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A SHADOWING LEMMA WITH APPLICATIONS TO SEMILINEAR
PARABOLIC EQUATIONS*

SHUI-NEE CHOW,t XIAO-BIAO LIN,t AND KENNETH J. PALMER

Abstract. The property of hyperbolic sets that is embodied in the Shadowing Lemma is of great
importance in the theory of dynamical systems. In this paper a new proof of the lemma is presented, which
applies not only to the usual case of a ditteomorphism in finite-dimensional space but also to a sequence
of possibly noninvertible maps in a Banach space. The approach is via Newton’s method, the main step
being the verification that a certain linear operator is invertible. At the end of the paper an application to
parabolic evolution equations is given.
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1. Introduction. Let f be a diffeomorphism from Rk into itself. Given an initial
point, the iterates off and its inverse generate a sequence of points Xn+l =f(xn). Then
{xn}nz is called the orbit through Xo. A sequence of points {Yn}z is called a
g-pseudo-orbit offiflyn+l -f(Y,)l <-- for all n, where t > 0 is a constant. The Shadowing
Lemma says that if S c Rk is a hyperbolic set for f then for every e > 0 there exists
8 > 0 such that every t-pseudo-orbit (Y,}z in S is e-shadowed by an orbit {x,},z
of f, that is, Ix,-Y,I -< e for all n. This lemma was first stated and proved in Anosov
[1] and Bowen [3] under slightly different conditions. Several different proofs were
given later in Conley [4], Robinson [15], Guckenheimer, Moser, and Newhouse [6],
Ekeland [5], Lanford [10], Shub [16], and Palmer [14].

A g-pseudo-orbit can be thought of as an orbit generated numerically by a
computer. If this orbit is in or near a hyperbolic set for f, the Shadowing Lemma
implies that an orbit for f can be found near such a "noisy" numerical orbit for an
arbitrarily long time. In fact, Hammel, Yorke, and Grebogi [7] showed how we may
apply the ideas of the Shadowing Lemma to prove that "noisy" numerical orbits are
actually near real orbits for a finite but fixed time even in the nonhyperbolic case. In
[12], Palmer showed that the complicated behavior of the orbits of a diffeomorphism
near a transversal homoclinic point can be explained by the sole use of the Shadowing
Lemma. This has been generalized by Blazquez [2] to infinite-dimensional systems
generated by parabolic evolution equations.

When considered abstractly, the problem of finding a shadowing orbit can be
approached by Newton’s method for finding zeros of functions. To see this, let X be
the Banach space of all bounded Rk-valued sequences x {x}nz with the usual sup
norm and define ff:X X by ((x)), =x,,-f(x,,_l), where ((x)) denotes the nth
element of the sequence (x) X. Thus x {x,} is an orbit off if and only if (x) 0
and y {y} is a g-pseudo-orbit if and only if (y)II -< , The Shadowing Lemma says
that iff is hyperbolic and there exists a good approximate ( sufficiently small) solution
y of the equation 0, then there exists a solution x near y.
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548 S.-N. CHOW, X.-B. LIN, AND K. J. PALMER

For an analogue in the continuous time case, consider the abstract ordinary
differential equation in a Banach space X"

(1.1) + Ax f(x, t),

where A is linear and f nonlinear. A typical example of (1.1) is the nonlinear heat
equation. Suppose the real line R is partitioned as R= LJ,z[’,-1, r,] and each
x.(t):[r._l, ’,] X is an approximate solution, that is,

2,,(t) + Ax,(t) f(x, (t), t) + h,(t),

where h.(t) and g, are the error terms. The problem is to find an analogue of the
hyperbolicity condition to guarantee that there exists a solution of (1.1) which, for
each n in Z, is close to x,(t) in the interval

In this paper, we will show that a Shadowing Lemma may be derived using
Newton’s method and that the lemma is applicable to the just-mentioned situation
(see 6). Because of the applications, we will work with C maps in Banach spaces
that are not necessarily ditteomorphisms. In fact, we consider a sequence {f,},z of
mappings rather than a single mappingf We set up the problem abstractly in a Banach
space of sequences and apply a variant of Newton’s method. The key tool is Lemma
3.2 in which we show that a certain linear operator is invertible (in the finite-dimensional
case, this can also be proved by the perturbation theorem for exponential dichotomies
in Palmer [13]). Lin has proved a similar lemma in [11], where the application is to
a problem in ordinary differential equations. Here Lemma 3.2 is proved by an iteration
method, which means, we believe, that it could be implemented on the computer.
Newhouse [6] also used an iteration process but it is rather more involved in that at
each step it uses the intersection of the stable and unstable manifolds.

