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1. INTRODUCTION

One of the most important properties of hyperbolic sets is the pseudo-orbit
property. This is embodied in the shadowing lemma. Many proofs of this
have been given. Here we mention those of Bowen (1975), Conley (1975),
Robinson (1977), Newhouse (1980), Ekeland {1983}, Lanford (1983), Shub
(1987), and Palmer (1988). In Meyer and Sell (1987), a simple analytical
proof was given; however, it seems there is a gap on page 129. The argu-
ment there is not valid unless DF(x) - 1 maps Sx and Ux into complementary
subspaces. Our original motivation was to remedy this. Then we discovered
that our methods could easily be modified to yield a version of the shadow-
ing lemma for a not necessarily invertible map on a Banach space. Full
details of the proofs are to appear in Chow, Lin, and Palmer (198?), and
an application to semilinear parabolic equations is also given there. In -
this paper, we present the proof for diffeomorphisms in finite dimensional

space.

2, DEFINITIONS AND STATEMENT OF THE SHADOWING LEMMA

i

Let f: X > X be a C! mapping of a Banach space X into itself. Let SC X~
be an invariant set, that is, f(S) ¢ S, such that f£{x) and Df(x) are bounded
and uniformly continuwous in a closed -neighborhood 0 of S. We want to
define what is meant by saying that S is hyperbolic. First, there is a

splitting,



.S u .
X = Ex @ EX (1)
for x € 5. We require this splitting to be invariant, that is,

Df(X)(E ) < Ef( ),Df(X)(E ) < f( )

for all x in $ and also continuous, that is, if P(x) is the projection with

range Ei and null space E:, (x) is uniformly continuous. In terms of P(x),

the invariance means that
DEC)P(x) = P(£(x))DE(x) (2)

for all x in S. We also assume that Df(x) EY

u . . -
- Ef(x) 1s an isomorphism
with a bounded inverse (Df(x)}_1

u

f( )~

Second, we require that there exist constants K21, o > 0 such that,
for n = 0,

IDEY(x)P(x) | = Ke P :
n,.-n -1 -an (%)

[ E7 007 (1 - POx))] =< Ke

If 6 is a positive number, a sequence y , n €Z, in X is said to be a

§-oseydi-orbit for f if
G -y a0 <6
for all integers n.

THE SHADOWING LEMMA. Let X, £, 8 be defined as above and satisfy the condi-
tions:
(i) f(X) < s.
(i) f£(x) and Df(x) are bounded and uniformly continuous in a closed g-
neighborhood 0 of S.
(iii) S is hyperbolic.
Then, given ¢ > 0 sufficiently small, there exists § > 0 such that if Y
is a é-pseudo-orbit for f, there is a unique x in X such that

[£°00 -y | s

for all integers n.

REMARK In Chow, Lin, and Palmer (19@7), a more general result for sequences

of mappings is proved. Here, for the sake of simplicity, we have szﬁzgamihe
result for a single mapping.

Also, here we prove the shadowing iemma stated above only for the case
in which X = Rk and f: R? wka is a diffeomorphism. Then f(5) = S and the

second inequality in equation (3) can be rewritten as




IDE ) (T - Px))| = ke 0

The proof given below uses facts about linear difference equations and a

variant of Newton's method for finding the zeros of a function.

3. FACTS ABOUT LINEAR DIFFERENCE EQUATIONS

For each integer n, let Cn be an invertible k x k matrix. The linear dif-

ference equation

k ‘
U = Cu w €R, n €Z) (4}

is said to have an exponential dichotomy if there is a projection-valued

function Pn and constants K= 1, a > 0 such that

@(n,m)Pm = Pné(n,m) for alil n, m, : {5)
le(n,m)P_| = ke (MM gorq 2 m, " (6)
|¢(n,m) (1 - Pm)| = Ke—a(m*n) for m = n (7)

Here ¢{n,m) is the transition matrix for system (4). That is,

r
Cn-lCn-Z"'Cm n>mn
$(n,m) = {1 n=n
{ti)(m,n}_1 n<m

We denote by nmca) the Banach space of bounded Rk—valued sequences

{un}ném with norm

llull = sup |u_|
nez o

and make the following simple observation.

