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Transition layers arising from square-wave-like periodic solutions of a singularly 
perturbed delay differential equation are studied. Such transition layers corre- 
spond to heteroclinic orbits connecting a pair of equilibria of an associated 
system of transition layer equations. Assuming a monotonicity condition in 
the nonlinearity, we prove these transition layer equations possess a unique 
heteroclinic orbit, and that this orbit is monotone. The proof involves a global 
continuation for heteroclinic orbits. 
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1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

Heterocl in ic  solut ions  of  delay differential  equat ions  are of great  interest ,  
bo th  in app l ica t ions  and in theory.  A par t i cu la r  example  arises in the s tudy 
of  slowly osci l la t ing solut ions  of  the scalar  delay equa t ion  

~ ( t )  = -~z(t) + ~f(z(t- 1)) 

which was s tudied by Chow and Ma l l e t -Pa re t  (1983) and by Ma l l e t -Pa re t  
and  N u s s b a u m  (1986a, b). A m o n g  o ther  hypotheses ,  it was assumed that  

f ( O )  = O, f ' ( O )  < - 1, z f ( z )  < 0 for all z r 0, and  f ( a )  = - b  and  f (  - b) = a 
for some a > 0 ,  b > 0 .  I t  was shown by Mal l e t -Pa re t  and  N u s s b a u m  
(1986a, b)  that ,  if also the set { - b ,  a} a t t rac ts  i terates f ~ ( z )  of each non-  
zero z, then, as 2 ~ + ~ ,  the slowly osci l lat ing per iodic  solut ions  of this 
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differential equation approach a step function taking the value a on inter- 
vals (2n, 2n + 1), and - b  on (2n + 1, 2n + 2), for n e Z. Near integer values 
of t, such a solution z( t )  possesses a transition layer of width O()~-1). Upon 
rescaling the time and passing to the limit 2 ~ + o% one obtains a solution 
(x( t) ,  y ( t ) )  of the transition layer system 

2( t )  = x ( t )  - - f ( y ( t -  r)) 

~( t )  = y ( t )  -- f ( x ( t  -- r)) 
(L1)r 

for some value of the (new) delay parameter r > 0. In fact, the solution of 
(1.1)r SO obtained is a heteroclinic solution joining the equilibria 
(x- ,  y - ) - -  ( - b ,  a) and (x +, y + ) =  (a, -b ) .  This paper shows that, under 
an additional hypothesis of monotonicity, 

f ' ( z )<~O for all z E ~  

there exists a unique r such that (1.1)r possesses a heteroclinic solution 
connecting (x- ,  y - )  to (x +, y +), and that also this solution is unique. 

A related problem, the singularly perturbed integral equation 

,~v ~t + l/2 
z( t) =-~ " t -  1/4 f ( z ( s - -  1)) ds 

was studied by Chow et al. (1985). The nonlinearity f was assumed to be 
odd, monotone decreasing, and convex (for z~>0), with f ( _ a ) =  T-a for 
some a > 0. Existence and uniqueness of a transition layer corresponding to 
a special class of symmetric slowly oscillating periodic solutions were 
proved. However, the special properties of f as well as the restricted class of 
solutions played a prominent role in the proof. In the present paper, we use 
only the monotonicity o f f  to establish uniqueness for (1.1)r among all 
heteroclinic solutions. In addition, we develop some general techniques for 
global continuation of heteroclinic solutions based on exponential 
dichotomies and the method of Lyapunov-Schmidt. 

To be specific, a homotopy method is developed to tackle our 
problem. To describe this method abstractly, let F: ~"• R" be a C 1 
function, where I =  [0, 1], and consider a family of delay differential 
equations 

k ( t )  = x ( t )  + F ( X ( t  - r), ~), ~ ~ I. 

(The results of this section actually hold for much more general classes of 
delay equations; however, we state our results for the equation above as its 
special form will play a role later.) Two parameters, ~ e I and the delay r, 
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are present. If r > 0 ,  then we may rescale the time t and obtain the 
equivalent system 

k ( t )  = rX(t)  + rF(X( t -  1), e). (1.2)r,~ 

We assume for each e e I that (1.2)r,~ possesses equilibria X = X (e) and 
X + = X + ( e )  varying smoothly with e. Our object is to determine, for 
each e e / ,  all values of r > 0 for which there exists a heteroclin, ic solution 
X(t) of (1.2)r,~ connecting X - ( e )  to X+(e),  that is, for which 
limt ~ +~ X(t)=X+(e).  In fact, we seek conditions under which there is a 
unique such r = r(e) and a unique (up to time translation) such solution 
X(t) = X(t, e) for each ~. 

To obtain such a result, we introduce the following four hypotheses. 
By a heteroclinic solution of (1.2) .... we mean a heteroclinic solution of this 
system connecting X (e) to X+(e),  as above. By a unique such solution, 
we mean uniqueness up to time translation. 

H1. There is a unique r = r ( 0 ) > 0  such that (1.2)r~0).0 has a 
heteroclinic solution X(t)= X(t, 0); furthermore, this heteroclinic solution 
is unique. 

H2. Suppose for some e * e I  and r * > 0  that (1.2)r,~, has a 
heteroclinic solution X(t, ~*). Then, given e > 0 ,  there exists 5 > 0  such 
that, for any e e ( e * - 3 ,  a*+5)c~L there exists r=r(c~)e(r*-e , r*+e)  
with the property that (1.2)r(~),~ has a heteroclinic solution X(t)=X(t ,  a) 
satisfying IX(t, e ) - X ( t ,  ~*)] < e  for all t eN .  Furthermore, if e is suf- 
ficiently small, then r(e) is unique in the interval ( r*-e ,  r* +e),  and 
X(t,e) is unique among those heteroclinic solutions satisfying this 
inequality. 

H3. There exist constants 0 < r ~ < r M  such that, if (1.2)~.~ has a 
heteroclinic solution for some e e I and r > 0, then rm <~ r ~< r ~4. 

H4. Let e J e I  and r J > 0  be convergent sequences, say e J ~ e  * and 
r / - r *  with r* > 0, and let XJ(t) be a hetroclinic solution of (1.2)~j ~j. Then, 
for some subsequence o f j - ~  + ~  and for some values 0 i eN ,  the limit 
XJ(t+O j)-~X*(t)  of the time translates exists uniformly for t e R. In 
particular, X*(t) is a heteroclinic solution of (1.2),,.~,. 

Theorem 1.1. Under the hypotheses H1-H4. there exists a unique 
r(1 ) > 0 such that Eq. (1.2 )r11). 1 has a heteroelinic solution. Furthermore, this 
solution is unique. 

Proof. The proof is standard. For  e e l  let n(e) denote the total 
number of heteroclinic solutions of (1.2)r,~ for all values of r >  0. The fact 
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that, for fixed e, heteroctinic solutions are locally isolated, in the sense 
of H2, and form a sequentially compact set, in the sense of H4, together 
with the bounds on r in H3, implies that n(~) is finite. Next, note that 
l i m ~ .  infn(e)/> n(~*) by H2, and that l i m ~ .  sup n(e)~<n(e*) by H3 
and H4. Thus, n(~) is a continuous function of e. Since n(0) = 1 by H1, we 
h a v e n ( l ) = l .  I 

A local perturbation technique [-see Hale and Lin (1986)3 related to 
the Mel'nikov method will be employed to verify H2 for the system (1.1)r 
of interest. To describe this method for our general system (1.2)r.~, consider 
the C 1 map ~-: C'(~,  R")x (0, ~ ) x  I ~  C~ ~") defined by 

[-~(X, r, ~)](t) = 2 ( 0  - rX(t)  - r V ( X ( t -  1), ~). 

Here, C 0= C0(~, ~,)  is the Banach space of continuous bounded functions 
with the supremum norm UX(. )[I co = sup [X(t)l while C 1 = C l(~, ~,)  is the 
corresponding space of C I functions with the norm I[X(.)[[o= 
IIX(')ll co+ 112(')11 co. Of course, if x ( t )  is a heteroclinic solution of (1.2) .... 
then ~-(X, r, c~) = 0. Consider in particular the solution X(t, c~*) of (1.2),,,~, 
in H2, and let ~(c~*) denote the Fr6chet derivative 

~ - ( X ( . ,  ~*), r*, ~*) 
5 e ( ~ * )  = 

~X 

of ~ with respect to its first argument evaluated at this solution. That is, 
LP(~*): C '  ~ C o is the linear operator 

[-~9~(~ *) Z](t)  = ~(t) - r*Z(t)  - r*A(t, ~*) ~,(t - 1) 

where 
~ F ( X ( t -  1, ~*), ~*) 

A(t,  ~*)= 
3X 

is the Jacobian matrix of F evaluated along the heteroclinic solution. The 
variational equation along this solution is simply 5~  and 
relevant to this are the two limiting equations 

~(t)  = r*Z( t )+  r 'A(  + ~ ,  ~*) S ( t -  1) (1.3) + 

that is, the variational equations about the equilibria X -+ (~*). We also note 
here the formal adjoint 

~( t )  = - r *  ~P(t) - r* ~ ( t  + 1 ) A( t  + 1, ~*) (1.4) 

of the variational equation along X(t, ~*). Here ~u(t) is a row vector, and 
(1.4) is solved in the decreasing direction of t. See Hale (1977). 
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The results described by Hale and Lin (1986) describe the Fredholm 
structure of the operator 5~ and in particular characterize its kernel 
and range. Assume that both limiting Eqs. (1.3)• have hyperbolic spectra, 
that is, Re/~ ~ 0 for all characteristic exponents #. Let N • denote the num- 
ber of such/~ with Re # > 0, that is, N • is the dimension of the unstable 
manifold of X• Then, 2,e(c~*) is a Fredholm operator, and its index is 

dim JW(~*) - codim ~(~*) = N - - N + (1.5) 

where X(~*)  and N(c~*) are the kernel and range, respectively, of ~(e*) .  
It is furthermore the case that 

{ I; ~(c~*) = h ~ C O gJ(t) h(t) dt = 0 for all 
- - c O  

solutions ~(t)  of (1.4) bounded on ~ t  (1.6) 

all bounded solutions of (1.4) in fact decaying exponentially as t ~ _+oo. 
Note in particular that, if N - = N  + and dim ~#(c~*)= 1, then (1.5) and 
(1.6) imply that the adjoint equation (1.4) has a unique (up to scalar mul- 
tiple) nontrivial solution gJ*(t) bounded on ~. 

