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Suppose an autonomous functional differential equation has an orbit r which is 
homochnic to a hyperbolic equilibrium point. The purpose of this paper is to give a 
procedure for determining the behavior of the solutions near r of a functional dif- 
ferential equation which is a nonautonomous periodic perturbation of the original 
one. The procedure uses exponential dichotomies and the Fredholm alternative. It 
is also shown that any smooth function p(f) defined on the reals which approaches 
zero monotonically as t + k co is the solution of a scalar functional differential 
equation and generates an orbit homoclinic to zero. Examples illustrating the 
results are also given. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Exponential dichotomies have played an important role in both the 
theory and applications of ordinary differential equations. For example, 
under some very mild conditions, a linear system admits an exponential 
dichotomy on [O, co) if and only if the nonhomogeneous linear system has 
a bounded solution on [0, co ) for every bounded forcing function (see, for 
example, Coppel [6]). The extension of this result to functional differential 
equations was given by Coffman and Schlffer [S], Pecelli [17]. If a Iinear 
system has an exponential dichotomy on some-interval, then small pertur- 
bations of the linear system will not destroy the exponential dichotomy (see 
Compel I31 ). 

Exponential dichotomies also arise as the linear variational equation 
near a homoclinic orbit of an autonomous equation. This observation was 
recently made by Palmer [ 161 for ordinary differential equations extending 
an idea used by Chow, Hale and Mallet-Paret [4] for a special case. He 
then exploited this property to discuss the behavior of the solutions of 
periodically perturbed systems near the homoclinic orbit. The procedure 
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uses the Fredholm alternative and the method of Liapunov-Schmidt in 
bifurcation theory. It is related to but not the same as the method of 
Mel’nikov [ 143. 

In Section 2 of this paper, we give the basic results on perturbations of 
systems which possess exponential dichotomies using the definition of 
dichotomy given by Henry [12] and in a setting which will be applicable 
to functional differential equations. In Section 3, we extend the above-men- 
tioned work of Palmer on the Fredholm alternative to functional differen- 
tial equations. In Section 4, we show that any smooth positive function p(t) 
defined on the reals which approaches zero monotonically as t -+ &cc, is 
the solution of a scalar functional differential equation and generates an 
orbit homoclinic to zero. Section 5 is devoted to the application of the 
results to periodic perturbations of autonomous systems. 

This research constitutes part of the author’s doctoral dissertation in the 
Division of Applied Mathematics, Brown University. I am grateful to 
Professor Jack K. Hale for his advice and encouragement. 

2. EXPONENTIAL DICHOTOMIES AND LINEAR SEMIFLOWS 

In this section, we shall consider the following delay differential equation 

where x,, ~EC([--,O],R”), x,(fl)=x(t+O), -rde<O, x(t), is defined 
on some interval Jc R and takes value in R”. L(t) E Y(C[ -r, 01, R”) and 
is continuous with respect to t EJ in the operator norm. The solution 
operator T(t, s): C[ -r, 0] + C[ -Y, 01, T(t, s) 4 = xt, is a semigroup for 
t > s, is linear and continuous in 4 E C[ -r, 01, and is strongly continuous 
in t and s. It is said that T(t, s) has an exponential dichotomy on an inter- 
val J with constants K>O, a > 0 if there are projections P(s), Q(s) = 
I- P(s), s E J, strongly continuous in s, and 

(i) T(t,s)P(s)=P(t) T(t,s), t>s, in J; 
(ii) T(t, s) laQ(s), t >s, is an isomorphism of &?Q(s) onto S%‘Q(t) 

and T(s, t): 9Q(t) + %?Q(s) is defined as the inverse of T(t, s) IaQ(s); 
(iii) 1 T(t, s) P(s)1 < Ke-““-“), t 2 s, in J, 
(iv) 1 T(s, t) Q(f)\ < Ke-““-“‘, t > s, in J. 

WP( t) and aQ(t), t E J are called the stable and unstable subspaces of 
T(t, s). We assume that YeQ(t) has finite dimension. This is not an 
unreasonable assumption since r(t, s) is compact for t > s + r. 
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Let C denote C( [ -r, 01, R”), a Banach space with supremum norm. 
The adjoint of C, C*, is identified with B,( [ - r, O], R”‘), the Banach space 
of all the functions $: [ -r, 0] --f R”’ of bounded variation with $(O) =0 
and continuous from the left in (-r, 0). Let T*(s, t) be the adjoint of 
T(t, s) 

($3 Tit, s) #> = CT*b, t) $2 cbh fpEC,lC/EC*. 

