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Abstract. We study the traveling wave solutions for a system of coupled KdV equations derived

by Lou et al [11]. In that paper, they found 5 types of Painlevé integrable systems for the coupled

KdV system. We show that each of them can be reduced to a partially or completely uncoupled

system, through which the dynamical behavior of traveling wave solutions can be determined. In

some parameter regions, exact formulas for periodic and solitary waves can be obtained while in

other cases, bounded traveling wave solution are discussed.

1. Introduction

The KdV equation is an important model for dispersive waves [1, 14]. There has been some

interest in coupled KdV systems [4, 5, 6, 9, 12, 13]. In this paper we consider the coupled KdV

system,

(1.0)
A1T + α1A2A1X + (α2A

2
2 + α3A1A2 + α4A1XX + α5A

2
1)X = 0,

A2T + δ1A2A1X + (δ2A
2
1 + δ3A1A2 + δ4A2XX + δ5A

2
2)X = 0,

where the ten constants {αi, δi, i = 1, 2, 3, 4, 5} are arbitrary. This system is derived by Lou et

al in 2006 [11] from a two-layer fluid model which is used to describe the atmospheric and oceanic

phenomena such as the atmospheric blockings, the interactions between the atmosphere and ocean.

Under the condition α4 = δ4 = 1, they obtained five types of Painlevé-integrable coupled KdV

systems:

P-integrable model 1

(1.1)
A1T + [A1XX − (c0 + 3)(c0 + 6)A2

1 − c2
0A

2
2]X + 2c0[(c0 + 6)A1XA2 + (c0 + 3)A1A2X ] = 0,

A2T + [A2XX − c0(c0 − 3)A2
2 − (c0 + 3)2A2

1]X + 2(c0 + 3)[c0A2A1X + (c0 − 3)A1A2X ] = 0.

P-integrable model 2

(1.2)
A1T + (A1XX +

1

2
(c2 − c1 − c1c2)A

2
1 + c1A1A2 −

1

2
A2

2)X = 0,

A2T + (A2XX +
1

2
(c1 − c2 − 1)A2

2 + c2A1A2 −
1

2
c1c2A

2
1)X = 0.
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P-integrable model 3

(1.3) A1T + (A1XX + A2
1 + A1A2)X = 0, A2T + (A2XX + A2

2 + A1A2)X = 0.

P-integrable model 4

(1.4) A1T + [A1XX + (A1 + A2)
2]X = 0, A2T + [A2XX + (A1 + A2)

2]X = 0.

P-integrable model 5

(1.5) A1T + [A1XX + A2
1]X + 2A2A1X = 0, A2T + [A2XX + A2

2]X + 2A1A2X = 0.

In this paper we are interested in the existence and exact expression of the traveling wave solutions

of (1.1) and some dynamical behavior of these solutions such as whether the solutions are solitary,

periodic or bounded solutions.

Note that the way to write (1.0) is not unique. Instead of A2A1X , one can leave A1A2X terms

outside of the divergence forms. With α4 = δ4 = 1, we will use an equivalent form to (1.0):

(1.6)
A1T + A1XXX + a1A1A1X + a2A1A2X + a3A2A1X + a4A2A2X = 0,

A2T + A2XXX + b1A1A1X + b2A1A2X + b3A2A1X + b4A2A2X = 0.

If we set

U = (A1, A2)
τ , Q1 =





a1 a2

a3 a4



 , Q2 =





b1 b2

b3 b4



 ,

where τ denote the transpose of a vector, then the nonlinear terms of the equations can be written

as bilinear forms,

UτQ1UX , UτQ2UX .

In the case that the matrices Q1 and Q2 are symmetric, we can express the bilinear forms as

divergence of quadratic forms:
1

2
(UτQ1U)X ,

1

2
(UτQ2U)X .

There are many results concerning simultaneously co-diagonalize symmetric matrices, see [8], that

will be used in this paper to further simplify the quadratic forms.

If the coupled system of KdVs UT + UXXX + F (U,UX), U = (A1, A2)
τ has a traveling wave

solution with the wave speed c, then in the traveling coordinate ξ = X − cT , U = U(ξ) and satisfies

a system of ODEs:

(1.7) −cU ′(ξ) + U ′′′(ξ) + F (U,U ′) = 0.