With the above remarks, we are able to give a sufficient condition for 
H2 to hold. 

H2'. Suppose for some c~*~ L r * >  0 that (1.2)r.~. has a heteroclinic 
solution X(t,  c~*). Then both equilibria X• *) are hyperbolic and their 
unstable manifolds have the same dimension N - = N  +. Furthermore, 
dim X(c~*)= l, that is, the varitional equation ~ ( c ~ * ) Z = 0  has 
Z(t)=k(t ,c~*)  as its unique bounded solution up to scalar multiple. 
Finally, 

~*(t)  X(t, ~*) dt # 0 (1.7) 
- - c O  

where ~*(t)  is the unique (up to scalar multiple) nontrivial bounded 
solution of the adjoint equation. 

Proposition 1.1. Hypothesis H2' implies Hypothesis H2. 

Proof. As in Hale and Lin (1986), this is an application of the 
implicit function theorem and the method of Lyapunov-Schmidt. For com- 
pleteness, w e  outline the arguments. 
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We wish to determine all solutions of o~(Y(, r, ~) = 0 for (X, r, e) near 
(X*, r*, e*), where we write X * ( t ) = X ( t ,  ~*). First fix a linear functional 
A: C ~ R such that A(J?*) #0 .  Observe that A(J)-*(-+ 0)) is continuous 
in 0 and hence nonzero for all 0e  [ - 0 0 ,  00], for some 00>0. Then note 
that, if (X, r, c~) is a solution near (X*, r*, e*), then X is near X* in the 
space C 1. Therefore, in a small enough neighborhood, 

d 
A ( X ( .  + O) - i"*) = A ( X ( .  + 0)) # 0 

for all 0 s  [ - 0 0 ,  00] and so there exists a unique 0~ [ - 0 0 ,  00] such that 

A ( X ( .  + 0 ) - X * ) = 0 .  

Thus, without loss, we may consider (X, r, e) with 

X = X * + &  ~eXA 

where JV~ ~_ C 1 is the kernel of A restricted to C 1. 
The Fr6chet derivative Y ( e * ) =  ~o~(X*, r*, e) /OX is an isomorphism 

from XA onto ~(e*),  since J(~ X~ is a basis for its one-dimensional kernel 
in C O . Further, 

aY(x*, r*, ~*) = 2"  
dr 

belongs to a one-dimensional complement of 9~(c~*) in C ~ by (1.7). 
Therefore, by the implicit function theorem, there exists a unique 
(X(., ~), r(~)) near (X*, r*), depending smoothly on ~ near ~*, such that 
~ ' (X( . ,~ ) , r ( c0 ,~)=0 .  With this, H2 holds, and our proposition is 
proved. | 

2. THE TRANSITION LAYER SYSTEM A N D  
VERIFICATION OF H2' 

In this section, we begin our study of the system 

2(t)  = rx(t)  - r f ( y ( t -  1)) 

•(t) = ry(t) - r f (x ( t  - 1)) 
(2.1)r 

of two delay differential equations. These, equations, with r > 0 ,  are 
equivalent to the transition layer system (1.1)r by a time rescaling. We 
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- - . . .  ~ f ( x )  

- b  

Fig. 1 

introduce the following conditions on f :  Fig. 1 depicts the graph of such a 
function f 

B1. f : ~ i s C  1. 

B2. There exist a > 0 ,  b > 0  such that f ( a ) = - b  and f ( - b ) = a ;  also, 
f (0)  = 0. 

B3. f ' ( x )  <~ 0 for all x ~ ~. 

B4. f ' ( 0 ) <  - 1  and O<<. f ' (a ) f ' ( -b )<  1. 

B5. [ f ( f ( x ) ) l > l x l  for x ~ ( - b , O ) u ( O , a ) ,  and I f ( f ( x ) ) l < l x l  for 
x ~ ( - ~ ,  - b ) w ( a ,  + ~ ) .  [Note t h a t f ( f ( x ) )  and x have the same 
sign for all x. ] 

The system (2.1)r has three equilibria: (x, y ) = ( - b ,  a), (0,0), and 
( a , - b ) .  Writing X--(x,  y), we shall denote two of these equilibria by 
X - =  ( - b ,  a) and X + = ( a , - b ) .  We are interested in the existence of 
heteroclinic solutions X(t) with X ( - o o ) = X -  and X ( + ~ ) = X  +. Under 
the above hypotheses, it turns out there is a unique such solution; 
moreover, the components x(t) and y(t)  are monotone for all t ~ ~. This is 
the content of the following theorem, which is the main result of our paper. 

Theorem2.1. Assume that f satisfies B1-B5. Then, there exists a 
unique r > 0  such that (1.1)r, or equivalently (2.1)r possesses a heteroclinic 
solution X(t)  = (x(t), y(t))  joining X( - oo ) = X -  to X( + oo ) = X +. Further- 
more, this is the only such solution, up to time translation. Finally, this 
solution has the additional property of  monotonicity: 

S:(t)>~O and p(t)<<.O foral l  t~J~ 

with strict inequality for .f(t) as long as x ( t )<  a, and for 9(t) as long as 
y(t) > -b .  

I f  r <~ O, then (1.1) r does not possess any heteroclinic solution joining X -  
to X +. 
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Fig. 2 

Figure 2 depicts the graphs of the solutions x ( t )  and y ( t )  of 
Theorem 2.1. To prove Theorem 2.1, we will use the abstract Theorem 1.1 
with Proposition 1.1. This involves verifying Hypotheses H1, H2', H3, and 
H4 for a parametrized system 

2 ( t )  = r x ( t ) -  r f ( y ( t - -  1), ct 

9( t )  = r y ( t )  --  r f ( x ( t  --  1), 

with equilibria 

X-(cO = ( -b (~ ) ,  a(ct)) and J(+(e) = (a(cO, -b (~) ) .  

(2.2)~,, 

When c~= 1, the above system yields (2.1),  The precise form of the 
homotopy, and in particular the trivial system at c~ = 0, will be given later, 
but we do note here that the function f ( . ,  e) will be constructed so as to 
satisfy B1-B5 for each e e L 

For  simplicity, we shall often suppress the parameter c~ and work 
directly with (2.1),  As standing hypotheses on (2.1)r, we assume hence- 
forth, without comment, that B1-B5 hold. With these, we shall verify H2', 
H3, and H4. An analysis of the trivial system at c~ = 0, where the non- 
linearity will take a special form, will prove H1. 

We begin our analysis with a discussion of a general linear system of 
the form 

~( t )  = r ~ ( t )  - -  r p ( t )  q ( t  - -  1) 

O(t) = r q ( t ) -  r q ( t )  ~ ( t -  1) 
(2.3) 

Such a system can arise from the linearization of (2.1)r. In particular, the 
linearization of (2.1)r about one of the equilibria X • yields an autonomous 
system 

~( t )  = r~ ( t )  --  rp* t l ( t  --  1) 
(2.4) 

O(t)  = r r l ( t ) -  r q * ( ( t -  1) 
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where 

p* ~< O, q* ~< O, and 0 <~ p ' q *  < 1. 

If # is an eigenvalue of this system, with eigenfunction 

(~(t),  tl(t)) = ( c l e  ~', c2 e~ )  

then 

( #--r rp*e #~(cl~ ~- (00) 
rq*e -~ # - r / \ c 2 /  

and # satisfies the characteristic equation 

# = r +_ rke - ~, where 

k = ( p * q * )  1/2, 0 ~ < k < l .  

11 

(2.5) 

(2.6) 

(2.7) -+ 

#+ .-->#- > 0. 

If p 'q*  :,a 0, then # + > # -, and the coefficients c f  in the eigenfunctions 
(2.6) are all nonzero and satisfy 

c~-c[  > 0 and C 1 C 2 < O. 

If p* = q * = 0 ,  then #+ = # - = r  is a double eigenvalue, with two 
independent eigenfunctions, so any choice of (cl, c2) ~ (0, 0) can be made. 

If p* =0,  but q* #0 ,  then # +=  # - =  r is a double eigenvalue, but 
with only one independent eigenfunction. The general solution on the 
generalized eigenspace has the form 

({ ( t ) ,  t l ( t ) )=  (cae r', (c2 - -c l re-rq*t)  e r') 

with arbitrary (cl, c2)# (0, 0). A similar result holds if p* # 0  and q*=  0. 

Proposition 2.1. If r > O  and p* and q* satisfy (2.5), then the linear 
system (2.4) is hyperbolic, with exactly two unstable eigenvalues 

With a little extra analysis, we easily obtain the following result. 

N +- = dim W " ( X  +- ) = 2. 

A simple homotopy argument, with k as the homotopy parameter, shows 
that, if r > 0 ,  then each of the two equations (2.7)_+ has exactly one root 
#_+> 0 in the right-half plane, and none on the imaginary axis. In par- 
ticular, with r > 0, the equilibria X _+ of (2.1)r are hyperbolic with unstable 
manifolds of dimension 
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In any case, if Z(t)  = (r rl(t)) is a nontrivial solution of (2.4) which 
is bounded as t--, - ~ ,  then the limit 

lim - '  - ( ~ * , r / * ) G C ( [ - - 1 ,  O],R 2) 
t ~ - c o  l i ~ , l i  

exists and satisfies either 

4*(0) # 0 for all 0 e [- - 1.0], 

~/*(0) r 0 for all 0~  [ - 1 , 0 ] .  

or else 

If r ~< 0, then a similar analysis of the linearization of Eq. (1.1), shows 
that, after reversing time t--* - t  in this advanced equation, both equilibria 
X + are asymptotically stable. In particular, this proves the final statement 
in Theorem 2.1. 

Proposition 2.2. If r ~< O, then (1.1), does not possess any heteroclinic 
solution joining X to X +. 

In light of the above result, henceforth we shall assume without 
comment  that r > 0. 

Now consider the nonau tonomous  system (2.3), which we regard as a 
per turbat ion of (2.4) as t ~ - ~ .  