Finally we should mention that as this paper was being written Walther sent us
the preprint [18] where he proves the Shadowing Lemma for noninvertible maps.
Stoffer [17] has also proved such a theorem. Both of these authors use the methods
of Kirchgraber [9], which are quite different from ours.

2. Definition and statement of the Shadowing Lemma. What we are going to prove
is a "nonautonomous" Shadowing Lemma for a sequence f, :X, X,+l(n Z) of C
maps. Here X, is a Banach space with norm l" Ix,. (or simply l" if no confusion should
arise). Assume S, c X,, n Z, is invariant under f, in the sense that f,(S,)= S,+.
Also we assume that f,(x), Df,(x) are bounded and continuous in a closed z-
neighborhood O, of S, uniformly in x O, and n Z.

We want to define what is meant by saying {S.}.z is hyperbolic. First there is a
splitting into closed subspaces

(2.1) X,,=E(x)E(x)

for x in S,. We require this splitting to be invariant in the sense that

Df.(x)E.(x) E.+,(f.(x)), Df.(x)E,(x) EnU+l(fn(x))

for all x in S., and also continuous; that is, if P.(x) is the projection with range E(x)
and nullspace E".(x), P.(x) is continuous in the operator norm, uniformly with respect
to x S. and n Z. In terms of P.(x), the invariance of the splitting is equivalent to

(2.2) Df,,(x)P,,(x) P.+l(f.(x))Df.(x)

for all x in S,. We also assume that Df,(x):E(x) E+(f,(x)) is an isomorphism
with a (bounded) inverse (Df,(x))-: E+(f,(x)) E(x).
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SHADOWING LEMMA AND PARABOLIC EQUATIONS 549

Second, we require that there exist constants K >= 1, 0=< A < 1 such that for any
finite sequence x., x,.+l =f,n(Xm), Xm+2 =f.+l(X.+l), ", X. =f._l(X._) with Xm Sm
and any integers n => m,

]Dfn(xn)Dfn-(xn-1) Dfm(xm)Pm(xm)l <- KA "-’+1,
(2.3)

]Of.(x.)-Of,+(x+)- Of.(x.)-l(I-P+(X.+l))[ <- KA--,-+1.

Also we assume that IP(x)l--< K, [I-P.(x)]-< K for x S., n Z.
An orbit for {f.}.z is a sequence {x.}.z with x. X. and X.+l =f.(x.) for all

n Z. If 6 > 0 is a constant, a sequence {y.}.z with y. X. is said to be a &pseudo-orbit
for {f.} if

]f.(y.)-y.+l]<=6
for all integers n. A sequence {x.}.z with x. e X. is said to e-shadow {y.}.z, y. e X.,
if

for all n Z.
THE SHADOWING LEMMA. Let {X.}, {f.}, {S.}, n Z, be defined as above and

satisfy all the properties listed above, that is,
(i) S. is invariant under f.;
(ii) There is a closed A-neighborhood On of S. such that fn(x) and Df.(x) are

bounded and continuous uniformly with respect to x in On and n in Z;
(iii) {Sn}.z is hyperbolic.
Then there exists eo > 0 with the property that if 0 < e <-_ eo there is e > 0 such

that if {Yn}, Y. S, is a -pseudo-orbit for {f.} then there is a unique orbit {x.} which
e-shadows {Yn}.

To prove the Shadowing Lemma, we will use some facts about linear ditterence
equations and a variant of Newton’s method for solving nonlinear equations.