If U is a traveling periodic or solitary wave of the PDE system, then U(ξ) is a periodic or homoclinic

solution of the corresponding ODE system. Throughout this paper, the higher order system (1.7)

is associated to a first order system by introducing auxiliary variables (U,U ′, U ′′) in the standard

way. We say U0 is an equilibrium for (1.7) if (U0, 0, 0) is an equilibrium for the associated first order
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system. We say U(ξ) is a homoclinic solution to (1.7) if (U(ξ), U ′(ξ), U ′′(ξ)) is a homoclinic solution

to the associated first order system, etc. This convention also applies to any coupled second order

system of equations.

In Section 2, we treat the general coupled KdV system (CKdV) and P-integrable model 1. Fol-

lowing Lou et al [11], we identify an invariant subspace on which the system reduces to a single KDV

equation. For the P-integrable mode 1, we show that the system can be partially decoupled. The

reduced system is equivalent to the reduced system of the P-integrable models 3 and 5. Detailed

description of the traveling waves are deferred to section 4 where the P-integrable models 3 and 5

are discussed.

In section 3, we treat the P-integrable mode 2 which is in the divergence form. The corresponding

bilinear forms are symmetric. Using standard matrix algorithms, we introduce a method that can

remove the non-diagonal terms of the quadratic forms. For the P-integrable model 2, the reduced

system consists of two uncoupled equations. The method may be used on non-P-integrable system

as long as the original system (1.0) is in divergence form.

The P-integrable models 3, 4 and 5 can be simplified by some change of variables and are treated

in section 4. We show that the P-integrable model 4 can be completely decoupled while the models

3 and 5 can be partially decoupled. In some cases, we find bounded traveling wave solutions rather

than traveling periodic or solitary waves.

In (u, u′)−phase plane, the second order equation

(1.8) u′′ = cu + βu2, c 6= 0, β 6= 0,

has a Hamiltonian H(u, u′) of which each orbit corresponds to a unique level curve

H(u, u′) =
(u′)2

2
− c

u2

2
− β

3
u3 = h, h ∈ R.

Bounded solutions of (1.8) can be classified by the following lemma:

Lemma 1.1. Assume that c 6= 0, β 6= 0. In the phase plane (u, u′), (1.8) has two equilibrium points

O(0, 0) and E(−c/β, 0).

(I) If c > 0 then O is a saddle and E is a center. If c < 0 then O is a center and E a saddle.

(II) There is a unique homoclinic orbit Γ asymptotic to the saddle and encircling the center. There

is also a family of periodic orbits encircling the center and filling up the interior of the homoclinic

loop Γ.
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(III) Up to a shift in ξ, the homoclinic orbit Γ is parametrized by a homoclinic solution u =

q(ξ, c, β) to (1.8).

(1.9) q(ξ, c, β) :=











− 3c
2β

sech2
(√

c

2 ξ
)

, c > 0,

|c|
β

(

1 − 3
2sech2

(√
|c|
2 ξ

))

, c < 0.

(IV) Each periodic orbit corresponds to a unique h ∈ (− c3

6β2 , 0), c > 0 or h ∈ (0,− c3

6β2 ), c < 0. Up

to a shift in ξ, the family of periodic orbits is parametrized by periodic solutions p(ξ, c, β, h) of (1.8).

Depending on β < 0 or β > 0, using elliptic functions, the periodic solution can be expressed as:

(1.10) p(ξ, c, β, h) :=











r1 − (r1 − r2)sn
2 (Ωξ, k1) , β < 0,

r3 + (r2 − r3)sn
2 (Ωξ, k2) , β > 0.

The parameters (r1, r2, r3, k1, k2), with r1 > r2 > r3, are defined by (u′)2 = 2h + cu2 + 2
3βu3 =

2
3 |β|(r1 − u)(u − r2)(u − r3), k2

1 = r1−r2

r1−r3
if β < 0. While for β > 0, they are defined by (u′)2 =

2h + cu2 + 2
3βu3 = 2

3β(r1 − u)(r2 − u)(u − r3), k2
2 = r2−r3

r1−r3
. Ω =

√
|β|(r1−r3)

6 .