Proposition 2.3. Assume p(t) and q(t) are continuous for sufficiently 
negative t, that  p* and q* satisfy (2.5), and that 

lim p(t)= p*, lim q(t)= q*. (2.8) 
t ~  - c r  t ~  - G o  

Then, for all sufficiently negative t, say t ~< - T ,  there exists a two-dimen- 
sional subspace P(t) ~ C such that any solution Z(t)  = (~(t), rl(t)) of (2.3) 
which is bounded as t ~ - ~  satisfies 

~, ~ P(t) (2.9) 

for all t~< - T .  Conversely, if an initial condit ion satisfies (2.9) for some 
t=to<<.-T, then there exists a backward extension that  is bounded  as 
t--* - ~ .  The subspace P(t) varies continuously in t and approaches ,  as 
t ~ - ~ ,  the canonical unstable subspace P ( - ~ )  of the au tonomous  
system (2.4). 

If, in addit ion to (2.8), we assume 

f it] i p ( t ) - p * l d t < ~  and f it] ]q ( t ) -q* ld t<~  (2.10) 
o~ - o o  
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then, for each nontrivial solution Z( t )= (~(t), rl(t)) of (2.3) that is bounded 
as t ~ - o% there exists a nontrivial solution ~(t)  = (~(t), q(t)) of (2.4) that 
is bounded as t ~ - o% and satisfies 

~ , =  ~ , +  o(ll~,ll) as t + - ~ .  (2.11) 

In particular, there exists T such that either 

~(t) r  for all t ~ < - T ,  or else 

r / ( t ) r  forall  t~< - T .  

The proof of Proposition 2.3 is based in part on the theory of 
exponential dichotomies; we shall be somewhat sketchy in our exposition, 
as many of the ideas can be found elsewhere. In particular, see Palmer 
(1984) (ordinary differential equations) and Lin (1986) (delay equations) 
where the relation between exponential dichotomies and homociinic orbits 
is explored. Another tool that we need for our proof is the following finite 
dimensional result. It is a special case of a general result given in 
Theorem 10.13.2 of Hartman (1964). 

Proposition 2.4. Consider the N-dimensional linear ordinary differen- 
tial equation 

= (A + B(t)) u (2.12) 

where the matrix A is hyperbolic and the matrix B(t) is continuous, 
satisfying 

lira B(t) = 0  and 
t ~  - o r  

f Itlh-a[B(t)ldt<oo. 

Here h/> l is the size of the largest Jordan block, in the canonical form of 
A, corresponding to eigenvalues with positive real part. Then, to every non- 
trivial solution u(t) of (2.12) that is bounded as t ~  -oo ,  there exists a 
nontrivial solution t~(t) of i) = Au bounded as t ~ -oo ,  satisfying 

u(t)=g4t)+o(l~(t) l)  as t ~  -oo .  (2.13) 

Proof  of  Proposition 2.3. Consider first the more general problem of a 
linear delay equation 

~(t) = [L + R(t)]  2 ,  for t ~< 0 (2.14) 
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in the n-dimensional variable ~, -~ where, for each t, 

L, R(t): C ( [ - 1 ,  0], ~ " ) ~  R n 

are continuous linear maps. Assume that R(t) varies continuously (in the 
operator topology) in t, and 

lim IlR(t)l[ =0.  

Assume also that the limiting equation 

~(t) = LZ, 

is hyperbolic and [-following Hale (1977) here and in the rest of the proof] 
denote the canonical decomposition of the phase space C =  C ( [ -  1, 0], ~") 
by 

C = P @ Q ,  dim P = N <  oo 

~t = Yt + Z~. 

Here, N is the unstable dimension. Relative to a fixed basis q~= 
(~o 1, ~o 2 ..... ~o N) of P, we may write 

Y, = ~u(t), u(t) ~. ~N 

We wish to obtain, for each sufficiently negative t, say t ~< - T, a linear 
map 

M(t): P ~ Q 

varying continuously in t, and approaching zero (in the operator norm) as 
t ~ -oo .  The map is characterized by the property that all solutions 3 ( 0  
of (2.14) that are bounded as t ~ - o o  satisfy 

Zt = M(t) Y, (2.15) 

for all t ~< - T ;  and, conversely, if (2.15) holds for some to <~ --T, then there 
exists a solution through ~,0 = Yt0 + Z,0 that is bounded as t ~ - ~ .  

The map M(t) is obtained by a simple contraction mapping argument. 
This argument will also furnish an upper bound for IIM(t)ll, which we shall 
need. In a standard fashion, we write the variation of constants formulas 

u(t)=eA~-~~ eA('-S)R(s)[q~u(s)+ Z,] ds (2.16) 
o 

z , =  f r ( t -  s) Xo Q] R(s)[CI)u(s)+Z,] ds (2.17) 
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which hold for any solution of (2.14) that is bounded as t ~ -oo .  Here, A 
is the N by N matrix representing the infinitesimal generator of the limiting 
equation relative to the basis �9 of P: all eigenvalues of A have positive real 
part. Fixing t0~< - T  and U(to)=Uo, we consider the class of continuous 
functions 

Z: ( - o %  to] ~ Q 

which are bounded as t ~ - ~ .  For such a function Z, [which is not 
necessarily of the form Z,( O ) = Z( t + 0)], we let u( t ) = u( t, to, xo, Z) denote 
the unique solution of the first equation (2.16). The estimate 

[u(t, to, Uo, Z)l ~< K(lu01 +p(to)IIZFI) 

for t ~< t o is easily obtained, where 

p(to) = sup [[R(t)fl, 
t~< t o 

IIZJI = sup IlZ, II 
t ~  t o 

and K is a positive constant depending only on the equation (2.14). 
Upon inserting u(t)=u(t ,  to, uo, Z) into the right-hand side of the 

second equation (2.17), the integral defines a new bounded function (Y-Z), 
satisfying 

rlJ-zrl <.Kp(to)(luol + rlZl[) (2.18) 

for a possibly different K. Furthermore, if - T  is sufficiently negative, so 
that 

Kp( to)  <<. Kp(  - T)  < 1 

then Y is a contraction mapping and yields a unique fixed point 
Zt = Zt(to, Uo) depending linearly on u o. The map M(to) is defined then by 

M( to) ~Uo = Z,o( to, Uo) 

and one has, from (2.18), 

IIM(t0) ~bu0FI ~< gp(to)(1 - g p ( t o ) )  l lUof. 

Hence, for a larger K, 

HM(t)I[ <~gp(t) for t~< - T .  

Continuity of M(t) in t can also be verified: 
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With M(t)  so obtained, we have a one-to-one correspondence between 
solutions of (2.14) bounded at - 0 %  and solutions of the N-dimensional 
ordinary differential equation 

Here, the matrix 

satisfies 

fi = (A + B(t)) u. 

B(t) = g2(O) R(t)(~b + M(t)  4 )  

IB(t)l <~Kp(t) as t ~  -oo.  

where g2 is the appropriate adjoint basis dual to q~. Indeed, solutions of 
(2.14) bounded at - o o  are precisely those satisfying (2.9) for some, or 
equivalently all, t ~< -T ,  where P ( t ) ~ _ C = p q ) Q  is the N-dimensional 
graph of M(t). Now, in the system of interest in the statement of 
Proposition 2.3, we have N =  2, as well as 

f ItL IB(t) ldt< 

from the estimates (2.10). As h~<N=2,  Proposition 2.4 applies to give 
(2.13) for some u(t). Upon noting that ~, = ~fi(t) satisfies (2.4) and that 
= -~bu( t )+M( t )Cbu( t ) i s  our given solution, we easily obtain (2.11). - t -  

The final statement of Proposition 2.3 follows easily from 
Proposition 2.1. | 

In the case of interest here, both p(t) and q(t) are nonnegative, and 
that leads to further results for (2.3). 

Proposition 2.5. Assume the hypotheses (2.8) and (2.10) of 
Proposition 2.3, and in addition that 

p(t) <~ 0 and q(t) <<. 0 (2.19) 

for all sufficiently negative t. Let 2(t) = (~(t), q(t)) be a nontrivial solution 
of (2.3) that is bounded as t ~ -oo.  Then there exists T such that either 

((t) r 0 and ~/(t) r 0 for all t < ~ - T ,  or 

~(t) = 0 and q(t) r  for all t < ~ - T ,  or (2.20) 

~ ( t ) r  and ~/(t)=0 forall t~< -T .  
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Assume now the inequalities (2.19) hold for all t e e  (with p(t) and 
q(t) continuous there). If s is any solution of (2.3) which satisfies, for 
some to, either 

~(t) >~0 and r/(t) ~> 0 for all t e [ t o - l ,  to] (2.21) 

or else 

~(t) ~< 0 and r/(t) ~< 0 for all t ~ [to - 1, )0] (2.22) 

and in addition ~(t0)va0, then Z(t) is unbounded as t ~  +oo. Further- 
more, the inequalities (2.21) or (2.22) hold for all t/> to - 1. 

Finally, if if(t) is a nontrivial solution of (2.3) bounded for t e  E, then 
in fact 

~(t) r/(t) < 0 for all t < . - T .  (2.23) 

Proof. Without loss, ((t) > 0 for all t ~< - T ,  by Proposition 2.3. Now, 
for all sufficiently negative t, one has 

d 
(tl(t) e -'~) = --rq(t) ~(t -- 1 ) e - "  ~> 0 

that is, r/(t)e-r,  is nondecreasing. The result (2.20) follows immediately, 
with possibly a larger value of T. 

To prove the second part of the proposition, assume that p(t)<~ 0 and 
q(t)<.O for all t eN,  and that ~(t)>~0 and tt(t)~>0 for all t e  [ t o - 1 ,  to], 
with the strict inequality ~(t0)>0. Then, arguing as above, one shows 
inductively that ~(t)e-r t  and r/(t)e r, are nondecreasing and hence non- 
negative on [-to + n - 1, to + n] for each n ~> 1. Therefore, 

~(t)>~r~(t)>O for t>~t o 

and hence ~ ( t ) ~  +oo as t ~ +oo. 
The inequality (2.23) for solutions bounded on N follows from the 

results above, l 

An immediate application of the above result is to heteroclinic 
solutions of (2.1), Letting ~(t)= 2(t) and q(t)= fi(t) where (x(t), y(t)) is a 
heteroclinic solution of (2.1)r connecting X -  to X +, one notes the 
exponential approach to the equilibrium X- ,  and concludes from 
Proposition 2.5 applied to the variational equation of (2.1)r that 

2(t) ~(t)<O for all t<~ - T  

865/1/1-2 
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for some T. In fact, a stronger result holds: that both x(t) and y(t) are 
monotone for all t e ~, with strict monotonicity holding for much (possibly 
all) of this interval. The proof of this result, stated below, is long and 
technical, so is deferred to Section 5. 