LEMMA For n € Z, let C, be an invertible k x k matrix such that

A

suanZ]Cnl =. Then, if equation (4) has an exponential dichotomy with

constants K, o the operator L:'inZ) > £wGZ) defined by

it

(Lu)n u - Cnun

n+l.
is invertible and : _____,é G

o

il sk - e o e e™ | (8)

Proof: First we show that L is one to one. If Lu = 0, then u, is a bounded

solution of equation (4); that is, for all n



u = @(n,O}uO = @(n,O)PGuU + o(n, 01" - PO)UO

Then, for n > 0,

[ (T = Pugl = [e(0,n)e(n,0)(1 - LSEN

[2(0,0)e(n,0) (1 ~ PO(I - Pylug]

I

|#(0,n) (1 - P 19(n,0)(T - ?o)uet by (5)

A

[200,0) (T - P 31]e(n,0)(1 - P)u,|
< 1$(0,n) (1 - Pn)]{!un| + J@(n,O)pOuOl}

Tl - ke 1} by (6), (7)

tA

Ke
-0 asn =+ e«

Hence, (I - PO)uO = 0. Similarly, we can show Pou0 = 0. Thus, ug = 0 and

u = 0; that is, L is one to one.

To show that L is onto, let h ¢ Em(Z). Then, we set for n € Z,

83 [4=]
u o= ] ®(nmP h - ) e(nm)(I - P )b
=~ m=n+1

Since, for m = n,
[o(n,mpP h | < ke @™ gy
and for m > n,
le(n,m) (I - P )b | = ke ™ (M)

un is well defined and

A

n oo
K”hﬁ{ } g o (m-m) ) e~a(m—n)}

= 0 m=1+ ]

|

oD

Kihj e oiml

m= -

K(1 - e 7 1 « &™) (9

Thus, u = {un}nEz is in imGZ), and it is easy to check that, for all n,

u = {fu +h
n+l nn n

Hence, u is the unique seguence in zm(Z} such that Lu = h and inequality
(8) follows from (9).




Now we state a perturbation theorem Fot exponential dichotomies in
linear difference equations. This is an exact analog to that for linear
differential equations (c¢f. Theorem 3 in Palmer, 1987}, and s¢ the proof

is omitted,

PERTURBATION THEOREM Suppose that, for each i in an index set I and for

each intepger n, Cﬁl) is an invertible k * k matrix satisfying
1)1t <y
n n
and such that the linear difference equation

u = C(i)u
n

n+1 n

has an exponential dichotomy, with the constants K, ¢ and the rank of the
prejection both independent of i.

Then there exists a positive integer N and a positive number A, both
depending only on M, K, o, with the following property: Let Bn be a se-
quence of invertible k x k matrices such that, for each integer m, there
exists im € I, for which

(1)

|Bn - C ™ < a form=n =m+ N

Then, the equation

has an exponential dichotomy with constants 2K4, af2.

4. A VARIANT OF NEWTON'S METHOD
In this section, we prove the following variant of Newton's method.

PROPOSITION Let E be a Banach space and F: E + £ 3 c! map. Let y be a
point in E such that DF(-y)"1 exists and let e, > 0 be chosen so that

G
IDF(x) - DE(YI < 1/2)pF(y) L] (10)
for |Ix - vl = ey- Then, if 0 < e = £ and
IE = e/2l0F(y) 7Y a1y
the equation
F(x) = 0 (12)

has a unique solution x such that ||x - y|| < e.



Proof: We write ' - -
F(x) = F(y) + DE(y)(x -~ ¥) + n(x)

When nxl - }’if: “xz - YH = 50’

Imexy) = mx )l = lIF(x ) - Fxy) - DE(Y) (x; - x,)l

4]

|

el
“[0 {DF(x2 + e(x1 - xz)) - DF(y)}de(x1 - xz)

rl
=] IROr Gy <)) - DFO) el - x|

PA

(IIZQDF(Y)'lﬁ)Hxl - X, (13)

using equation (10).
We can rewrite equation (12) as
-1
x =y - DE(y) "{F(y)} + n(x)} := T(x)

For 0 < ¢ < &y, we define Bs = {x €E : f]x - vl = ¢} and show that T is a
contradiction of B,. The proposition will then follow immediately from
the contraction mapping principle.

Note, first, that if x € Ba’ then

I0F(y) LR (y) + n@)}
IDF () " M{e/2IDE ) Y+ Iix - yll/2 DG M3

e/2 + |x - ylj/2

IT(x) - ¥l

1A

H

= ef2 + ef2 = ¢

where we have used equations (11) and (13) with Xy =X, X, =Y. Hence, T

maps Ba into itself., Moreover, if Xy0X, € Ba’ then, using equation (13),

]

ITGxy) - Tl = IDEG) M) - (e
P ™M - az2ioEm) i, - x,l

l/zllxl - xz”

lA

it

Thus, T is indeed a contraction on Ba, and the proof is finished.