2. General coupled KDV and the P-integrable mode 1

To find traveling wave wave solutions, let ξ = X − cT be the traveling coordinate. From (CKdV)

we obtain the traveling wave system

(2.1)
−cA′

1 + A′′′
1 + a1A1A

′
1 + a2A1A

′
2 + a3A2A

′
1 + a4A2A

′
2 = 0,

−cA′
2 + A′′′

2 + b1A1A
′
1 + b2A1A

′
2 + b3A2A

′
1 + b4A2A

′
2 = 0.

Following Lou et al [11], we look for solutions that satisfy A1 = ωA2, ω 6= 0. Substituting A1 = ωA2

into (2.1), integrating (2.1) and taking the integral constants as zero, we obtain

(2.2)
A′′

2 = cA2 −
1

2

(

a1ω + (a2 + a3) +
a4

ω

)

A2
2,

A′′
2 = cA2 −

1

2

(

b1ω
2 + (b2 + b3)ω + b4

)

A2
2.

The two equations of system (2.2) are the same if and only if ω is a non-zero real root of the cubic

algebraic equation

(2.3) b1ω
3 + (b2 + b3 − a1)ω

2 + (b4 − a2 − a3)ω − a4 = 0.

We now assume that ω satisfies (2.3) and denote

(2.4) B =
1

2
(b1ω

2 + (b2 + b3)ω + b4).

System (2.2) is reduced to

(2.5) A′′
2 = cA2 − BA2

2.
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This is the same as (1.8) with β = −B. In the phase plane (A2, A
′
2), (2.5) has two equilibrium points

O(0, 0) and E(c/B, 0). It is easy to see that when c > 0 (< 0), O is a saddle point ( a center); E is

a center (a saddle point).

Using Lemma 1.1, we obtain the following results.

Theorem 2.1. Let ω be a real root of (2.3) and B be as in (2.4).

(1) If c > 0, then the origin O is a saddle and E a center. If c < 0, then O is a center and E a

saddle.

(2) (CKdV) has a family of periodic wave solutions encircling the center parameterized by h ∈
(− c3

6B2 , 0) if c > 0 or h ∈ (0,− c3

6B2 ) if c < 0:

(2.6) A2(ξ) = p(ξ, c,−B, h), A1(ξ) = ωA2(ξ).

System (CKdV) also has a solitary wave solutions of peak type asymptotic to the saddle point:

(2.7) A2(ξ) = q(ξ, c,−B), A1(ξ) = ωA2(ξ).

To find traveling wave solutions for the P-integrable model 1, let ξ = X − cT, u = A1(ξ), v =

A2(ξ). From (1.1),

(2.8)
−cu′ + u′′′ − [(c0 + 3)(c0 + 6)u2 + c2

0v
2]ξ + 2c0[(c0 + 6)uξv + (c0 + 3)uvξ] = 0,

−cv′ + v′′′ − [(c0 + 3)2u2 + c0(c0 − 3)v2]ξ + 2(c0 + 3)[c0vuξ + (c0 − 3)uvξ] = 0,

Corresponding to (2.8), the parameters of (2.1) has the special values:

a1 = −2(c0 + 3)(c0 + 6), a2 = 2c0(c0 + 3), a3 = 2c0(c0 + 6), a4 = −2c2
0,

b1 = −2(c0 + 3)2, b2 = 2(c0 + 3)(c0 − 3), b3 = 2c0(c0 + 3), b4 = −2c0(c0 − 3).

The quibic equation (2.3) becomes

(2.9)
(c0 + 3)2ω3 − 3(c0 + 3)(c0 + 1)ω2 + 3c0(c0 + 2)ω − c2

0

=((c0 + 3)ω − c0)
2(ω − 1) = 0.

The roots of (2.9) are ω = c0/(c0 + 3) and ω = 1. This suggests the change of variables X =

(c0 + 3)u− c0v, Y = u− v, or u = 1
3X − c0

3 Y, v = 1
3X − c0+3

3 Y . The result is a partially uncoupled

system of equations,

X ′′′ = cX ′ + 12XX ′,(2.10)

Y ′′′ = cY ′ + 6XY ′.(2.11)

We can recover (u, v) by

(2.12)





u

v



 = M





X

Y



 , M =
1

3





1 −c0

1 −(c0 + 3)



 .
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Integrating once and taking the integration constant to be zero, we have

X ′′ = cX + 6X2,

Z ′′ = cZ + 6XZ,

where Z = Y ′ and Y =
∫

Zdξ.