Proposition 2.6. Let X( t )=(x ( t ) ,  y(t)) be a heteroclinic solution 
connecting X - =  ( - b ,  a) to X +=  (a, - b ) .  Then 2(0 >10 and p(t)~<0 for 
all t ~ N. Furthermore, 2(t) > 0 as long as x(t) < a, and p(t) < 0 as long as 
y(t) > -b .  

We shall freely use Proposition 2.6, as its proof does not rely on the 
theory developed below. 

Let us now fix a heteroclinic solution X(t) = (x(t), y(t)) of our system 
(2.1),  We then have the following result. 

Lemma 2.1. There exists a solution Z(t)=(~(t) ,r l ( t ))  of the 
variational equation 

~(t) = r~ ( t ) -  r f ' ( y ( t -  1)) ~/( t-  1) 
(2.24) 

O(t) = rrl( t)-  r f ' ( x ( t -  1)) ~ ( t -  1) 

which is bounded as t--* -oo and unbounded as t ~ + oo. In addition, this 
solution may be chosen so that 

((t)>~O and q(t)>~O forall  t ~ .  (2.25) 

Proof. With Proposition 2.1, and p * = f ' ( a )  and q * = f ' ( - b ) ,  a 
careful examination of the solutions of the constant coefficient system (2.4) 
that are bounded as t--* - o o  reveals that there exists one 
~*(t)  = (r r/*(t)) satisfying 

4 * ( 0 ) > 0  and t/*(0) > 0 for all 0~ [ -  1, 0]. 

Letting P(t) be the subspace as in Proposition 2.3, we have Z* e P ( - o o )  
(where ~* of course is the restriction of Z*(0) to [ - 1 ,  0]). Thus, for any 
sufficiently negative t 0, there exists a solution Z ( t ) =  (~(t), t/(t)) of the 
variational equation (2.24), which is bounded as t ~ - o % with Ztoe P(to) 
near enough to -~* that r + 0) > 0 and t/(t0 + 0) > 0 for all 0 e [ -  1, 0]. 
From Proposition 2.5, it follows that 

~(t) ~> 0 and t/(t) >~ 0 for all t ~> to - 1. 

Now consider a sequence Z"(t) of such solutions, with quantities 
tn--* - o o  in place of to. Of course, S7~P( t )  for all t~< - T ,  and without 
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loss IIZ~[] = 1. By fixing two independent solutions, say ~-1 and =2 forming ~ t  ~ t ,  

a basis in each P(t), we have 

n ~ '2  =n--  kn ~'1+ k2~ , for t ~ t .  
~ t  - - ' ~ l ~ t  

for bounded sequences k7 and k~. Upon taking convergent subsequences, 
we obtain Zn( t )~  3 (0  uniformly on compact sets. By construction, this 
limiting solution 3( t )=(~( t ) ,  q(t)) satisfies (2.25). Also, 3 , ~ P ( t )  for 
t~< - T ,  and hence it is bounded as t ~  -oo.  As [13011 = 1, it is nontrivial, 
and hence unbounded as t---, +oo by Proposition 2.5. | 

Let Zu(t) = (~u(t), qu(t)) be any solution as in Lemma 2.1; we keep this 
fixed from now on. Also, let Zb(t) = (~b(t), r/b(t)) be the solution 

Cb(t) = 2(t), tlb(t) = p(t) (2.26) 

of (2.24). As these are the only two independent solutions of (2.24) boun- 
ded as t ~  -oo  (by Proposition 2.3), it follows that (2.24) has only one 
independent solution that is bounded on ~, namely, 2b(t). With this obser- 
vation, and the more elementary results on eigenvalues, in Proposition 2.1, 
all of Hypothesis H2' is verified except for the integral condition (1.7). 

To prove (1.7), we turn our attention to the adjoint equation 

~(t) = -r@(t) + rf'(x(t)) ~(t + 1) 
(2.27) 

~(t) = -r~(t) + rf '(y(t)) @(t + 1). 

As noted earlier, this equation has exactly one independent solution that is 
bounded on N, because the variational equation (2.24) also does. Let us fix 
a choice of such a (nontrivial) solution, which we denote by g*b(t)= 
(fib(l), fib(t))" 

Upon reversing time t ~ --t, the system (2.27) assumes the form (2.3) 
and satisfies the conditions of Proposition 2.5. Indeed, this result implies 
that @b(t) ~b(t) < 0 for large t; without loss, we assume 

@b(t) > 0 and fib(t) < 0 for all t>~T 

for some T. We claim in fact ~,b(t) ~> 0 and ~b(t) <~ 0 for all t ~ ~, with strict 
inequality for enough values of t that the integral condition in H2' holds. 
To show this, we begin by defining quantities t~ , t2~( -oo ,  +oo]  and 
t3, t46 [--0(3, T) by 

t l = s u p { t  I x ( t )<a}  
t2 = sup{t I y(t) > - b }  
t3 = inf{t I @b(s) > 0 for all s > t} 
t4=inf{t l ~b(s)<O for all s> t}. 

Clearly ~b(t) > 0 if and only if t < t 1 and qb(t) < 0 if and only if t < t2. 
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The full force of the following result will not be needed. We do present 
it, however, as it gives an interesting necessary and sufficient condition for 
a heteroclinic solution to reach the equilibrium X + in finite time. 

Proposition 2.7. The quantities t~ and t 2 a r e  either both finite or both 
infinite. They are finite if and only if f is constant on either [ - b ,  - b  +~]  
or on [ a -  e, a]  for some e, and necessarily either f ' ( - b )  = 0 or f ' ( a ) =  0 in 
this case. Further, It1 - t2l ~< 1 if tl and t2 are finite. Finally, i f f ' ( a )  # 0  and 
f ' ( - b ) = 0 ,  and if t~ and t2 are finite, then tl = t 2 - 1 ,  with the analogous 
result holding if f '(a) = 0 and f ' (  - b) ~ 0. 

Proof. Suppose that tl<CX3. Then, from ( 2 . 1 ) r  , o n e  has 3~(t)= 
ry(t)+rb for t ) t l + l ,  and hence y ( t ) = - b  for all such t since y(t) is 
bounded; thus, t2 ~< t~ + 1. Similarly, tl ~< t2 + 1, showing It~ - t21 ~< 1. 

Now assume that tl, t2<00;  without loss, t~<t2.  Then, for 
t~<~t<~tl+l, one has from (2.1), that f ( y ( t - 1 ) ) = a ,  but that 
y ( t -  1) > -b. This proves that f is constant on [ -  b, - b + e] for some e. 

If, on the other hand, one assumes t h a t f i s  constant on [ - b ,  - b  + el, 
then 2(t) = rx(t) - ra for all t large enough that y(t - 1) ~< - b  + ~. For  such 
t necessarily x(t)= a; hence, tx, t 2 < ~ .  

Finally, suppose that f '(a) ~ 0, f ' (  - b) = 0, and t l, t2 < o0. Then, t >~ t2 
implies [from (2.1),] that f ( x ( t - 1 ) ) = - b ,  and hence [as f ' ( a ) r  
that x ( t - 1 ) = a .  Thus, tl<~t2-1. As I t~-t2[~<l ,  we conclude that 
t t = t 2 - - 1 .  | 

Lemma 2.2. t 3 < t  1 and t 4 < t  2. 

Proof. We prove only that t 3 < t l, SO suppose that t l~< t 3 < ct3. Two 
cases arise: first suppose that f ' ( a ) = 0 .  Then, t>>.tl implies, from the 
adjoint system (2.27), that ~bb(t)= --r~b(t). As ~bb(t)~0 for large t, we 
have r ~ 0 for all t ~> tl, thereby proving t3 < tl. 

Now suppose that f ' (a)~O. By Proposition2.7, f ' ( - b ) = 0 .  If 
t~> t l -  1, thenf(y( t ) )=a [from (2.1),]; hence, f '(y(t))=O, l-Note: we are 
not claiming y(t)= - b  here.] Therefore, (b(t)= --r(b(t)'and so (b(t)< 0 
for t>~t~--1, as ( b ( t ) < 0  for all large t. The first equation in (2.27) now 
implies 

~b(t)>~ --r~b(t) for t>~tl--2. 

As ~bb(t3) =0 ,  it follows that ~bb(t)<<.O for tl--2<~t<~t3, and hence 

~tb(t)~O and ~b(t) < 0 for t l - - l~ t<~t  I (2.28) 
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as t~ ~< t 3. F r o m  the inequalities (2.28) on the unit interval [-t~ - 1, t~], one 
may  reverse t ime in (2.28) and use Propos i t ion  2.5 to conclude that  oh(t)  is 
unbounded  as t ~ - o o .  This contradic t ion completes the proof. II 

Lemma 2.3. ~9b(t)>~O and ~b(t)<~O for all t 6 ~ .  

Proof.  Set 

ts=inf{t[Ob(S)>~O and ~b(s)~<O for all s>>.t} 

and assume t5 > - ~ .  We seek a contradiction.  Clearly, either 

~ b ( t ) < O  for some t < t 5  arbitrari ly near  t5 

or  else 

(2.29) 

~ b ( t ) > 0  for some t <  t 5 arbitrari ly near  t s (2.30) 

or  else both  (2.29) and (2.30) bold. Wi thout  loss, assume that  (2.29) holds. 
Assume also that  (2.30) does not hold, that  is, assume 

~b(t)<<.O for all t>~ts--a (2.31) 

for some a. The  case in which bo th  (2.29) and (2.30) hold will be dealt  with 
later. 

Observe  that  t 5 ~< t3 < tl and so ~b(t) > 0 in [ts  - ~, ts]. Also recall the 
inequalities ~ib(t)<~0, from Propos i t ion  2.6, and (2.25) and (2.26) for ~"(t) 
and r/"(t). F r o m  these, it easily follows that, when ts - a ~< t ~< ts, there exist 
nonnegat ive  quantit ies k 1 = kl( t  ) and k2 = kz(t) such that  

k~b( t )  +k2~U(t) = 1 and 
(2.32) 

kl rlb(t) + k2~l"(t) = O. 