3. Facts about linear difference equations. For each integer n let An :Xn --> Xn+l be
a bounded linear mapping. Denote by (n, m)(n >= m) the transition matrix for the
linear difference equation

x,, A,, xn Xn Xn FI Z,(3.1)
that is,

A,., n > m,
P(n, m)

/, n=m.

Equation (3.1) is said to have an exponential dichotomy if there is a projection
valued function P. Xn --> Xn and constants K -> 1, 0-< A < 1 such that

(3.2) alp(n, m)P, P.(n, m) for n_>- m,

(3.3) loP(n, m)P, <= KA for n -> m.

Moreover, it is required that P(n,m):A/’(P,.)-->A/’(Pn) (A/" denotes nullspace) be an
isomorphism. Then for n >= rn we define I,(m, n):AZ(P.)--> A/’(P,.) as the inverse of
P(n, rn) AZ(P. --> A;(P. and require that

(3.4) loP(m, n)(I- P.)I <= KA"-" for n -_> m.

It is clear from the definition of hyperbolicity that the following lemma holds.
LEMMA 3.1. Let {Sn}nz be a hyperbolic set for a sequence fn :X.--> X.+I of C

mappings. Then if {xn } is an orbit of {fn with x. S.for all n, the linear difference equation
u,,=Df(x,,_,)u,,_,
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550 S.-N. CHOW, X.-B. LIN, AND K. J. PALMER

has an exponential dichotomy with projections P, P(x,) and constants K, A, the projec-
tions P(x) and the constants K, h being those defining the hyperbolicity of {S}.

We denote by IIX, the Banach space of bounded sequences x {x,},z, x, s X,,
with norm

Ilxll II{x}ll sup Ixlxo.
nZ

If sup,z IA, < oo, we can associate with the linear difference equation (3.1) the linear
operator L’IIX, --) IIX, defined by

(Lx),=x,-A,_lX,_l.

It turns out that if (3.1) has an exponential dichotomy then L is invertible. Now in
the proof of the Shadowing Lemma we are confronted with a linear difference equation
for which the existence of an exponential dichotomy is not obvious. For this reason
we need the following lemma.

LEMMA 3.2. Assume sup.z IAI < o. For each n Z let Q. be a projection such
that [Q.[ <- K, [I- Q.[ <- K and [Q.+IA.(I Q.)[ _-< , [(I- Q.+)A.Q.[ <- . Suppose also
thatfor all n sZ [A.Q.I<-_A and that (I-Q.+I)A.:W(Q.)--> r(Q.+I) has an inverse B.
with [B.(I-Q.+I)[<-_A. Then if 8KA _<- 1, 88<_- 1 the operator L:IIX. -->IIX. defined by
(Lx). =x.-A._lX._ is invertible with [[L-][ =<2K + 1.

Proof First we show L is onto. To do this we define the linear mapping S :IIX. -->

IIX. by (Sh). Q.h.-B.(I-Q.+)h.+I. Then S is bounded with [[S[[-<K +h and
for all n

I(LSh). h.I IQ,,h,, B,,(I- Q.+l)h.+l- A,_,{Q,,_,h,,_,- B._I(I- Q,,)h.}

I-Bn(I Qn+l)hn+l- An-lQn-lhn- + QnAn-lBn-,(I- Qn)hnl

since (I Q,,)A,,_IB._I(I Q.) I Q.

I-Bn(I Qn+,)hn+l- An-,Qn-lhn-1 + QnAn-I(I- Qn-1)Bn-l(I- Qn)hnl

IB=(I- Q.+,)[ [h.+,[ + [A._,._,[ [h._,[

+ O.A.-,(I 0.-,)11B._,(I (2.)11h.I

A (2 + ) Ilhll

Hence ILLS- III -< 1/2 and so LS has an inverse T with TII--< (1 -ILLS- III)-’ -< 2.
Then ST L is a right inverse of L with

L’ -<- Sll TII --< 2(K + A _-< 2K + 1.