Theorem 2.2. For the P-integrable model 1, we have

(1) on the plane (c0 + 3)u − c0v = 0, or X = 0, the P-integrable model 1 reduces to Y ′′′ = cY ′.

The only bounded solutions are harmonic periodic waves oscillating around the mean value A1 =

K/c, A2 = (c0 + 3)K/(cc0). They occur only if c < 0.

(2) On the plane u − v = 0 or Y = 0, model 1 reduces to X ′′ = cX + 6X2, the same as

(1.8) with β = 6. The only bounded solutions are solitary waves X = q(ξ, c, 6) and periodic waves

X = p(ξ, c, 6, h). The traveling waves in (A1, A2) can be expressed as (A1, A2)
τ = M(X, 0)τ .

Apart from the particular solutions described in Theorem 2.2, much richer dynamical behavior

of the system can be found if we consider bounded traveling wave solutions of X from (2.10) first

then plug them into (2.11) for Y . Discussion of such solutions will be deferred to Section 4 while

similar cases from P-integrable models 3 and 5 are considered.

3. Traveling wave solutions of the P-integrable model 2

The traveling wave solutions of (1.2) in traveling coordinate satisfy

(3.1)
A1ξξ = cA1 +

1

2
(c1 − c2 + c1c2)A

2
1 − c1A1A2 +

1

2
A2

2,

A2ξξ = cA2 +
1

2
c1c2A

2
1 − c2A1A2 +

1

2
(c2 − c1 + 1)A2

2.

The quadratic forms in (3.1) can be expressed as

(A1, A2)Q1(c1, c2)(A1, A2)
τ , (A1, A2)Q2(c1, c2)(A1, A2)

τ ,

where

Q1(c1, c2) =





(c1 − c2 + c1c2)/2 −c1/2

−c1/2 1/2



 , Q2(c1, c2) =





c1c2/2 −c2/2

−c2/2 (c2 − c1 + 1)/2



 .

Under the conditions c1 6= 1, c2 6= 1 and c2 6= c1, the matrices A and B satisfies a condition

of simultaneous diagonilization by nonsingular real matrices [8]. Our calculation shows that only

c2 6= 1 is required in the co-diagonalization. Setting

M =
1

1 − c2





1 −1

1 −c2



 , M−1 =





−c2 1

−1 1



 , c2 6= 1



TRAVELING WAVE SOLUTIONS FOR COUPLED KDV EQUATIONS 7

we have

MτQ1M =
1

2(1 − c2)





1 − c1 0

0 c1 − c2



 MτQ2M =
1

2(1 − c2)





1 − c1 0

0 c2(c1 − c2)



 .

By the change of variables

(3.2) (A1, A2)
τ = M · (u, v)τ ,

the non-diagonal terms in the quadratic forms of (3.1) can removed. This leads to

(3.3)

A′′
1 = cA1 +

1 − c1

2(1 − c2)
u2 +

c1 − c2

2(1 − c2)
v2,

A′′
2 = cA2 +

1 − c1

2(1 − c2)
u2 +

c2(c1 − c2)

2(1 − c2)
v2.

Applying the inverse transform of (3.2), u = A2 − c2A1, v = A2 − A1 to (3.3), the reduced system

should have no uv term. What unexpected is that the result is a completely uncoupled system of

two equations.

uξξ = cu +
1 − c1

2
u2,(3.4)

vξξ = cv +
c2 − c1

2
v2.(3.5)

Equation (3.4) has two equilibria U0 = 0, U1 = 2c/(c1 − 1) while (3.5) has two equilibria V0 =

0, V1 = 2c/(c1 − c2).

Lemma 3.1. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then

(I) If c > 0, then for (3.4), U0 is a saddle with eigenvalues ±
√

|c|, and U1 is a center with eigenvalues

±
√

|c|i. For (3.5), V0 is a saddle with eigenvalues ±
√

|c|, and V1 is a center with eigenvalues ±
√

|c|i.
(II) If c < 0, then similar properties for (3.4) )(or (3.5)) still hold if we switch U0 with U1 (or

V0 with V1).

Define

e1 = − 2c

1 − c1 − c2 + c1c2
, e2 =

2c

c2 − c1 − c2
2 + c1c2

, e3 = − 2c

c1 − c2 − c2
1 + c1c2

.