5. PROOF OF THE SHADOWING LEMMA

We write

M= sup{|DEf(x)! : x € 0}



and for § = 0, - —

w(8) = sup{[Df(y) - DF(X)| : x €S, y € Rk, ly - x| = 8}

1l

By our assumptions, M < = and w(8) + 0 as & + 0.

Next, we define €4 to be the largest positive number satisfying
w(ao] = I/ZMI

where

Ml - 2K4(1 R 8-0/2)_1(1 . ea/Z) _

Let N, A be the numbers in the perturbation theorem corresponding to
M, K, a. Then, for 0 < e = £ choose § = &6(¢) to be the largest &6 > 0
satisfying

M, & +M« -+ <0, wEQeMe - MY =2

& = 1°

Nl(ﬂ

Now, suppose that 0 < ¢ =

and Yh is a 8-pseudo-orbit for f. We
define F: 27 () + & (Z) by

%0

[F(X)]n = X - fx)

n+1

Clearly, F is Cl with derivative given by

[DF(x}h]n = h - Df(xn)hn

n+l

Then, if y is the sequence {yn} and x = {xn} is another sequence with

Ix - ¥l = &5,
IDF(x) - DE(y)|l = sup [Df(x ) - DE(y,)]|
n€Z
= m(ao)
= 1/2M1

Below we shall prove that DF(y)-l exists with HDF(y)’lﬂ <M

the definition of pseudo-orbit,

1 Also, bxn

Bl = sup |y

- fly )l =8 =¢e/2M
n€Z n+1_ n 1

Then by the proposition, the equation F(x) = 0 has a unique solution X _sat- .
isfying fix - yll = e. This is exactly what we have to prove.
So all that remains to show is that DF(y)”l exists and that HDF(y)'lﬁ <




It follows from the chain rule that] for x € 8, the linear difference
equation
Ui ® Df(fn(x))un (14)

has the transition matrix &(n,m) = Dfn‘m(fm(x)). Then, if we define P, =

P(fn[x)), we see, using equation (2), that for all n, m,
o(m,myp = D (N (x))P(EN(x)) = PUETDET T (x) = P o(n,m)
and, using equation (3), that

lemmp | = [pE" ) PE™ () | = ke (g 2y
[etm.m) (1 - P )| = [DETEN ) (T - PE0))] = ke D) (g 5y

That is, equation (14) has an exponential dichotomy with the constants K,
o and the rank of the projection both independent of x in §. This is the
family of equations that we want to use in the perturbation theorem—-the
index set, in this case, is S.

We want to use the perturbation theorem to show that the linear dif-

ference equation

U

n+l Df(yn)un (15)

has an exponential dichotomy.

First, we claim that, for all integers m,

n-m-1

]yﬁ - fn-m(ym)| SE(L + M+ «-v + M ) - (16)

form+ 1 =n <=m+ N (N chosen as at the beginning of this section). We
prove this by induction on n. Since Yy is a 8-pseudo-orbit, it certainly
holds for n = m + 1. Assuming it for somen inm + 1 Sn<m+ N - 1, we

prove it for n + 1 as follows:

1A

ey = £ )|

w = g - £+ E0) - £E M ) |

=6+ Mly, - £ )]

§ + MS(1 + M + «-» + Mn—m~l) by the induction
hypothesis

A

5L + M+ M> 4+ ~ov w M

]

This completes the induction and so equation (16) holds form + 1 =n <

m + N,




So, ifm=sn=m+ N (N, A chosen a5-at beginning of this section),

ID£Cr) - DECECET ) | S elly, - £y N D)
-
0000

wl(B(1 + M+ +.. + Mn"m})

n
1

wlly,

A

w(8(1 + M+ ++». «+ MN))

1A

= A

Then, the perturbation theorem implies that the difference equation (15)
has an exponential dichotomy with constants 2K4, a/2. But then it follows
from the lemma that the operator DE(y): im(Z} +-£w(Z), which is defined by
{DF(y)h]n = hn+1 - Df(yn)hn, is invertible and that

IDE) ) = 2kb 1 - e B g L o2y L My
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