Fur thermore ,  k~ and k2 can be chosen so that  k~, k z e L ~ ( t 5 - a ,  ts) [we do 
not  claim that  k~ and k2 depend cont inuously  on t; of course, they do if the 
determinent  of  (2.32) is nonzero] .  

Let 

~(t, s) = kl(t)  ~b(s) + k2(t ) CU(s) and 

~(t, s) = k~(t) ~b(s) + k2(t) ~(s) .  

For  t5 - e ~< t ~< t 5 and all s e ~, we have ~(t, s) ~> 0, f rom the nonnegat ivi ty  
of (b(s), CU(s), k~, and k 2. We claim also that  

q(t,s)<~O for s<~t and ts-e<<.t<~ts. (2.33) 
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To prove (2.33), fix t and note that 8tl(t, s)/Ss <~ rtl(t, s) from the differential 
equation (2.24), and the nonnegativity of ~(t, s); then (2.33) holds because 
t/(t, t) = 0. 

Now consider the two expressions 

r~(t)---r ~(t)+r 

ft 
t 

- r  t~b ( s+l ) f ' ( y ( s ) ) t l~ (S )+(b( s+l ) f ' ( x ( s ) )~ ( s )ds  
-1 

where v = b or u. The quantity F~(t) represents the duality product between 
the solutions 

Tb(t)= (~b(t),(b(t)) and 2~(t)= (~(t),  q~(t)) 

of (2.24) and (2.27). In particular, F"(t) is constant, and letting t ~  + ~  
shows that F~(t)= F~+ ~ ) =  0 for all t~ R. Therefore, upon taking the 
linear combination 

k'(t)  Fb(t) + k2(t) r~(t)  (2.34) 

we obtain 

ob(t )=r ~bb(s+l ) f ' ( y ( s ) ) r l ( t , s )+(b( s+l ) f ' ( x ( s ) )~ ( t , s )d~  
1 

>~r Ob(s+l ) f ' ( y ( s ) ) t / ( t , s )ds  (2.35) 
- 1  

where (2.31) has been used. The inequality (2.35) can be rewritten as 

ft t+l qsb(t) = ~pb(s) A(t, s) ds + b(t) (2.36) 

where the kernel A(t, s) and the forcing function b(t) are both nonnegative 
in the appropriate range. Regarding (2.36) as an initial value problem for 
~lb(t), to  be solved backward in time, we see also that the initial datum, 
qjb(ts+O ), 0~<0~< 1, is nonnegative. An elementary result based on the 
existence theorem for (2.36) implies that the solution ~b(t) is nonnegative 
for ts-- e ~< t ~< ts. However, this contradicts (2.29). 

To complete the proof of Lemma 2.3, we consider the case in which 
both (2.29) and (2.30) hold. In this case, both t5 < t~ and t~< t 2 hold, and 
so we have both ~b(t)>0 and qb(t)<0 in some interval [ t s - -e , t  ]. 
Therefore, in addition to the functions k~ and k 2 obtained above, we may 
also obtain functions hi, h2 E L ~ 5 - e, ts) satisfying 

hi(t)  ~b(t) + h2(t) U( t )  = 0 

hi(t) rib(t) + h2(t ) qu(t) = 1 
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with hi(t)<~ 0 and h2(t ) >. O. Again taking the linear combination (2.34), we 
obtain (2.35); however, instead of deleting the term involving ffb(s + 1), we 
retain it and write 

ft t + l Cb(t)= ~b(s) A( t , s )+~b(s )B( t , s )ds  (2.37) 

where A(t, s) >>. 0 and B(t, s) <~ O. Similarly, replacing kx and k2 with hi and 
h2 gives 

ft t+ l ~b(t) = ~kb(s) C(t, s) + ~b(s) D(t, s) ds (2.38) 

where C(t, s)<<.0 and D(t, s)>~O. Treating (2.37) and (2.38) as a problem 
with initial data ffb(t 5 + 0) >~ 0 and ffb(t 5 + 0) ~< 0 for 0 ~< 0 ~< 1 yields, as 
before, ~b(t)~>0 and ~b(t)<~0 on I ts--e,  ts]. Again, this contradicts our 
assumptions (2.29) and (2.30). I! 

The following result completes this section. 

Lemma 2.4. Hypothesis H2' holds for the system (2.1)r. 

Proof. This result follows directly from Proposition 2.6, and Lem- 
mas2.2 and 2.3. | 

3. VERIFICATION OF H3 AND H4 

We first verify H4. We begin with the following technical lemma, 
which was presented in a slightly more general form as Lemma 4.2 in 
Mallet-Paret and Nussbaum (1986a). 

Lemma 3.1. There do not simultaneously exist nontrivial solutions 
(xl(t), yl(t)) and (x2(t), y2(t)), t ~ ~, of  (2.1)r such that 

x~(t)<~O, yl(t)>~O 

Ycl(t) >~ 0 and 

(Xl( + o(3), y l ( +  ~ ) )  = (0, 0) 

and such that 

x2(t)>~o, y2(t)<~o 
~2(t) ~> 0 and 

(x~(- ~), y~(- ~))= (o, o). 
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We remark that the resutt in Mallet-Paret and Nussbaum (1986a) 
concerned solutions defined on a half-interval J = ( - ~ ,  - T] or [ T, + 00 ). 
However, any solution of (2.1)r on ~, which vanishes identically on J, in 
fact vanishes identically on ~. Thus, the result reported by Mallet-Paret 
and Nussbaum implies directly the lemma above. 

L e m m a  3.2. Hypothes is  H4 holds for  the parametr i zed  sys tem (2.2)r.~. 

Proof, Let ~ J ~ *  and r J ~ r * > O  be as in H4, and X J ( t ) =  
(xJ(t) ,  yJ( t ) )  be a heteroclinic solution of (2.2)rJ,j connecting X-(cr  j) = 
( - b ( ~ J ) ,  a(cd)) to X+(~ j) = (a(~J), - b ( ~ J ) ) .  These solutions are uniformly 
bounded (by monoticity, as in Proposition 2.6) and hence any sequence 
XJ(t  + 0 r) of time translates has a subsequence converging uniformly on 
compact sets. [What is not clear is that the limit solution connects X-(a*)  
to X+(~*), nor that the convergence is uniform on •.] 

Fix e >0. Let t~'J< t z'j satisfy 

xJ( t l'j) = - b ( ~  j) + e 

xJ(t  2,j) = a(~ j ) - e 

and let t 3,j < t 4,j satisfy 

To prove our result, it is 
solutions, to show that 

yJ( t 3'j ) = a(~z J) -- e 

yJ( t 4'j) = -b(o~ j) + ~. 

sufficient, in view of the monotonicity of the 

max { t k ' J } - - m i n  {t k':} is bounded as j ~  +00. (3.1) 
k k 

We first show that t 2 , j -  t l'j is bounded. Assume that it is not, and 
consider the limits 

XJ( t  + t Lj) --+ X " * ( t ) =  (x"*(t), yl'*(t)) 
(3.2) 

XJ(t  + t 2'j) ~ X2,*(t) = (x2'*(t), yZ'*(t)) 

obtained from a subsequence with t 2 ' j -  t ' , J ~  +00. The monotonicity of 
the limit functions xk'*(t) and y~'*(t) implies that Xl '* ( t )  and xZ'*(t) are 
both heteroclinic solutions connecting some equilibria. The properties of 
t ''j and t 2'j imply that 

XI'*(O) = --b(~*) -]- g and 

-b(e*)  + e ~< xl"*( + oe) ~< a(a*) - e. 
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Necessarily then, X~'*(t) connects X - ( a * )  to (0, 0); in fact, for all t e  ~, 

x"*(t)<<, O, y~'*(t)>~O 

2t'*(t)>~O and (3.3) 

(xl,*( _~_ ~ ) ,  yl,*( _{_ OO)) = (0, 0). 

In a similar fashion, one shows that X2'*(t) connects (0, 0) to X+(e*), and 
that, for all t ~ ~, 

x2"(t)/> 0, y2,*(t) ~< 0 

~2'*(t) ~>0 and (3.4) 

(x2, ' ( -  oo), y2,*(- oo)) = (0, 0). 

However, the properties (3.3) and (3.4), and the fact that both solutions 
xl '*(t)  and X2'*(t) are nontrivial, immediately contradict Lemma 3.1. This 
completes the proof that t 2 , j -  t ~'j is bounded. 

A similar proof shows that t 4 , j -  t 3,j is bounded. 
To complete the proof of the lemma, assume that (3.1) fails: then, 

It 3 ' j -  tl'q is unbounded; taking the case t 3 J -  t l J >  0, and passing to a sub- 
sequence, we have in fact t 3 , j -  t t ' J ~  +oo. Now consider the limit X~'*(t) 
given by (3.2) (again with a subsequence). One has 

x~, ' ( -  oo) ~< -b (e*)  + e 

xl.*(+ oo) ~> a ( e * ) -  ~ 

)?l'*(t) ~> 0 for all t ~  

(3.5) 

since t 2 ' j -  t l'j is bounded, and 

y~"(t)>~ - b ( e * )  + e and 

~l'*(t) ~< 0 for all t ~  
(3.6) 

because t 3 ' : - t l ' J ~  +oo. However, (3.5)and (3.6)are together impossible 
as X 1'* (___oo) are both equilibria. This contradiction completes the 
proof. | 

We now obtain the bounds O<rm<~r<~r M that establish H3. For 
simplicity, we suppress e and work with the system (2.1)r, making the easy 
observation that the estimates obtained are uniform in e e L 

Lemma 3.3. Hypothesis H3 holds for the system (2.1)r. 
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Proof. Assume that  r m does not  exist; then there is a sequence r j -~  0 
and a sequence X J ( t ) =  (x~(t), yS(t)) of heteroclinic solutions of (2.1)rj 
connecting X to X +. Assume, without loss, that xJ(O)=c=a/2. Set 
X)(t)=XJ(t/rO; then, XJ(t)=(2s(t), ~J(t)) is a heteroclinic solution of 
(1.1)rJ connecting X -  to X +. There exists a subsequence ~'J(t)-~ 2 * ( 0 =  
(ff*(t) ,)*(t))  converging uniformly on compact subsets of ~, where .~*(t) 
satisfies the system of ordinary differential equations 

2 = x - f  (y) 

= y -- f(x). 

Examining the system at t = 0 and using the monotonicity of 2*(t) and 
y*(t) ,  we have 

0 ~< }*(0)  = 2*(0)  - f(33*(0)) 

0 ~> ~*(0)  = fi*(0) - f ( 2 * ( 0 ) ) .  