It is now clear that (3.1) has four equilibrium points corresponding to the combinations of equilibrium

points of (3.4) and (3.5):

(U0, V0) ⇔ E0 : {(A1, A2) = (0, 0)}, (U1, V0) ⇔ E1 : {(A1, A2) = (e1, e1)},

(U0, V1) ⇔ E2 : {(A1, A2) = (e2, c2e2)}, (U1, V1) ⇔ E3 : {(A1, A2) = (e3, c1e3)}.

From Lemma 3.1, we have the following results about equilibria E0 to E3 of (3.1).
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Lemma 3.2. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then for (3.1),

(I) if c > 0, E0 is a saddle with eigenvalues ±
√

|c| while E3 is a center with eigenvalues ±
√

|c|i.
Both the algebraic and geometric multiplicities of these eigenvalues are equal to 2. (semi-simple

eigenvalues). E1 and E2 are center-saddle points with eigenvalues ±
√

|c| and ±
√

|c|i.
(II) If c < 0, then the properties on E1 and E2 remain unchanged but properties on E0 and E3

must be switched.

Define

Wu(E0) := {(A1, A2) : A2 − A1 = 0}, Wv(E0) := {(A1, A2) : A2 − c2A1 = 0}.

Wu(E1) := {(A1, A2) : A2 − A1 = 0}, Wv(E1) := {(A1, A2) : A2 − c2A1 = U1}.

Wu(E2) := {(A1, A2) : A2 − A1 = V1}, Wv(E2) := {(A1, A2) : A2 − c2A1 = 0}.

Wu(E3) := {(A1, A2) : A2 − A1 = V1}, Wv(E3) := {(A1, A2) : A2 − c2A1 = U1}.

From (3.4) and (3.5), Wu(Ej) and Wv(j) are invariant under the flow of (3.1) and Ej ∈ Wu(Ej)∩
Wv(Ej). Using Lemma 1.8, we find all the traveling waves for the P-integrable model 2.

Theorem 3.3. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then

(I) if c > 0, then on Wu(E1) there is a family of traveling periodic solutions encircling E1: u =

p(ξ, c, (1 − c1)/2, h). On Wv(E1), exists a unique solitary wave solution v = q(ξ, c, (c2 − c1)/2).

On Wu(E2), there exists a unique solitary wave u = q(ξ, c, (1 − c1)/2 asymptotic to E2. On

Wv(E2) there is a family of traveling periodic solutions encircling E2: v = p(ξ, c, (c2 − c1)/2, h).

(II) If c < 0 then the conclusions similar to part (I) hold if E1 and E2 get switched.

Theorem 3.4. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then

(I) if c > 0, then there exist solitary waves on Wu(E0): u = q(ξ, c, (1 − c1)/2) and on Wv(E0):

v = q(ξ, c, (c2 − c1)/2) asymptotic to E0.

There exist families of traveling periodic waves on both Wu(E3) and Wv(E3) encircling E3. They

are u = p(ξ, c, (1 − c1)/2, h) and v = p(ξ, c, (c2 − c1)/2, h).

(II) If c < 0 then similar conclusion hold if we switch E0 with E3.

Corollary 3.5. The traveling wave solutions for P-integrable model 2 are

(A1(ξ), A2(ξ))
τ = M(u(ξ − ξ1), v(ξ − ξ2))

τ

where (u, v) are traveling wave solutions as in Theorem 3.3 and Theorem 3.4 and ξ1, ξ2 are arbitrarily

constants.
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Remark 3.1. (1) If c1 = 1, c2 6= 1, then the only equilibria are E0 and E2. If c1 6= 1, c2 = c1, then

the only equilibria are E0 and E1. If c1 = c2 = 1, the only the equilibrium is E0. In these special

cases, (3.1) is much simpler and its traveling waves are easy to analyze. We will skip the details.

(2) The cubic equation (2.3) for P-integrable model 2 is

c1c2ω
3 − (c2 + c1 + c1c2)ω

2 + (c1 + c2 + 1)ω − 1 = (c2ω − 1)(c1ω − 1)(ω − 1)) = 0,

with three distinct roots ω = 1, c1, c2. Only ω = 1 and c2 are used in our change of variables. We

have tried the variable A2 − c1A1 and found that (3.1) does not get simplifed.