All that remains is to show that L is one-to-one. First note that for all x X,,

I(I- Q,,)xl IB,,(I- Q,,+,)A.(I- Q.)x

<-AI(I-Q.+,)A,(I-Q,)x[

so that

(3.5) I(I Q,,+I)A.(I- Q.)xl >- A-’l(/- Q,,)xl.
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SHADOWING LEMMA AND PARABOLIC EQUATIONS 551

Suppose L is not one-to-one. Then there exists a nonzero bounded sequence {xn}
in IIXn such that xn A._lX.-1 for all n. Suppose that for some n

(3.6) I(I-Q)xl>lQxl.

Then, using (3.5),

I(I- Q/)x/l-IQ/x/zl I(I- Q+I)A,xnl-IQ.+la.x.I

I(I- Q.+)A.(I- Q.)x.I-[(I-

-IQ.+A.Q.xI -IQ.+A.(I- Q.)x.[

A-’I(I O)xI- lxl- KAlxl- lxl
(A-’-4-2KA)I(I-Q.)x.I sincelx.[2l(I-Q.)x.[

71(I-Q)x.I.
This implies that I(I-Q+)x.+l>lQ+x+[ and that [(I-Q+)x.+[

71(I-Q.)x.[. So if (3.6) holds for some n.= m, it holds for all n m and

Ixl g-l(I- Q)xl K-7"-I(I Q)x[

g-7-lxl.

Thus Ix.[ as n , contradicting the boundedness of {x.}.
Hence it must be that IQxl 1(I-Q.)x.[ for all n and then

IQ.+,x.+,l

[Q.+A.Q.x.[ + IQ.+A.(I-

Now there exists some m such that QxO. Then for all nm, Qx
2--]Qx as n -. Again this contradicts the boundedness of {x}. So L
must be one-to-one.

4. Newtoa’s metho for solving nonlinear euatioas. In this section we prove the
following variant of Newton’s method for solving nonlinear equations.

PROPOSITION 4.1. Let X be a Banach space, U X an open subset and " U X
a C mapping. Let y be a point in U such that D(y)- exists and let eo > 0 be chosen
so that

(4.1) llP(x)- P(y)] (2P(y)-’ ][)-’

for IIx-Y o, Then if 0 < e <-_ eo and

(4.2)

the equation

(4.3) (x) =0

has a unique solution x such that IIx-y I[--< .

(y)ll e(211D(y)-’ II)-’,
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552 S.-N. CHOW, X.-B. LIN, AND K. J. PALMER

Proof. We write

(x) ;(y) + D;(y)(x-y)+ (x).
When IIx- yll, IIx- y]l -< eo,

n(x)- n (x=)II- II(x)- (x=)- D(y)(x-

(4.4) N D(x2+ O(x x2) D(y) dO IIx,- x=ll

(2 D(y)- II)- IIx x=ll,
using (4.1).

We can rewrite (4.3) as

x y- D(y)-{(y)+ (x)} := T(x).

For 0< e eo, we define B {x X" Ilx-yll e} and show that T is a contraction
on B. The proposition will then follow immediately from the contraction mapping
principle.

Note first if x B then

T(x)-Yll IID(Y)-{(Y) + w(x)}ll
IID(Y)-’II{e(211D(Y)-II)-’ + (211D(Y)-II)-IIx

=e/2+llx-Yll/2
e/2+e/2= e,

where we have used (4.2) and (4.4) with x x, x2 y. Hence T maps B, into itself.
Moreover if x, x2 B then, using (4.4),

T(x)- T(x=)II IID(y)-{W(x)-
IID(Y)- (211D(Y)-ll)-’llx- x=ll

=1/211x-x211,
Thus T is indeed a contraction on B and the proof is completed.

5. Proof of the Shadowing Lemma. We need three lemmas for the proof.
LEMMA 5.1. Let X be a Banach space and let P, Q" X X be projections such that

lel, IQIK, en if IP- QI < I/2K, the operator J= PQ+ (I- P)(I- O) is invertible
with I1-1 (1-2Kle- Ol)-’. Moreover, J((O)) (P), J((Q)) (P).

