε) − Df(ū)| ≤ Cε, |
∑

j

ujxrj | ≤
∑

j

(|u+
j | + |u−

j |).

Thus |`j
Df(uε) − Df(ū)

ε(1 + x2)
ux| ≤

C

1 + x2

∑

j

(|u+
j | + |u−

j |).

The desired result follows from the above estimates. �

Define the 2n-vector valued functions:

U(x) = (u+
1 (x), . . . , u+

n (x), u−
1 (x), . . . , u−

n (x))τ ,

F(x) = (f1(x), . . . , fn(x), f1(x), . . . , fn(x))τ .

Define the n × n matrices:

B+
+ = {bk+

j+}n
j,k=1, B

−
+ = {bk−

j+}n
j,k=1, B

+
− = {bk+

j−}n
j,k=1, B

−
− = {bk−

j−}n
j,k=1.

Define the 2n × 2n matrices:

A(x, s)2n×2n = diag(λ−
1 , . . . , λ−

n , λ+
1 , . . . , λ+

n ),

B(x, s)2n×2n =

(
B+

+ B−
+

B+
− B−

−

)
.
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System (8.9) can be expressed as

(8.10) Ux = (A(x, s) + B(x, s))U +
1√

1 + x2
F(x).

In (8.10), both U and F are in (Ĥµ−1)
2n.

Lemma 8.4. Assume that (HH) is satisfied, <s ≥ −η for a constant η > 0, and N
is sufficiently large. Then system (8.10) has algebraic dichotomies in (−∞,−N ] and

[N,∞) respectively. More specifically, if ‖B(x, s)‖ ≤ C̃/
√

1 + x2 (Lemma 8.3), and if

K is the constant for the dichotomies of U ′ = A(x, s)U , then for any constants γ̃+, δ̃+

satisfying

γ̃+ + 1 = −η − 4K2C̃, δ̃+ − 1 = − 1

2ε
+ 4K2C̃,

if ε is sufficiently small, then system (8.9) has an algebraic dichotomy on [N,∞) with

the powers 0 > γ̃+ > δ̃+.
Similarly, for any constants γ̃−, δ̃− satisfying

γ̃− + 1 =
1

2ε
− 4K2C̃, δ̃− − 1 = η + 4K2C̃,

if ε is sufficiently small, then system (8.9) has an algebraic dichotomy on (−∞,−N ]

with the powers 0 < δ̃− < γ̃−.

Proof. Let N > 0 satisfy −N < x1 − 1, N > xn + 1. When B(x, s) = 0, it is easy to
see that the uncoupled system

u+
jx − λ−

j u+
j = 0, , u−

jx − λ+
j u−

j = 0,

has the asymmetric algebraic dichotomies on (−∞,−N ] and [N,∞) respectively. We
give estimates on the powers δ < γ of the dichotomies.

First, consider the region x ≥ N . The solutions for u−
jx − λ+

j u−
j = 0 satisfy

|u(x)/u(y)| = exp(<
∫ x

y

√
b2
j (ξ) + εs − bj(x)

ε
√

1 + ξ2
dξ), N ≤ y ≤ x.

If |x| → ∞, then |bj(x)| → 1/2. Thus if N is sufficiently large, inf |x|≥N |bj(x)| > 0.
For a fixed N , b2

j > εη if ε is sufficiently small. From part (4) of Lemma 8.1, we have,

(<
√

b2
j (ξ) + εs − bj(x))/ε ≥ −η/(2bj) + O(ε),

2bj = 1 + O(1/
√

1 + x2),
−η

2bj
= −η + O(

η√
1 + x2

).
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Then there exists K ≥ 1 such that,

|u(x)/u(y)| ≥ exp(

∫ x

y

−η/(2bj) + O(ε)√
1 + x2

)

≥ exp(

∫ x

y

−Cη

1 + x2
dξ)exp(

∫ x

y

−η + O(ε)√
1 + x2

dξ)

≥ K−1

(
a(x)

a(y)

)γ

, where γ = −η + O(ε).

Similarly, the solutions for u+
jx − λ−

j u+
j = 0 satisfy

|u(x)/u(y)| = exp(<
∫ x

y

−
√

b2
j (ξ) + εs − bj(x)

ε
√

1 + ξ2
dξ), N ≤ y ≤ x

From 2bj(x) = 1 + O(1/
√

1 + x2), we have

− bj(x) −
√

b2
j (x) − εη = −2bj + O(ε)

= −1 + O(ε) + O(
1√

1 + x2
) ≤ −1

2
,

if ε is sufficiently small and N is sufficiently large. Then,

|u(x)/u(y)| ≤ exp(

∫ x

y

−1/2

ε
√

1 + x2
dξ)

≤
(

a(x)

a(y)

)δ

, where δ = −1/(2ε).