We prefer matrices diagonalization since it provides definitive result. If after eliminating the non-

diagonal terms the system does not decouple, then we can show that there does not exist a linear

change of variable that can further decouple the system, unless the two original quadratic forms are

linearly dependent. In this case, one of the decoupled equation is linear.

4. Traveling wave solutions for the P-integrable mode 3, 4 and 5

For the P-integrable models 3, 4 and 5, (see (1.3), (1.4) and (1.5)), we make the change of variables

A1(ξ) + A2(ξ) = u(ξ), A1(ξ) − A2(ξ) = v(ξ), i.e., A1(ξ) = 1
2 (u + v), A2(ξ) = 1

2 (u − v). Then, the

traveling wave solutions of (1.3) are determined by the system

(4.1) uξξ − cu + u2 = 0, vξξ + (u − c)v = 0.

The traveling wave solutions of (1.4) are given by the system

(4.2) uξξ − cu + 2u2 = 0, vξξ − cv = 0.

The traveling wave solutions of (1.5) are determined by the system

uξξ − cu + u2 = 0, A1ξξξ + (2u − c)A1ξ = 0.

Let A1ξ = w. Then

(4.3) uξξ − cu + u2 = 0, wξξ + (2u − c)w = 0.

Note that the change of variables is invertible: A1(ξ) =
∫ ξ

w(s)ds, A2(ξ) = u(ξ) − A1(ξ).

4.1. The P-integrable model 4. We first discuss system (4.2) which consists of two uncoupled

equations. We are interested in the bounded solutions of (4.2). Therefore, we assume that c < 0.

Using Lemma 1.1 with β = −2, we have the following conclusion.

Theorem 4.1. System (1.4) has the following bounded exact traveling wave solutions:
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(i) Asymptotically periodic solutions:

(4.4)
A1(ξ) =

1

2

[

q(ξ, c,−2) + γ cos
√

|c|ξ
]

,

A2(ξ) =
1

2

[

q(ξ, c,−2) − γ cos
√

|c|ξ
]

.

(ii) Quasi-periodic solutions, with h ∈ (0,−c3/24):

(4.5)
A1(ξ) =

1

2

[

p(ξ, c,−2, h) + γ cos
√

|c|ξ
]

,

A2(ξ) =
1

2

[

p(ξ, c,−2, h) − γ cos
√

|c|ξ
]

.

4.2. The P-integrable model 3 and 5. We now consider systems (4.1) and (4.3). The first

equations for the two systems are the same:

(4.6) u′′ = cu − u2

Assume that c < 0. Equation (4.6) has two equilibrium points: center O(0, 0) and saddle point

E(c, 0). By Lemma 1.1, with β = −1, we find that

(1) Equation (4.6) has a family of periodic orbits encircling O, parametrized by the periodic

solutions

(4.7) u = p(ξ, c,−1, h), h ∈ (0,−c3/6).

(2) Equation (4.6) also has a unique homoclinic orbit asymptotic to E defined by the homoclinic

solution:

(4.8) u(ξ) = q(ξ, c,−1).

Substituting (4.7) and (4.8) into (4.1), we find two possible equations for v:

(4.9) vξξ +
(

|c| + r1 − (r1 − r2)sn
2(Ωξ, k)

)

v = 0,

(4.10) vξξ +

(

3|c|
2

sech2

(

√

|c|
2

ξ

))

v = 0

Substituting (4.7) and (4.8) into (4.3), we find two possible equations for w:

(4.11) wξξ +
(

2r1 + |c| − 2(r1 − r2)sn
2(Ωξ, k)

)

w = 0,

(4.12) wξξ +

(

c + 3|c|sech2

(

√

|c|
2

ξ

))

w = 0.
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Equations (4.9) and (4.11) are special forms of the Hill equation x′′ +(a+φ(t))x = x′′ +p(t)x = 0

(see Cesari [1959]). Denote p1(ξ) = |c| + r1 − (r1 − r2)sn
2(Ωξ, k) and p2(ξ) = 2r1 + |c| − 2(r1 −

r2)sn
2(Ωξ, k). It is easy to show that for h ∈

(

0,− 1
6c3
)

, we have p1(ξ) > 0,

p1m ≡ Ω

2K(k)

∫
2K(k)

Ω

0

p1(ξ)dξ = |c| + r3 +
(r1 − r3)

2

E(k)

K(k)

and when 2r2 + |c| > 0, p2(ξ) > 0,

p2m ≡ Ω

2K(k)

∫
2K(k)

Ω

0

p2(ξ)dξ = |c| + 2r3 + (r1 − r3)
E(k)

K(k)
.