Proof

So J is inveaible with I1-1 1 -IJ tl )-’ 1 2Kle Ol )-’. Clearly J (Q)
(P), J((Q))= (P) and equality follows from the inveibility of J. So the proof
of the lemma is complete.

Now by assumption IDf.(x)l is bounded in a closed A-neighborhood O, of S,,
uniformly in x O, and n 6 Z. Let this bound be M. Then

IL(x)-L(y)I MIx- yl
for x S,, y X,, and Ix Yl A. This fact is used in the following two lemmas, which
make precise a statement of Guckenheimer, Moser, and Newhouse [6] that in the
Shadowing Lemma it is enough to shadow a 6-pseudo-orbit for the sequence of
mappings {f,+-i of,+ of,},z.
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SHADOWING LEMMA AND PARABOLIC EQUATIONS 553

LEMMA 5.2. If {y.}.z is a g-pseudo-orbitfor {fn} with Yn Snfor all n, then {Y.k}
is a g(1 + M+...+ Mk-’)-pseudo-orbit for {fnk+k-, fnk+, fnk}.Z"

Proof. We prove by induction that

ly.+,-(fnk+,-, f.k+, fnk)(ynk)l <- g(1 +M +’’" +
for 1 <-- --< k. Since {Yn} is a g-pseudo-orbit, it certainly holds for 1. Assuming it for
i-> 1, we prove it for i+ 1 as follows"

ly.+,+ (fnk+, fnk+l f.k)(Ynk)l
--<--ly.+,+ f.k+,(Ynk+,)l + If.+,(y.+,) fnk+,((f.k+,- f.k)(Y.k))l
<_ + Mly.+,-(f.+,_ f.)(y.)l
_--< g+Mg(l+M+. .+M’-1) g(l+M+. .+M’).

LEMMA 5.3. Let {Yn} be a g-pseudo-orbit for {f.} with y. S., and let {x.} be an
orbit of {f. } such that {X.k}e-shadows {Y.k }, k >- 1 being fixed. Set e, max { e, g }. Then
if e,(1 + M +. +Mk) <- A, {Xn} e,(1 + M +" + Mk)-shadows {y.}.

Proof Note first that

lY.k+l f.(X.)l <= lYnk+l f.(Y.)l + If.(Y.)
<- g + Me <- el(1 + M).

Then we show by induction, as in the proof of Lemma 5.2, that

ly./,-(f./,_l.O.., of.)(x.)l <- e(1 + M +... + M’)
for l<-i<-k.

Proof of the Shadowing Lemma. Let k be a positive integer such that 16K3A k __< 1.
We first prove the Shadowing Lemma for the sequence of maps Fn =fnk/k- fnk
and hyperbolic sets {S.k}. If we define to(r/) sup {IDFn(y) DF.(x)[" x e Snk, Y e X.k,
lY xl--< n. n e Z}. it follows from the uniform continuity and boundedness of Dfn that
to(r/) 0 as r/--> 0. Then we choose eo > 0 so that eo < A and to(eo) -< 1/(4K + 2). Also
if we define o(n)=sup{llP.(y)-P.(x)ll" xS.,yX.,ly-xl<=, nZ} it follows
from the uniform continuity of P(x) that a3(r/)0 as r/0. Then given 0<i<=eo,
we let gl > 0 be such that gl -< A, (4K + 2)g <= g, 8MkKto(gl) --< 1, 4Kto(g) <- 1. (Note:
M is defined before Lemma 5.2.)

Now suppose {)Tn}.z is a g,-pseudo-orbit for Fn with )Tne Snk for all n. We show
the existence of a unique orbit of F. that g-shadows {y.}. First we apply Lemma 3.2
to A. DFn(.n), 0n Png()Tn). For all n, IAI--< Mk, IQI--< K, II- QI--< g. Also by the
hyperbolicity, IA.Q.I<-KX for all n and An(I-Q.)" N(Qn)N(P(n+k(F.(fin))) is
invertible with inverse having norm bounded by KA k. Using the invariance property
of P,,,