We have shown that for x ≥ N , the uncoupled system has a pseudo algebraic
dichotomy with the powers

γ = −η + O(ε), δ = −1/(2ε).

Recall that ‖B‖ ≤ C̃/
√

1 + x2. If ε is sufficiently small, then

γ − δ =
1

2ε
− η + O(ε) > 8K2C̃.

Let γ̃+, δ̃+ be two constants such that

γ̃+ + 1 = −η − 4K2C̃, δ̃+ − 1 = − 1

2ε
+ 4K2C̃.

Then γ̃+ > δ̃+ if ε is small. From Corollary 2.6, system (8.9) has an algebraic

dichotomy on [N,∞) with the powers 0 > γ̃+ > δ̃+.
The proof for the case x ∈ (−∞,−N ] is similar to that of x ∈ [N,∞). �

The variables u±
j (x, s) in U(x, s) do not extend smoothly to x ∈ [−N, N ] since

bj(x), `j(x) and rj(x) have sharp jumps across x = xi, the position of a shock for the
hyperbolic conservations laws.

We could extend the dichotomies to |x| ≤ N by using (u, v) variables. However,
a careful examination of the change of variables from U to (u, v) reveals that the
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growth/decay power of v is one unit smaller than that of u. This actually works since

the weights on u and v are different, u ∈ Ĥµ and v ∈ Ĥµ−1. But the whole process
would be too complicated to carry out since the estimates in §2 and §6 do not apply
directly to (8.8).

Define the new phase variable w = u/
√

1 + x2 and consider the system in (w, v):

(8.11)

(
√

1 + x2w)x = v,

vx = −x − Df(uε)

ε(1 + x2)
v +

sw

ε
√

1 + x2
+

(D2f(uε)uε
x)w

ε
√

1 + x2
+

f(x)√
1 + x2

,

where f(x) = g(x)

ε
√

1+x2
∈ (Ĥµ−1)

n and (w, v) ∈ (Ĥµ−1)
n × (Ĥµ−1)

n.

Lemma 8.5. System (8.11) has algebraic dichotomies in (−∞,−N ] and [N,∞).
Moreover, the powers of the dichotomies are the same as those for system (8.10):

δ̃+ < γ̃+, δ̃− < γ̃−.

Proof. We will drop ε for simplicity if no confusion should arise. First, recall that
U(x) = (u+

1 , . . . , u+
n , u−

1 , . . . , u−
n )τ is a 2n-vector. The variables (w, v) and U are

related by

U = J(x, s)

(
w
v

)
, where J(x, s)2n×2n =




−
√

1 + x2λ+
1 `1 `1

. . . . . .

−
√

1 + x2λ+
n `n `n

−
√

1 + x2λ−
1 `1 `1

. . . . . .

−
√

1 + x2λ−
n `n `n




.

(
w
v

)
= J(x, s)−1U, J(x, s)−1 =

(
r1, . . . , rn 0n, . . . , 0n

0n, . . . .0n r1, . . . , rn

)
S,

where S2n×2n consists of 4 block matrices each of them is diagonal:

S2n×2n =




. . . 0 0
. . . 0 0

0 −1√
1+x2(λ+

j −λ−

j )
0 0 1√

1+x2(λ+

j −λ−

j )
0

0 0
. . . 0 0

. . .
. . . 0 0

. . . 0 0

0
−λ−

j

λ+

j −λ−

j

0 0
λ+

j

λ+

j −λ−

j

0

0 0
. . . 0 0

. . .




Observe that for a fixed (s, ε), both J(x, s) and J(x, s)−1 are uniformly bounded
for x ∈ R. Therefore, the change of variables is a homeomorphism:

(w, v) → U, Ĥµ−1 × Ĥµ−1 → Ĥµ−1 × Ĥµ−1.

Let the evolution operator for (8.10) be T(x, y, s) and the projections to stable
and unstable subspaces be P(x, s) and Q(x, s) respectively. for system (8.11), the
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evolution operator T (x, y, s) and projections to stable and unstable subspaces, P (x, s)
and Q(x, s), are related to those of (8.10) by:

T (x, y, s) = J−1(x, s)T(x, y, s)J(y, s),

P (x, s) = J−1(x, s)P(x, s)J(x, s),

Q(x, s) = J−1(x, s)Q(x, s)J(x, s).