T*(s, t) is a linear semigroup for s < t E J, and is weak* continuous with 
respect to s < t E J. The integral of T *(s, t) \cI with respect to s or t are 
defined in the weak* sense. If P*(s) is the adjoint of P(s), it is a projection 
operator, which is weak* continuous in s E J. We claim that T*(s, t) has an 
exponential dichotomy on J with the projections P*(s) and Q*(s), except 
that the strong continuity is replaced by weak* continuity. Obviously, we 
have 

(i)’ T*(s, t) P*(t) = P*(s) T*(s, t), s ,< t, in 1; 
(iii)’ IT*(s, t) P*(t)] < Ke-““-“‘, s < t, in J; 

It is also true that 
(iv)’ ) T*(t, s) Q*(s)\ f Ke-“(‘-“j, s < t, in J; 

provided that 
(ii)’ T*(s, t)\ aQ*(t), s < t, is an isomorphism of BQ*(t) onto 

WQ*(s) and 7’*(t, s): We*(s) -+B?Q*(t) is defined as the inverse of 
T*(s, t) lispyr, (or the adjoint of T(s, t): .4?Q(t) --+ 9Q(s)). 

Proof of (ii). For any 4 E C, we write d = (x, y),, where x E 9P(s) and 
y~gl)Q(~). By the invariance of T(t, s) on WP(s) and aQ(s), we write 
T(c s)= T,(t, ~1 x TAt, $1, T,(t, s): &Y’(s) --f W’(t), TA r, s): WQb) --* 
EXQ(t), such that T(t, s)(x, y), = (T,(t, s) x, T2(t, s) y),. Accordingly, for 
any *EC*, we write $=(x*,JJ*)~, where x*~@?P(t))* and y*~(wQ(t))*. 
T*(s, t) = T:(s, t) x T:(s, t) and T*(s, t)(x*, Y*), = (T:b, 0 x*, 
T:(s, t) y*),. Since T2(tr s); WQ(s) --) 9?Q(t) is one-to-one and onto, a 
general theorem in Functional Analysis implies that T~(s, t): ($@Q(t))* + 
(.G@Q(s))* is an isomorphism. It is easy to see that 9Q*(t) = (NQ(t))‘= 
(BP(t))‘, where MO indicates the annihilator of a subset Mc C. We then 
obtain a natural isomorphism between &?Q*(r) and (BQ(r))*; that is, 

~Q*W = W Y*)I Y* E VQW*l, 

and T*(s, r)(O, y*)= (0, T:(s, t) y*). Thus, T*(s, r)jaeeclt is one-to-one 
and onto 9Q*(s). The continuity of T*(t, s)I,~*(~) follows from the open 
mapping theorem in Banach spaces. 

The proof of the following lemma is the same as that of ordinary dif- 
ferential equations which can be found in [S]. 

505/63/2-7 
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LEMMA 2.1. Let J be either R+, R- or R. If x = L(t) x, has an 
exponential dichotomy on J and B(t) is a linear continuous operator for t E J 
and continuous with respect to t in the operator norm, 1 B(t)1 6 6 for all t E J, 
then 

i(t) = (L(t) + B(t)) x, 

has an exponential dichotomy on J if 6 is sufficiently small. 

COROLLARY 2.2. If x(t) = L’x, has zero as an hyperbolic equilibrium 
point, and if L(t)+ L+(L-) as t + +oo (t+ -co), then (2.1) has an 
exponential dichotomy on [z, +a)(( - oc), -z]) for some constant t>O, 
with the projection P(t) + P’(P-) as t -+ +oo (t + -co), where P’ is the 
projection associated with the autonomous equation. 

We now present some results concerning the extension of domains where 
the exponential dichotomy is valid. We first observe that the projections 
P(t) and Q(t) are uniquely defined if their ranges X, = 9P(t) and X, = 
wQ(t), two closed subspaces in C, are given and C = X1 @ Xz. We also 
observe that 9P(t) is unique for t E J = [r, + co) whereas &Q(t) is unique 
for tEJ=(-co, -t]. 