But then, using the monotonicity off ,  we have, with the above inequalities, 

f ( f (c))  = f ( f ( f f * ( 0 ) ) )  ~< f()~*(0))  ~< 2*(0)  = c 

contradict ing B5. 
We now give a direct construction of the upper bound r ~. Fix positive 

constants  ~, 7~, and 72 such that  

If(x)--a[ ~71 I x + b [  if I x + b l  ~<e 

]f(x)+bl<~72[x-a[ if [x-al<<.e 

and such that  [-recall O<.f '(a)f ' (b)< 1] 

71~2 < 1. 

Let X(t) = (x(t), y(t)) be a heteroclinic solution of (2.1)r connecting X -  to 
X + and set u(t )=x( t )+b and v ( t )=y( t ) -a .  Note  the bounds  and 
monotonic i ty  condit ions 

O<~u(t)<~a+b, fi(t)>~O 

- ( a + b ) ~ v ( t ) ~ O ,  b(t)<~O 

which ' hold  for all t z ~. Since (u(t), v( t ))~ (0, 0) as t ~ - o %  we may  
assume by means of a t ime translat ion that  

[u(t)l, Iv(t)[ ~<e for all t~<0, and 

max{lu(0)] ,  Iv(0)[ } = e. 
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Now restrict t ~ [0, 1 ] and use the above properties to obtain the following 
estimates. First, 

~(t)  = ru(t)  - r [ f ( a  + v(t  - 1)) + b] 

ru(t)  + ry2v(t  -- 1) 

>~ ru( t )  + ry2v( t )  

and similarly 

Therefore, 

b(t) ~ rv( t )  + r?l u(t).  

(1 + 7~) ~(t) - (1 + 72) 6(t)/> r(1 - y~yz)(U(t)  - v( t ) )  

~> r(1 --71 y2)(U(0)- /)(0)) 

>~er(1--7172) 

so integrating from t = 0 to 1 gives 

(1 + 71) u(1) - (1 + ~)2)/)(1) > er(1 - 7,72). 

From the bounds on u(t)  and v(t) ,  we obtain 

(2 + Ta + Y2)(a+b)>.- '~r(1 --7,72) 

which gives the desired bound r M for r. II 

4. C O N S T R U C T I O N  O F  T H E  H O M O T O P Y  A N D  
V E R I F I C A T I O N  O F  H I  

We first construct a nonlinearity f (x ,  O) for which H1 holds. Then, we 
construct a homotopy f ( x ,  c~) between f ( x ,  O) and our given function 

f ( x ,  1). 
The trivial function, at e = 0, will be odd: 

f ( - x , O ) =  - f (x ,O)  forall x e ~ .  

We begin by showing that all heteroclinic solutions for such a nonlinearity 
enjoy a corresponding symmetry property. 

Proposition 4J.  Let f satisfy B1-B5. Assume also t h a t f i s  odd: 

f ( - x )  = - f ( x )  for all x~  ~. 
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Then any heteroclinic solution X(t)=(x(t),  y(t)) of (2.1)r 
X - =  (--a,  a) to X + =  (a, --a) necessarily satisfies 

y(t) = -x( t )  for all x ~ R. 

In particular, x(t) is a heteroclinic solution of the equation 

~(t) = rx(t) + r f ( x ( t -  1)) 

connecting the equilibrium x = - a  to x = a. 

connecting 

Proof. Let u(t )=x( t )+y( t )  where (x(t),y(t)) is a heteroclinic 
solution of (2.1)r connecting X -  to X +. We first show that there does not 
exist to ~ R such that 

u(t) > 0 for all t~[to, to+l]. (4.1) 

Suppose in fact that (4.1) holds for some to. Then, for t~ [ to+  1, t 0 + 2 ] ,  
we have 

~ ( t )  = r u ( t )  - r [ f ( x ( t -  1)) + f ( y ( t -  1))3 

>1 ru(t)-  r[f(x(t--  1)) + f ( - x ( t -  1))] 

= ru(t) (4.2) 

and so both u(t) and ~(t) are positive in [ to+  1, t 0 +2 ] .  By induction, we 
see that u( t )~  +oo as t ~ +o% which is a contradiction. A similar proof 
shows that there does not exist to ~ ~ such that u(t)< 0 in [-to, to + 1 ]. 

Now fix positive quantities e and y such that 

If ' (x)l  ~<7< 1 if [x+al~<e. (4.3) 

Also assume (by a time translation) that 

[x(t)+a[<<.~ and [y(t)-a[<~e for all t ~ < - l .  (4.4) 

It is enough to show that u(t)= 0 for all t ~< 0, for then integrating the first 
equation in (4.2) shows that u(t) -= 0 for all t e ~. Assume then that u(t) is 
not identically zero on ( - ~ ,  0]. From the oscillatory behavior of u(t) 
obtained in the beginning of our proof, there exists t~<0  such that 
~ ( t l )=0 .  Without loss, U(t l)>0.  From (4.2), 

u(tl) = f ( x ( t l -  1 ) ) + f ( y ( t l -  1)) 

= f ( x ( t ~ -  1 ) ) - f ( - y ( t ~ -  1)) 

= f ' ( a )  U(tx-- 1) 
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for some a between x ( t ~ - 1 )  and - y ( t l - 1 ) .  From (4.3) and (4.4), it 
follows that 

u ( t  I - -  1) : u ( t l )  ~ - -  u(/I'-~) < O, 

f ' ( a )  7 

Let z < tl - 1 < z' < tl be such that u(t) < 0 on (z, z'), with u(z) = u(z') = 0. 
Let t2 e (z, z ')  be the point  in that interval where u(t) attains its minimum: 

u(t2)= min u(t)<~u(t 1 - l). 
[~, r'3 

We have f i ( t2 )=0  and [u(t2)[~lu(tl)[/7.  By induction, we can find a 
sequence t I > t 2 > .-. such that 

>. lu(t~)l --, 
lu(t,)l ~ T~_ 1 + ~  

as n ~ + ~ .  This contradicts the boundedness of  u(t). | 

We now construct  the trivial function f ( x ,  0), for which H1 will hold. 
Let g: ~ ~ ~ satisfy B1-B5 and assume also that g is odd:  

g ( - x ) = - g ( x )  for all x ~ .  

Assume in addit ion that 

g ( x ) =  - a  foral l  x ~ ( a ,  +oo). 

Keeping g fixed for the remainder  of this section, we let 

ge(x)  = g(x/fl) 

for some fl ~ (0, 1) to be chosen later, and study the equation 

Yc(t) = rx(t)  + rg~(x(t - 1)). (4.5)r 

We shall show that, if/~ is small enough, then H I  holds for a h o m o t o p y  
constructed with f ( x ,  O) = g ' (x ) .  

Lemma 4.1. I f  x ( t )  is a heteroclinic solution o f  (4.5)r connecting - -a  
to a, then 

r > (1 - 2/~)/3. (4.6) 
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Proof. Let X(to)=a/2.  Then, from the monotonicity condition 
~(t)/>0, and from the differential equation, we have :~(t)~< r ( a / 2 + a ) =  
3ra/2 for all t~< to, and hence X ( t o - 1 ) / >  ( 1 -  3r)a/2. Therefore, 

g~( (1  - 3r)a/2) >~ g~(x(t o -  1))  ---1 :~(to) - X(to) >~ a 
r 2 

which implies that ( 1 -  3r)a/2 </3a, which is equivalent to (4.6). ] 

Lemma 4.2. There b a constant 0 < fl0 < 1, independent o f  r, such that, 
i f  0 < fl <~ flo and i f  x ( t )  is a heteroclinic solution connecting - a to a, then 
t2 - tl <~ 1 where x ( t l )  = -/3a and x(t2) =/3a. 

Proof .  
~(t) = rx(t)  + ra, so, without loss, 

x( t )  = - a  + e rt (4.7) 

for this range of t. Now x( t~)= - a  + e r "=  -/ /a ,  and hence 

er~l= (1 -/~) a. (4.8) 

Also, 

x( t l  + 1)= - a + e  rl~+ll 

= - a +  (1 - /3)  ae r (4.9) 

>~ - a  + (1 - /3)  a exp[(1 - 2/3)/3] 

using Lemma 4.1. There exists /3o such that, if 0 </3 ~</30, then the right- 
hand side of (4.9) is greater than or equal to fla. This is equivalent to 
t 2 - t~<~ l .  | 

If t<<.t~+ 1, then the differential equation (4.5)r becomes 

Lemma 4.3. I f  O </3 ~</3o, there exists a unique r such that (4.5)r has a 
heteroclinic solution connecting - a  to a. Furthermore, this heteroclinic 
solution is unique. Thus, H1 holds for  Eq. (4.5)r. 

Proofi With tl and t2 as in Lemma4.2, and (4.7) holding for 
t <~tl + 1, we have x(t2) -- - a  + e r'2 =/3a; hence 

er'2= (1 +/~) a 

Also, 2(t) = rx(t)  - ra for t/> t2 + 1, and hence 

x(t2 + 1)=a .  

(4.10) 

(4.11) 



Transition Layers for Delay Differential Equations 31 

Integrating the equation (e rZx(t)) = r e - ' g ~ ( x ( t -  1)) from t~ + 1 to t2 + 1, 
and using (4.8)-(4.11), we have 

e-r ( '2+l )a-e -a t~+l )[ -1  + ( 1 - - f l )  e r] a 

2e r [,2 
1 - f 1 2  1 = re -~ ". e -"ga(x(s)) ds 

f ~ g( x ) dx 
= & - ~  -o ( a + ~ x )  2 

and so 

2 d f~ g(x) dx. e r -  _ _  

1 _ ~  ~ _ ( a + ~ x )  ~ 

This uniquely determines r as a function of ft. It is also easy to see that, for 
this value of r, Eq. (4.5)r has a unique heteroclinic solution. | 

To complete this section, we construct the homotopy f ( x ,  ~) between 
the trivial function f ( x ,  0 ) =  g~(x) and our given function f ( x ,  1). We 
construct f ( x ,  or in two parts, beginning with the range �89 ~< er I. 