IQ.+A.(I- Q.)I I[P(+,)k()Tn+,)- P(.+l)k(Fn(fi.))]An(I- Q)I
-<-to(gl) MkK <- 1/8

and, similarly, I(I- Qn+)AnQ.I -< 1/8. Also since 2Kto(gl) =< 1/2 it follows from Lemma
5.1 that

J. Qn+,P(n+,)k(Fn(Y.))+(I- Q.+,)(I-P(n+,)k(Fn(fi.)))
is invertible with I11-<_ (1 -2K,o())- _-<2 and that J. (c(P.+(F. (y.))) (Q.+).
Hence

(I- Q.+)A.(I- Q.) J.A.(I- Q.)" ;( Q.)--> (Q.+)
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554 S.-N. CHOW, X.-B. LIN, AND K. J. PALMER

is invertible with inverse B, satisfying lB,[ <_-2KA k so that lB,(I-Q,)I <--2K2hk. Thus
the conditions of Lemma 3.2 are satisfied with X, instead of X, and 2K2hk instead
of h. So if we define L: 1-I,=_ X,k I],=_ Xnk by

(Lu), u,-A,_,u,_, u,- DF,_,(y,_)u,_,

L is invertible with IIa-’ll-<_2K / 1.
Let U be the open set in I],_ X,k consisting of those {x,}, x, X,k satisfying

sup, [x. fi, < A. Then we define " U I],=_ X.k by

((x)).=x.-F._,(X._l).
is C with (D(x)h), h, DF,_,(x,_,)h._. L D()( {y,}) is invertible with

IIL-’ll =<2K + 1. Condition (4.1) is satisfied by choice of eo and since II(Y)ll =< ,-<-
/(4K + 2), condition (4.2) is also satisfied with t instead of e. Then it follows from
Proposition 4.1 that there exists a unique {,} in I]._ X,k such that (x)=0
and I1-11 -< . That is, {,} is the unique orbit of {F,} such that ]g. -fi, =< g for all n.

Now let 0 < e =< eo and let 8 correspond to (1 + M +. + Mk)-e. Set ;
(1 + M+. .+ Mk)-8l and let {y,} be a -pseudo-orbit for {f.} with y, e S, for all n.
Then {fi,},z, with y, Y,k, is a 15-pseudo-orbit for {F,} by virtue of Lemma 5.2. So
there exists a unique orbit {,} of {F,} which g-shadows {ft,}. Then we define X,k .,
n Z, and each X,k+, 1 =< =< k- 1, n Z, in the obvious way so that {x,},z is an orbit
for {f,}. It follows from Lemma 5.3 and the fact that max {g, ;} g that {x,}e-shadows
{y,}. {x,} must be unique because {X,k} e-shadows {Y,k} and there is a unique such
orbit because e =< Co.

6. Application to parabolic evolution equations. Consider the following parabolic
evolution equation

(6.1) + Ax f(x, t)
in a Banach space X with norm I" I. Suppose A is a sectorial operator in X (see Henry
[8] for general reference in this section) with Re tr(A) > 0. We can define the fractional
powers As’(As) --> X, 0-< a -< 1, and then X (As), the domain of As, becomes
a Banach space with the graph norm

We also assume that fe CI(X x R, X) and that f and Dxf: X x R--> (Xs, X)
are Lipschitzian in x and locally HSlder continuous in t. Under these conditions the
initial value problem

+ Ax f(x, t), x(to) Xo
has for all (Xo, to)e Xx R a unique solution

x(t; Xo, to)e C([to, T),X) cl((to, r),x)f) C((to, T), (A)),
where to, T) is the maximal interval of existence. We denote the solution map of (6.1)
by T(t, to)(Xo)- x(t; Xo, to).