Let 4(t), t E J, = (- 00, t,], be in the unstable subspace of T(t, s), such 
that d(t) approaches 0 exponentially as t + --co. Then d(t) restricted to 
J=(-co, -21, --t<to, isin theunstable subspaceof T(t,s) for teJ. Let 
the dimension of the unstable subspace for t E J(J1) be M,(M,,), we have 
MJ, d MJ. A necessary condition for the exponential dichotomy on J being 
extendable to J, is that M,, = M,. We prove that this is also a sufficient 
condition. 

LEMMA 2.3. Let J= ( - co, -r] and suppose (2.1) has an exponential 
dichotomy on J. Let to> -z, and T(t,, -T)d#Ofor any O#IE%Q(--7). 
Then (2.1) has an exponential dichotomy on (-co, to] with the projections 
P(t), Q(t) --t P(t), Q(t) exponentially as t + -co. 

Proof Let X,(t) = @‘Q(t) for t < --z and 

X,(t)= {Tk -diIb~Q(--1) for -r<tgt, 

Thus defined, dim X,(t) is constant for t < t, and T( t, s) is an isomorphism 
from X,(s) onto X,(t), to 2 t 3 s. Let Xz(to) be a closed subspace of C com- 
plementary to X,( to), i.e., 

X,(&J 0 Xz(to) = c. 
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Let 

X,(t) is a linear closed subspace of C and we claim that 

x,(t)oX,(t)=C, t9 to. (2.2) 

This is proved as follows. 
If q5EXl(t)nX,(t), then T(t,, t)~eXl(to)nX2(t0). Thus, T(t,, t)q5=0, 

implying that #=O for T(t,, t) is an isomorphism from X,(t) to X,(t,). 
NowlettiEC, T(t,,t)~=#,+#,,where$,EX1(t,)and&EX2(t0).There 
exists &, E X,(t) such that b1 = T(t,, t) $, . Therefore T(t,,, t)(4 - ii) = 
& E X,( to), implying that 4 - &i E X,(t). The proof of (2.2) is completed. 

Define 9@(t) = X,(t) and 9W(t) = X,(t) for t < to. Accordingly, the pro- 
jections P(t) and e(t) are defined and H(t) + Q(t) = I. Obviously, .9@(s) 
and a&s) are invariant under T(t, s), t > s in (- co, t,] for X,(S) and 
X,(S) are. Consequently, 

T( t, s) P(s) = B(t) T( t, s), 

T(t, s) Q(s) = ew r(t, s), tBs,in(-co, to]. 

Therefore, o(t) = T(t, to) &to) T(t,, t) for t < t,, implying that &(t) is 
strongly continuous and bounded in norm for t in any compact subset of 
(- 00, t,]. So is B(t). 

If s < -r, then 

Q(s) = mm) + fYs)) 

= Q(s) + &(4 f’(s) 

= Q(s) + T(s, -7) Q( -7) z-( -7, s) P(s) 

=Q(s)+T(s, -z)Q(-T)&(-o)T(-T,+‘(S) 

since 9@(s) = WQ(.s) implies that Q( -z) &( -z) = &( -r) and Q(S) Q(S) = 
Q(S). Therefore, Q(S) + Q( ) s ex onentially p in norm as s + -co, since 
T( - r, S) P(S) and T(s, -z) Q( -7) approach zero exponentially in norm as 
s + -co. Thus, H(s) = I- Q(S) approaches P(S) exponentially in norm as 
s + -co. Therefore, H(s), Q(s) are uniformly bounded in norm for 
SE(-a, t,]; say, IF(s IQ(s)1 <K, for s<t,. If -Tatas, then 

I T(s, t) &)I G I T(s, t) Q(t) &t,l 
Q Ii%, t) Q(t,l I&V 
< KKle-““-“). 
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BY &t) Q(t) = Q(t), we have P(t)=&t)(P(t)+Q(t))=p(t)P(t)+ 
P(t) Q(t) Q(t) = P(t) P(t). Therefore 

We have shown that (2.1) has exponential dichotomy relevant to the 
projections P(t) and Q(t) in ( - co, -r]. Dichotomy estimates hold true in 
[ -r, to] for T( t, S) is nondegenerate on aQ(s). The proof of Lemma 2.3 is 
completed by combining the results on the two intervals. 