With the period two points - b  and a as in B2 for the given function 
f i x ,  1), let k(x, or be a C 1 function k: N x [! ,  1] -~ R satisfying the follow- 2 
ing properties for all x and :r 

k(0, ~ ) = 0  and k(x, 1 ) = x  

Ok(x, o~) > 0 
8x 

lira k(x, ~)=  _4-oo (4.12) 
x ~ _ + o o  

k ( - b ,  �89 - a  and k(a, !) 2 = a and 

ak (x ,  �89 = o. 
&r 

Thus, as a function of x, k(x, ~) is a diffeomorphism of ~ onto ~, for each 
fixed ~. Let h(x,:O denote the inverse diffeomorphism, that is, 
k(h(x, ~), :r = x for all x and ~, and set 

f ( x ,  oc)=k(f(h(x,  :r l ),:r for x ~ N  and �89 

It is elementary to verify that B1-B5 hold for f (x ,  :r for each ~, but with 
b(: 0 = - k ( - b ,  :r replacing b in B2. Note b(�89 a. 
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To construct the homotopy in the range 0 ~< ~ ~ �89 we assume fl is such 
that If(x, �89 ~< Ig~(x)l for Ixl ~<a. This is certainly the case if fl is small 
enough. Note also that If(x, �89 >~ Ig~(x)[ for Jxl >~a. Let p(a) be a C ~ 
function p: [0, �89 --* [0, 1] satisfying 

p(0) = 0 and 

and set 

p(�89 = 1 

p'(a) >10 and 

p'(�89 

f ( x ,  a) = p(a) f (x ,  �89 + [1 - p(a)] f ( x ,  O) 

(4.13) 

where f ( x ,O)=g~(x ) .  Again, it is easily verified that B1-B5 hold 
throughout 0 ~< ~ ~< �89 In particular, to verify B5, one uses the monotonicity 
o f f (x ,  e) in ~ for fixed x in the ranges ( - m ,  - a ] ,  [ - a ,  0], [0, a], and 
[a, + ~ ) .  Finally, note that f (x ,  e) is smooth in ~ at cr �89 by (4.12) and 
(4.13). 

With the exception of the proof of Proposition 2.6 (given in the next 
section), this completes the proof of our main result, Theorem 2.1. 

5. P R O O F  OF P R O P O S I T I O N  2.6 

This section is devoted to the proof of Proposition 2.6. It is easier to 
work with the system 

2(t) = x(t) - f ( y ( t -  r)) 

~(t) = y(t) - f ( x ( t  - r)). 
(5.1)r 

Throughout this section, we assume that X(t) = (x(t), y(t)) is a heteroclinic 
solution of (5.1), connecting X -  to X +. 

Lemma 5.1. range (x)=  range ( y ) =  I - b ,  a]. 

Proof. Let 1= range (x) and J =  range (y). Clearly I and J are non- 
empty compact connected sets satisfying [ - b ,  a] _ / ,  J. Denote 
I =  I--b*, a*] where a*~> a and b*~> b, and choose a sequence t ie  ~ such 
that 

x(tJ) ~ a *  = s u p  x(t). 

As x(t) is equicontinuous on R [since x(t) is uniformly bounded, by the 
differential equation], we have ~(ti)--*0; hence, f ( y ( # - r ) ) ~ a * .  As 
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y ( t J - r ) s J ,  we conclude a * s f ( J ) .  Similarly - b * ~ f ( J )  and so I~_f (J)  
since f ( J )  is connected. Likewise, we have J~_f(1), and so 

[ - b ,  a] c_ I~_f ( f ( I ) ) .  (5.2) 

The inclusions (5.2) and the properties o f f  easily yield I =  I - b ,  a] as 
claimed. In a similar fashion, J =  I - b ,  a]. | 

Lemma 5.2. There exists T s  ~ such that 

Proof. 
5.1. I 

2(t) > 0 

This follows 

and )~(t)<0 tf  t ~ < - T .  

immediately from Proposition 2.5 and Lemma 

Fix a constant c > 0, and set 

u( t )  = x ( t  + c)  - x ( t )  

v(t) = y(t  + c) -- y(t). 

Observe that (u(t), v(t)) satisfies the system 

and 

~ ( t ) = u ( t ) + g ( t ,  v ( t - r ) )  

6 ( t )=v ( t )+h( t ,  u ( t - r ) )  

where 

g(t, v) = --f(v + y ( t -  r)) + f ( y ( t  -- r)) 

h(t, u) = - f ( u  + x(t  - r)) + f ( x ( t  - r)). 

Note also that the functions g and h satisfy 

g(t,  o) = o, 

h(t, O) = 0 

and vg(t, v) >~ 0, 

uh(t, u) >~ 0, 

for any (t, v), (t, u) E N2, and that 

u(t) > 0 and v(t) < 0 if t < ~ - T - c  

lira (u(t), v(t))= (0, 0). 
t ~  _+oo 

(5.3) 

In what follows, think of c > 0 as fixed, but arbitrary. A precise value 
of c will be chosen later. 

865/1/1-3 
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Lemma 5.3. (a) Suppose for some t* ~ R and ~ > 0  that 

u(t*) = 0 and u(t) > 0 if  t E ( t * , t * + e ] .  

Then there exists a sequence #J > 0, #J--* 0 such that 

v(t* + # J - r ) > O .  

(b) Suppose instead that 

u(t*) = 0 and u(t) > 0 if  t ~ [ t * - ~ , t * ) .  

Then there exist #i > O, #J ~ 0 such that 

v(t* - # J -  r) < 0 (note the sign reversal here). 

(c) Each of the above two results holds if  the inequalities for u and v 
(but not y >  O) are reversed. 

(d) Also, the roles of  u and v may be exchanged in the above results. 

Figure 3 illustrates two of the situations described in Lemma 5.3. In 
fact, the pictures are a bit deceiving, as v(t) need not be positive/negative 
on an interval to the right/left of t * - r ,  but only for some sequence 
y ~ t * - r .  

Proof. (a) Suppose that the conclusion is false; then, 

v(t-r)<<.O for all t ~ [ t * , t * + # ]  

for some # > 0. For  this range of t, we have 

~(t) = u(t) + g(t, v ( t -  r)) ~ u(t) 

u ~ t  
t* 

~ t  

\ 
tk 

( 

) 

(a) 

t * - - r  

/ > t  

v 

J 
t~- - r  

Fig. 3 
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and since u(t*)=O, we conclude f rom this differential inequality that  
u(t) <~ 0 on I t* ,  t* + #] .  This is a contradict ion.  

The proofs  of (b), (c), (d) are similar. ] 

Remark. We need not  assume u(t) > 0 on (t*, t* + e] in L e m m a  5.3. 
It  is enough to assume that  u ( t * + e Q > 0  for some ~ J > 0 ,  e J -*0 ,  and 
u(t*)=O, to make  the same conclusion in (a); and similarly for (b), (c), 
(d). 

Lemma 5.4. Define the zero sets 

Z~= { t e ~  l v( t )=O} 

of  the functions u and v. Then, any bounded interval contains only finitely 
many connected components o f  Z u. The same conclusion holds for Z v. 

Remark. The above  result holds for any fixed c > 0, as the functions 
u and v, and hence the sets Z ,  and Zv, depend implicitly on this parameter .  
We do not  claim any uniformity in the number  of componen t s  as c varies. 

Proof. Define sets Au and B u by 

A u = { t* e ~ I there exist t J ~  t* monotonical ly ,  with u(t 2k) > 0 

and u(t 2k + 1) < 0} 

Bu = {t* e ~ ] there exist t j --* t* monotonical ly ,  with u(t z*) = 0 

and u(t 2k + 1) # 0} 

and sets A v and B~ in an analogous  fashion. We allow the sequence t j to be 
either monotonica l ly  increasing or decreasing. Observe  that  

A ~ _~ B u _~ Zu and 

A ~ B ~ _ Z ~ .  

One easily sees that  it is sufficient to prove  

Bu= B~= (3 

in order  to prove  the proposi t ion.  And in order  to prove t h a t  B u and By are 
empty ,  it is enough to prove  the implicat ions 

t * ~ B ,  i m p l i e s t * - r s A ~  and 

t* ~ B,  implies t* - r E A~. 
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The reason for this is that, if t*~ Bu, then the above two implications 
would yield t* - 2nr ~ Au for each n >~ 0, contradicting (5.3). 

We shall only prove the first implication. Assume, therefore, that 
t*~ B,. We shall show that t * - r ~ A v .  To be definite, assume t j (as in the 
definition of Bu) decreases to t* and consider the points t 2~ + 1. Each t 2k + 1 
lies in a maximal interval (a k, ~ )  on which u(t) # O, and which approaches 
t* as k ~ oo. That is, 

u( t )#O if t e ( a  k,zk) 

u(~ ~) = u(z k) = 0 

t* <~ t7 k < Z k and 

T k --4- t*.  

Lemma 5.3 applied at the points a k and z k (not at t*) shows that there 
exist ffk and ~ satisfying 

ak < ~?k < ?k < zk and 

v(ff k -  r) v(? k - r )  < 0. 

Thus, v(t) changes sign infinitely often to the right of, and arbitrarily close 
to, t * - r ;  hence, t * - r ~ A  v as claimed. This completes the proof of the 
lemma. | 

If I and J are nonempty closed intervals (or points), we write I < J  to 
mean s < t for each s ~ I and t e J. 

Lernma 5.4, together with the fact that u ( t ) > 0  for all t < ~ - T - c ,  
imply that the set Z ,  has the form 

p 

Z u =  U F, 0~<p~<oo, or 
j = l  

Z , =  U u I * ,  O~<p< oo 
j l 

where 

P = [e J, flJ] is a nonempty compact interval or point 

I* = [a*, oo] for some ~* 

P < U + 1 and /J < I* whenever these intervals exist, 

aJ, f l J ~  if p = m .  

and 
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Similarly l~  has the form 

q 

Z ~ = ~  J J, 
j = l  

Z~= JJ ~ J*, 
j 1 

where 

Let 

Y =  [7 j, aq  

J * =  [~*, cx3) 

j j < j j + l  

~, J, 6 J -+ co if 

0 4 q ~ ,  

and 

q = o o .  