This shows that system (8.11) has algebraic dichotomies in (−∞,−N ] and [N,∞)
respectively. �

For (8.11), we can extend the dichotomies in |x| ≥ N to R±. If −N ≤ x < 0, let

P (x, s) = T (x,−N, s)P (−N, s)T (−N, x, s),

Q(x, s) = T (x,−N, s)Q(−N, s)T (−N, x, s),

while if 0 < x ≤ N , let

P (x, s) = T (x, N, s)P (N, s)T (N, x, s),

Q(x, s) = T (x, N, s)Q(N, s)T (N, x, s).

P (0±, s), Q(0±, s) are defined as one-sided limits from x > 0 or x < 0 respectively.
It is easy to verify that the projections defined above extend the dichotomies from
(−∞,−N ] and [N,∞) to (−∞, 0] and [0,∞) respectively. The powers of extended
dichotomies remain the same. Although the constant K depends on (s, ε) and can be
large, it has no negative effect in this subsection.

Now let µ < 0 be a fixed constant that is independent of ε such that

µ − 1 < γ̃+, δ̃− < −(µ − 1).

If ε is sufficiently small, then

δ̃+ < µ − 1 < γ̃+, δ̃− < −(µ − 1) < γ̃−.

We show in the space Ĥµ−1×Ĥµ−1, if <s ≥ −η, then s is either a normal eigenvalue
or a resolvent point for Aε.

For (8.11), the principal matrix solution T (x, y; s, ε) (previously, T (x, y, s) for sim-
plicity) depends on the parameter (s, ε) and is analytic in s in the region <s ≥ −η.
We will show that it is possible to choose the projections P (x, s, ε) and Q(x, s, ε)) of
the algebraic dichotomies on R± so that they are analytic in s as well.

Let

φ1(x, s, ε), φ2(x, s, ε), . . . , φn(x, s, ε)

be a basis for the space RQ−(x, s, ε) and let

φn+1(x, s, ε), φn+2(x, s, ε), . . . , φ2n(x, s, ε)

be a basis for the space RP+(x, s, ε).
Define the 2n × 2n characteristic matrix Φ(s, ε) as

Φ(s, ε) :=

(φ1(0
−, s, ε), φ2(0

−, s, ε), . . . , φn(0−, s, ε), φn+1(0
+, s, ε), φn+2(0

+, s, ε), . . . , φ2n(0+, s, ε)).
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We call e(s, ε) := det Φ(s, ε) the characteristic function, and e(x, ε) = 0 the charac-
teristic equation.

Theorem 8.6. Assume the hypothesis (HH) is satisfied. There exists ε0 > 0 such
that if 0 < ε < ε0, then it is possible to define those basis functions so that Φ(s, ε)
is analytic in s in the region <s > −η. Then for a give (s0, ε) with <s0 ≥ −η and
0 < ε < ε0, there are two possible cases:

(1) The characteristic function e(s0, ε) 6= 0 which is equivalent to

RQ(0−, s0, ε) ∩RP (0+, s0, ε) = {0}.

In this case, s0 ∈ ρ(Aε). And (sI −Aε)−1 is analytic in a neighborhood of s0,
(2) The characteristic function e(s0, ε) = 0. This is equivalent to

RQ(0−, s0, ε) ∩RP (0+, s0, ε) 6= {0}.

In this case, s0 is an eigenvalue of Aε. Moreover, s0 is an isolated singular point of
σ(Aε) and is also a pole of (sI −Aε)−1 of finite order p. The order p ≤ m where m
is the algebraic multiplicity of s0 as a root of the characteristic equation e(s, ε) = 0.

Proof. For x ∈ (−∞,−N ] and [N,∞), the projections for the dichotomies of the
unperturbed system U ′ = A(x, s)U is analytic in s. From Corollary 2.4, we find
that the projections P(x, s, ε), Q(x, s, ε) for U ′ = (A(x, s) + B(x, s))U are analytic in
s for <s > −η. It is clear that the solution operator T(x, y, s) (drop ε to simplify
the notations) is analytic in s. The change of variables J(x, s), J−1(x, s) are ana-
lytic in s. Thus, for system (8.11), the solution operator T (x, y, s) and projections
P (x, s), Q(x, s) are also analytic in s in (−∞,−N ] and [N,∞) respectively. The
analyticity holds even the domain is extended to R± respectively.

We now choose vectors (b1, b2, . . . bn) as a basis in RQ(0−, s, ε) and (bn+1, bn+2, . . . , b2n)
as a basis in RP (0+, s, ε). Then let

φ1(x, s, ε), φ2(x, s, ε), . . . , φn(x, s, ε) = T (x, 0−, s, ε)(b1, b2, . . . bn), x ≤ 0,

φn+1(x, s, ε), φn+2(x, s, ε), . . . , φ2n(x, s, ε) = T (x, 0+, s, ε)(bn+1, bn+2, . . . , b2n), x ≥ 0.