Let S c X x R be a forward invariant set for (6.1), that is, if (Xo, to)e S then
T(t, to)(Xo) is defined for all ->_ to and (T(t, to)(Xo), t) S. This means that T(t, to)Sto S,
for all t_-> to, where St {x X’(x, t)e S} is the t-section of S. We say S is hyper-
bolic if:

(i) For x e S,, e R, there is a splitting

(6.2) X=E,(x)ET(x)
which is invariant, that is,

DxT( t, to)(x)E ,o(X) E(T(t, to)(X)),
(6.3)

DxT( t, to)(x)E ,o(X) E ’(T( t, to)(X))
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SHADOWING LEMMA AND PARABOLIC EQUATIONS 555

for all x S and t, tour with -> to, and also continuous, that is, if P,(x) is the
projection with range E(x) and nullspace ET(x), Pt(x) is continuous uniformly with
respect to x St, R. We also assume that D,,T(t, to)(X)" E to(X) E’(T(t, to)(X)) is
an isomorphism with (bounded) inverse

(DxT(t, to)(X))-" ET(T(t, to)(X))- Ergo(X).

(ii) There exist constants K _-> 1,/3 > 0 such that for x Sto and t, to R with _-> to,

IDxT(t, to)(x)P(x)le<xo.x.) <= K e-’-’o
(6.4)

I(OxT(t, to)(X))-(I-P,(T(t, to)(X)))lex,x-< g e-’-’o.
Now we want to define pseudosolutions of (6.1). Let U.z[Z.-1, z.]=R be a

partition of R with inf{z.-z._: n Z} z> 0. Then, if is positive, we say the
sequence {x.(t)}, [z.-1, ’.], n Z is a &pseudosolution of (6.1) if for all n

x.(. e C([Z._l, %], X) fq C((%_1, %), X) f-) C((z._,, z.), (A))

and

(6.5) sup {Ih.(t)[: z._ <- .} ,, Ig.[ -< ,
where h. C([r._, z,,], X), defined by

(6.6) h.(t) .(t) + ax.(t)-f(x.(t), t)

is the residual error and

(6.7) g,, =x,,(r,,)-x,,+l(r,,)

is the jump at -..
If e is positive, a solution x(t) of (6.1) is said to e-shadow the 6-pseudosolution

{x.(t)} if x(t) is defined for all and [x(t)-x.(t)l<=e for r._<-t<-r., nZ.
THEOREM 6.1. Let A, X, X, f(t, x) be as above and suppose S= X x R is a

forward invariant hyperbolic set for (6.1) such that f(x, t). and Dxf(x, t) are bounded
and Lipschitz continuous in a A-neighborhood 0 of S in X’x R.

Let {x,,( t)}, %_ =< -< %, n Z, be a 6-pseudosolution of (6.1) such thatfor ’l’n_ <--

7". and n Z, x. t) is in a &neighborhood of St in the X norm.
Then there exist eo > 0 and a positivefunction i( e ), both depending only on A,f "

inf. (-.- z._), such that if 0 < e <-eo and 6 <-6(e), there is a unique solution of (6.1)
that e-shadows {x. (t) }.

For the proof of Theorem 6.1, we need a lemma.
LEMA 6.2. Let the hypotheses of Theorem 6.1 hold and let M be the bound for

xf( t, x) in O. Let x( t) be a solution of (6.1) in S and let y( t) be a solution ofthe initial
value problem

(6.8) fi + ay f(y, t) + h( t), y( to)

for to, to + 2r], where I- X( to)l =< and h C([ to, to + 2z], X) with sup Ih(t)[ <_- .
If (y(t), t) Ofor [to, to+2Z], then there exists a constant C >- 1 depending only on
A and M such that ly(t) x(t)[ <= C6 on [ to, to + 2z].

Proof Our assumptions on A imply the existence of positive constants C1, C2
and a such that for t-> 0

le-atl(x..x ,,) <= C eat, le-a’lse(x,x o) <= Czt e"’.
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556 S.-N. CHOW, X.-B. LIN, AND K. J. PALMER

Now z(t) y(t) x(t) satisfies the integral equation

(t) e-A(’-’(to)+ e-a(’-{f(x(s)+ (S), s)--f(x(s), S)+ h(s)} ds.
o

Then for to -< <- to + 2r,

Iz(t)l,<-_C e’-’o,+ MC2(t-s) e z(s)lds+ C2(t-s) e"’-S)6ds.