37 

o r  

O ~ q < ~  

JJ < J *  a n d  

N v ( d ) - N u ( d - r ) ,  where d = i n f { 6 e D l t < ~ 6 }  

if this exists, or  

c a r d D - c a r d B  if 6 < t  for all 3 ~ D .  

and 

v ~ ( t )  = 

V,, Vv: ~ ~ { - o%..., - 2 ,  - 1, 0, I, 2,... } by 

N u ( b ) - N v ( b - r ) ,  where b = i n f { f l e B [ t < ~ f l }  

V,(t) = if this exists, or 

c a r d B - c a r d D  if f l < t  for all f l e B  

and also define 

B = {~J};= 1 and D = {SJ}q= 1 

denote  the sets of r ight-hand endpoints of I j and J J, respectively; thus, B 
and D are discrete subsets of lir that are bounded below. Motivated by the 
integer-valued Lyapunov  function defined in Mallet-Paret  (1988), we define 
functions 

Nu, Nv : ~ --* {0, 1, 2,... } 

Nu(t) = card((  - ~ ,  t ] n  B) and 

Nv(t) = card(( - ~ ,  t] m D) 
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It is obvious that Nu and N~ are nondecreasing functions of t. What is not 
so obvious is that Vu and V~ are nonincreasing functions of t. 

L e m m a  5.5, I f  t l < t 2, then 

Vu(tl)>~ V=(t2) and Vo(tl)>~ V~(t2). 

Proof. We consider only Vu. By examining the definition of V u, one 
sees that it is enough to prove that 

Vu(flO>>. Vu(fl /+1) foreach j < p .  

One has from the definitions 

Vu(fl j)  _ Vu(fl/  + 1) = Nu(f l j )  _ N , ( f l j  + 1) _ N v ( f l / _  r) + N~(fl j +1 _ r) 

= - 1  - No(fl  j -  r) + N , ( f l  / + 1 _ r) 

= - 1  + c a r d ( ( / P -  r,/~J + 1 _ r]  n D). 

Hence it is enough to show that 

( f l i - r ,  f l J + l - r ]  c ~ D # ~ J .  

This follows easily from Lemma 5.3 by examining the signs of u(t)  to the 
right of flJ and the left of a j + 1 ~< flj + 1. One concludes that v( t )  changes sign 
at least once in the interval ( f l J -  r, aJ + 1 _ r) _ ( /?J-  r,/~J + 1 _ r] ;  hence, 
this interval contains a point of D. I 

L e m m a  5.6. For  all t ~ ~,  one has V , ( t )  <~ 1 and V~(t) <<. 1. 

Proof. If B = ~b, then Vu(t)  ~ 0 for all t, from the definition. If B r r 
then V,(t)<~ V,,(fl 1) for t>~fl 1, and Vu(t) = Vu(fl 1) for t<~fl 1. Thus, 

V u ( t ) ~  V u ( f l l ) ~  Nu([~l) = 1 

holds for all t. The proof for V, is similar. | 

Because Z .  consists of discrete sets of intervals, it is possible to divide 
the compact intervals I / into two classes: those on which u(t)  changes sign, 
that i's, 

u(aJ--t3) U([~J"~-E)<O for small ~ > 0  

and those on which it does not, 

u ( a : - ~ )  u(flJ+ a) > 0  for small g>O. 
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f ~ J  ~J ~J 3i 

Fig. 4 

Similarly, the intervals j s  in Zv fall into these classes. See Fig. 4, where such 
intervals are depicted. 

The next lemma says that Vu (or V~), if positive, must strictly decrease 
if t passes an interval that is not a sign change. 

Lemma 5.7. 
either side, near P; that is, 

u(aJ- ~) u(flJ+~)>0 

Then, 

Let  IS= [a s, flJ] be such that u(t) has the same sign on 

fo r  small e>0 .  

A similar result holds f o r  the function V, for  intervals J J =  [7 j, 6J] on which 
v(t) does not change sign. 

Proof. First suppose that j~> 2. In view of Lemma 5.6, it is enough to 
prove the strict inequality 

vu(/~J) < v.(~+- 1). 

As in Lemma 5.5, we have 

Vu(fl s - ~ ) - Vu(fl j) = - 1  + card((fl s-1 - r, fl i - r ] riD). 

We must therefore show that ( f ls-  1 _ r, f l s _  r] contains at least two points 
of D. There is one point (at least) of D in (fis l _ r ,  a S _ r ) ~  - 
( y  1 _ r, f l J -  r], as in Lemma 5.5; we claim that [a j -  r, f l J -  r] contains 
another, necessarily different, point of D. This claim follows from 
Lemma 5.3: since u(t) has the same sign on either side of [a J, fls], v(t) has 
opposite signs on either side of [a j -  r, f l J -  r]. Thus, jk ___ [a j _  r, f l J -  r] 
for some k; hence, [a j -  r, flY- r] c~ D ~ ~ as desired. 

Now suppose that j = 1. We have 

V,(fl  1) = Nu(f l ' )  - N,( f l  I - r) 

= 1 - N . ( f l ' - - r )  

= 1 - c a r d ( ( - ~ ,  f l l _ r ] n D )  
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and so must prove that ( - ~ ,  f l i - r ]  c ~ D v ~ .  This holds as in the case 
above, since [ a ' - r ,  f l ' - r ]  c ~ D r  Thus, V~(fll)~<0, completing the 
proof. | 

Lemma 5.8. I f / J =  [aJ, flJ] is as in Lemma 5.7, then dist(fl j, D)i> r. 
The analogous result for JJ= [7 j, 6 j] and B holds. 

Proof. Suppose that hfls-Sg I < r  for some 5~eD. Consider 

Vu(fl j) + Vv(6 k) = U,(flO - N=(6 g - r) + Uv(6 k) - Nv(fl j - r) 

= card((6 k - r, flJ] c~ B) + card((fl j - r, 6 g] c~ D) 

~ > 1 + 1 = 2  

where 6 k - r < flJ ~ B and f l J -  r < 6 k ~ D are used. However, by Lemmas 5.6 
and 5.7, 

V~(fl s) + Vv(5 k) <. 0 + 1 = 1 

is a contradiction. | 

Lemma 5.9. There does not exist an interval U =  [~J, flJ] as in 
Lemma 5.7, that is, one on which u(t) does not change sign. There likewise 
does not exist JJ on which v(t) does not change sign. 

Proof. Suppose that F exists as stated. For definiteness, suppose that 

u ( t )>0  if te(flJ, f lJ+e] 

for some e > 0. Lemma 5.3 implies that v( t )> 0 at some point t = f l J + / ~ -  r 
close to, and to the right of, f l J - r .  This and the fact that 
( f l J -  r, flJ + r) c~ D = ~ (which follows from Lemma 5.8) implies that 

v(t)>jO if t ~ [ f l J - r ,  flJ+r]. 

Therefore, fi(t) >/u(t) for all t e [flJ, flJ + r], implying that 

u( t )>O if t~(flJ, f l J+r ] .  

since u(t) > 0 holds immediately to the right of flJ. 
As in the proof of Proposition 2.5, one easily shows by integrating the 

differential equations for u(t) and v(t) on steps of length r, and using the 
inequalities ug(t, u) >~ 0 and vh(t, v) >~ O, that fi(t) >~ u(t) > 0 for t > flJ. This 
contradicts the boundedness of u(t). | 
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Proof of Proposition 2.6. We shall show first that ~(t) >~ 0 for all t. In 
fact, we prove strict monotonicity of x(t) for a certain range of t. Fix e > 0 
sufficiently small, and let t~ < t 2 be the numbers uniquely determined by the 
conditions 

x ( t l )=  - b  + e 

x(t2) = a - e and 

- b + ~ < x ( t ) < a - e  if t~( t l , t2) .  

Define the set 

C = {c > 0 I x(t) = x(t  + c) for some t satisfying tl ~< t < t + c ~< t2} 

and observe that C~_(O, t z - t ~ ]  is closed in the relative topology of 
(0, t 2 -  t~]. We show that C = ~ ,  thereby proving strict monotonicity of 
x(t) in (t~, t2). Suppose that C ~  and let c * - - s u p  C. As c*~C,  we may 
choose t = t* as in the definition of C, that is, 

x(t*) = x ( t *  + c * )  

with t* and t * +  c* both between t~ and t2. In fact, the strict inequalities 

tl <t* <t* +c* <t2 

hold from the properties of t~ and t2. See Fig. 5. 
Consider now the function u ( t ) = x ( t + c * ) - x ( t )  in the interval 

I =  (t 1, t2 - c*). Clearly, t* E I and u(t*) = 0. We claim that 

u(t) >i 0 at each t E L (5.4) 

If this claim were false, then u(7) < 0 would hold at some 7~/,  giving 

x(~ + c*) < x(7) < x(t2). 

- b  

Fig. 5 
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Then there would exist ? e  (c*, t 2 - t )  such that x (7 )=x(?+?) .  However, 
? e  C would hold, contradicting the definition of c*. This establishes (5.4). 
From this we see, upon evaluating u(t) at the endpoints o f / ,  that 

u( t ) >~ O at each t e l  

u(t) > 0 at the endpoints of/ ,  

u(t*)=O at some t* eL  

and 

However, the above three relations immediately contradict Lemma 5.9, as 
they imply the existence of an interval I j c_ I as in Lemma 5.7. With this 
contradiction, the monotonicity of x( t )  in (tl, t2) is proved. In fact, as e is 
arbitrary and 2 ( t ) > 0  for sufficiently negative t, we have shown that 
2(t)>~O for all t and x( t )  is strictly monotone as long as x ( t )<  a. The 
analogous result for y(t),  of course, also holds. 

To complete the proof of the proposition, assume 2 ( 0  = 0 for some t; 
let to be the first such time. It is enough to show 2(t)~< 0 for all t ~> to, for 
that would imply 2 ( 0  -= 0; hence, x( t )  = x( + oe ) = a for all t ~> to. Denoting 
k ( t ) = - f ( y ( t - 1 ) ) ,  we note that k( t )  is nonincreasing in t; hence, 
k(t)  <~ k(to) for t >~ t 0. Also, 

:c(t) = x ( t )  + k( t )  

and so X(to)= -k ( to ) .  Therefore, 

f' 
x( t )  = - k ( t o )  e' ,o + e ' - ' k ( s )  ds. 

" tO 

Hence, 

ff :c(t) = - k ( t o )  e' ,o + k( t )  + et-Sk(s)  ds 
o 

= k(t)  - k(to) + e ' - 'Ek ( s )  - k(to)] ds 
o 

~<0 for t>~to. 

This completes the proof. I 
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