We can show that the condition of Borg’s theorem [2]

(4.13) T

∫ T

0

|pj(ξ)|dξ =

(

2K(k)

Ω

)2

|pjm| ≤ 4, j = 1, 2

cannot be satisfied. So we cannot use it to conclude that any solution of (4.9) and (4.11) is bounded

or stable.

However conditions (4.13) are only sufficient conditions for the existence of bounded solutions of

(4.9) and (4.11). By using Theorem 8.1 in Hale [7], there exist two real sequences of the number |c|:
{c0 < c1 ≤ c2 ≤ · · · } and {c∗1 ≤ c∗2 ≤ c∗3 ≤ · · · }, when k → ∞, ck, c∗k → ∞,

c0 < c∗1 ≤ c∗2 < c1 ≤ c2 < c∗3 ≤ c∗4 < c3 ≤ c4 < · · ·

such that (4.9) and (4.11) have periodic solutions with period 2K(k)
Ω (or 4K(k)

Ω ), if and only if for

some k = 0, 1, 2, · · · , we have |c| = ck (or for some k = 0, 1, 2, · · · , we have |c| = c∗k). The solutions

of (4.9) and (4.11) are stable in the intervals

(4.14) (c0, c
∗
1), (c

∗
2, c1), (c2, c

∗
3), (c

∗
4, c3), · · · .

And the solutions of (4.9) and (4.11) are unstable in the intervals

(−∞, c0], (c
∗
1, c

∗
2), (c1, c2), (c

∗
3, c

∗
4), (c3, c4), · · · .

Therefore, (4.9) and (4.11) have bounded solutions when the parameter |c| belongs to a stable

interval in (4.14). We summarize our results in the following theorem.

Theorem 4.2. Assume that c < 0 in (4.1) and (4.3). Then there are infinitely many pairs (c, h)

where h ∈
(

0,− 1
6c3
)

, |c| = ck, c∗k or |c| is in one of the intervals of (4.14). For such (c, h), (4.1)

and (4.3) have solutions (u, v) and (u,w) where u = p(ξ, c,−1, h) is periodic and v(ξ) and w(ξ) are

bounded.

(1) For the P-integrable model 3, the bounded traveling waves are

A1 =
1

2
(u + v), A2 =

1

2
(u − v).
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(2) For the P-integrable model 5, if
∫ ξ

w(s)ds is a bounded function on R, then The bounded

traveling wave solutions are

A1(ξ) =

∫ ξ

w(s)ds, A2(ξ) = u(ξ) − A1(ξ).

In particular, for any constant γ, (A1, A2) = (γ, u − γ) is a periodic traveling wave solution.

Remark 4.1. The condition for
∫

w(ξ)dξ to be a bounded function is rather complicated and better

left to a separate paper.

If c > 0, there are periodic solutions u = p(ξ, c,−1, h) oscillating around the center E. It is

possible to plug these solutions into the equations for v and w and look for bounded solutions.

Finally, we consider equation (4.10) and (4.12). Let

p3(ξ) =
3|c|
2

sech2

(

√

|c|
2

ξ

)

, p4(ξ) = c + 3|c|sech2

(

√

|c|
2

ξ

)

.

Because
∫∞
−∞ p3(t)dt is convergent and c < 0, by using the results mentioned in Cesari [3], we find

that the solutions of (4.10) and (4.12) are non-oscillating and unbounded.

Remark 4.2. A general coupled KdV system has been studied in [12] where the third order coefficients

may not be equal. Apparently (2.10)–(2.11) from model 1 correspond to the case (ii) in [12], system

(4.1) from model 3 corresponds to the case (vii) in [12], and system (4.3) corresponds to (vi) in [12].

Models 2 and 4 were not studied in [12].

The authors would like to thank Moody Chu and Ilse Ipsen for helpful discussions on methods of

co-diagonalizing quadratic forms. We also thank the referee for offering several new references and

pointing out some relation between our results and that of [12].
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