It should be clear that the characteristic matrix Φ(s, ε) and the characteristic function
e(s, ε) are both analytic in s, as to be proved.

Proof of case 1: If e(s, ε) 6= 0, then the matrix Φ(s, ε) is invertible. For any

g ∈ Ĥµ(R), f(x) = g(x)/(ε
√

1 + x2) ∈ Ĥµ−1, the solution u can be expressed as

n∑

j=1

αjφj(x, s, ε) +

∫ x

−∞
T (x, y, s)P (y, s)

(
0

f(y)

)
dy√
1 + y2

+

∫ x

0

T (x, y, s)Q(y, s)

(
0

f(y)

)
dy√
1 + y2

, x ≤ 0,
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2n∑

j=n+1

αjφj(x, s, ε) +

∫ x

0

T (x, y, s)P (y, s)

(
0

f(y)

)
dy√
1 + y2

+

∫ x

∞
T (x, y, s)Q(y, s)

(
0

f(y)

)
dy√
1 + y2

, x ≥ 0.

We can determine αj, j = 1, . . . , 2n, so that the two values at 0± match.

(α1, . . . , αn)τ = −EnΦ−1(s, ε)

(∫ 0

−∞
T (0, x, s)P (x, s)

(
0

f(x)

)
dx√

1 + x2

+

∫ ∞

0

T (0, x, s)Q(x, s)

(
0

f(x)

)
dx√

1 + x2

)
,

(αn+1, . . . , α2n)τ = (I − En)Φ−1(s, ε)

(∫ 0

−∞
T (0, x, s)P (x, s)

(
0

f(x)

)
dx√

1 + x2

+

∫ ∞

0

T (0, x, s)Q(x, s)

(
0

f(x)

)
dx√

1 + x2

)
,

where En is the projection of a 2n vector to its first n components.
The process described above uniquely determines the bounded inverse

(sI −Aε)−1 : g → f → (w, v) → u, Ĥµ(R) → Ĥµ−1(R) → Ĥµ−1(R) → Ĥµ(R).

Therefore, s is a resolvent point.
Proof of case 2: Let V ∈ RQ(0−, s0, ε)∩RP (0+, s0, ε) be a nonzero vector. Then

(w, v)(x) = T (0, x, s0)V is in Ĥµ−1(R) and is a solution to (8.11) with f =0. Therefore

u =
√

1 + x2w is an eigenfunction in Ĥµ corresponding to the eigenvalue s0.
We have shown that Φ(s, ε) and e(s, ε) are analytic functions in <s > −η. Because

the resolvent set for Aε is nonempty, the zeros for e(s, ε) are isolated points in the
complex plane C ∩ {<s > −η}, that is, the eigenvalues are isolated points. To
show that the eigenvalues are normal eigenvalues, consider a deleted neighborhood of
an eigenvalue s0: O := {s : 0 < |s − s0| < δ}. If δ > 0 is small, then O consists of
resolvent points. From the part one of the proof, we find that formulas for (α1, . . . , αn)
and (αn+1, . . . , α2n) involve Φ(s, ε)−1 which has a pole of finite order at s0. Assume
that m is the order of s0 as a zero of e(s, ε). Then |αj| ≤ C|s − s0|−m.

�

Remark 8.1. At x = 0, w(0, s) = u(0, s)/
√

1 + x2 = u(0, s). The 2n×2n characteristic
matrix Φ(s, ε) and the characteristic function e(s, ε) can be defined by taking basis
vectors from unstable subspaces at x = 0− and stable subspaces at x = 0+ of (8.8).

Remark 8.2. It is known that for boundary value problems of many types of dif-
ferential equations, an eigenvalue is a zero of the characteristic equation and the
dimension of the range of the spectral projection associate to the eigenvalue is equal
to the multiplicity of the root of the characteristic equation. For retarded differential
equations, this result was called “A folk theorem in functional differential equations”
and was proved by Levinger in 1968 [18]. The same result was proved by Lopes,
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Neves and Ribeiro [28], Neves and Lin [27] for systems of hyperbolic equations which,
in various interpretation, include some delay, neutral and difference equations. For
traveling wave solutions of reaction-diffusion equations, the characteristic function is
the Evans function, cf. Evans [7]. See also Jones [12], [9, 15] and Benzoni-Gavage et al
[2]. Although the characteristic function in this paper is related to “standing waves”
rather than traveling waves, it can also be called as an Evanse function, and a similar
“Folk Theorem” should hold with a similar proof. Details will not be discussed in
this paper.
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