It follows from an inequality in Henry [8, Lemma 7.1.1, p. 188] that Iz(t)l < c
for to =< =< to + 2-. The proof is completed.

Proof of Theorem 6.1. The hypotheses on A and f, Lemma 6.2, and Henry [8]
imply that there exists a closed Al-neighborhood O1 of S in Xx R such that for
(x, to) O,, T(t, to)(X) is defined for to -< -< to + 2- and both T(t, to)(X) and D,,T(t, to)(X)
are bounded and continuous, uniformly with respect to (x, to) O1 and [to, to+ 2r].
(These functions have ranges in X and (X, X), respectively, and the continuity
is with respect to these norms.)

Without loss of generality we may assume that 0 =< - -< r, ’,-1 -< 2- for all n. We
first consider the case where h,(t)= 0 and x,(t) S, for all and n. Then if we let
be X for all n and f, be T(r,, r,_l):X X the domain of f, contains a closed
Al-neighborhood of S._, in which f, and Df, are both bounded and uniformly
continuous, uniformly with respect to n Z. From the hyperbolicity of S with respect
to (6.1), we see that {S._,},z is invariant (f,(S._,)c S.) and hyperbolic for
with projections P._,(x) and constants K, e-. Hence conditions (i), (ii), (iii) of the
Shadowing Lemma hold. Set y, x,(r,_,), n Z. Then y, S,._, for all n and

If. (y.)-y.+,] Ix. (’.)- x.+,(r.)] -< 6.

So if0< e _<-e, and 6 <= 61(e) (e, and 6,(e)correspond to eoand 6(e)in the Shadowing
Lemma) there is a unique solution x(t) of (6.1) such that Ix(’.-1)-x.(’._,)],. <--e for
all n.

Now we consider the general case. We suppose 0<e <-Co=1/2 min {A, e,} and
6-<6(e)=min{(2C+l)-’6,(e/2C),e/2C}. Let {x.(.)} be a 6-pseudosolution as in
the statement of the theorem. Since for all n, x.(’._l) is in a 6-neighborhood of S.,,_,,
we can choose y. in S,,_, so that ]x.(r._,)-y.]<-6. Then let g.(t) be the solution of
(6.1) satisfying g.(r._l)=y.. By Lemma 6.2 with to=r._,, x( t) .( t), h( t) h.( t),
y(t)=x.(t) we have

I.(t)-x.(t)l<=C
for ’,-1 -< -< ,. This holds for n Z. Moreover,

(6.9) <- (2C + 1)6 =< 61(e/2C).
Hence {g.(t)} is a 61(e/2C)-pseudosolution of (6.1) with g.(t) St for all and

n, where e/2C < el. It follows from the first part of the proof that there is a unique
solution x(t) of (6.1) such that

(6.10)

for all n. Then for all n

<-e/2C+6.
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SHADOWING LEMMA AND PARABOLIC EQUATIONS 557

By Lemma 6.2 with to ’n-1, x(t) n(t), y(t) x(t) and e/2C + 6 instead of 6 (note"
C(e/2C+)=e/2+C<A), we deduce for z,_<- t<= z,, nsZ that

Ix(t)-x,(t)l <= e/2+ C6 <= e.

That is, x(t) does e-shadow the 6-pseudosolution {x,(t)}.
Let Y(t) be another such solution. Then for all n

I(.-1) .(.-,) --< I(.-,) x.(._,)l + Ix.(._,) z.(._)1
<=e+6<=3e/2<e,

where for all n, using (6.9),

If. (z. (._))- z.+(.)l Iz. (.)- z.+(.)l
<=6(e/2C)

<-_6(3e/2).

(Note: we assume without loss of generality that 6(e) is nondecreasing in e.) That is,
the sequence {Y(z,_l)} is an orbit of {f,} that 3e/2-shadows the 6(3e/2)-pseudo-orbit
{:,(z,_)}, where 3e/2 < e. But by (6.10), {x(z,_)} is another such sequence and so
it follows by uniqueness that Y(-,_I)= x(z,_) for all n. Hence x(t) is unique.
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