LEMMA 2.4. Let J= [T, co) and suppose (2.1) has an exponential 
dichotomy on J. Let to < T and 

Suppose that X, ( to) has the same codimension as &‘P(z). Then (2.1) has an 
exponential dichotomy on [to, + CO) with the projections P(t), o(t) -+ P(t), 
Q(t) exponentially as t--f +CC. 

Proof: Let 

x,(t) = ap(t), t>z 

and 

J’,(t) = (4 I T(L t) 4 E Wz)), t, < t < T. 

Let m = codimension X1( r ) = codimension Xi ( to). Choose an m-dimen- 
sional subspace X2(&) such that 

x,(t,) 0 x,(&J = c. 

Let X2(t) = T(t, to) X,( to), t 2 t,. We now show that 

x,(t)OX,(t)= c, t2 t,. (2.3) 

First, we show that X,(t)nX,(t) = {0}, t > t,. In fact, if qS1e X,(t)n 
X2(t), then there exists btoe X2(f0) such that 4, = T(t, to) $,,,. 

(1) By the definition of X,(t), if t $ z, then T(z, t) 4, E X,(z). 
This in turn implies that q4r,, E X,(t,). Therefore, bt,, = 0 and q5, = 0. 

(2) If t > T2 T(t, T)CT(? to) 4,J = T(t, to) A, = 4, E X,(t) = !=(t). 
Then T(T, to) 4,0 E BP(T), implying that +4,, E X,( to). Therefore, 

d,,=d,=O. 



EXPONENTIAL DICHOTOMIES 233 

Next, we show that X,(t) @ X,(t) = C, t 2 t,. For any 0 # q5(,, E X,(&J, we 
observe that T( t, to) q5,, # 0, t > to. Otherwise, qSt, E X1( to) and also X,( to) n 
X,( to) = { 0}, which is a contradiction. T( t, to) X,( to) = X,(t) is an m-dimen- 
sional subspace for t > t,. For ta z, the codimension of X,(t) = %‘P(t) is 
known to be m. Therefore, (2.3) is valid for t 2 r. The proof of X,(t) + 
X,(t) = C, t, 6 t < z, is similar to that of (2.2) in Lemma 2.3. 

The decomposition X,(t) @ X2(t) = C of C defines projection operators 
p(t), Q(t)=Z-F(t) such that B?P(t)=X,(t) and B$(t)=X,(t) for t>t,. 
The invariance of BP(s) and .9@(s) under T(t, s) follows from the 
invariance of X,(t) and X,( t ). Thus, 

T(t, s) B(s)= B(t) T(t, s) 
T(t, s) Q(s) = act, T(t, $1, t > s, in [to, + cc). 

Let t>z. Since SP(t)=i@&t), Pp=p and pP=P. 

B(t) = p(t) P(t) + P(t) Q(t) 

= P(t) + P(t) T(t, 5) T(T, t) Q(t) 

=P(t)+ r(t, T)p(T) T(T, t)Q(t) 

= P(f) + T(t, T) P(T) p(T) T(T, t) Q(t). 

Therefore p(t) is strongly continuous for t 3 T and p(t) + P(t) exponen- 
tially in norm as t + +co, since T(T, t) Q(t) and T(t, T) P(T) approach zero 
exponentially in norm as t -+ +co. Thus, Q(t) = I- P(t) is strongly con- 
tinuous and approaches Q(t) exponentially as t -+ + co. Furthermore, 
Ib)l and I& )I t are uniformly bounded, say by K, > 0, for t > T. 

Let t>s>r, 

I nt, s) w = I T(4 s) P(s) &)I 
< K, Ke ~ ‘ct - ‘). 

We shall prove that 

T(s, t) &t) = &, W, t) Q(t) t?!(t). 

This would imply that 

IW, t) t%)l = I&) T(s, t) Q(t) &)I 
< ~Ke-“(‘p”), t>SbT. 

(2.4) 

Note that the operators T(s, t) in the two sides of (2.4) have different 
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domains. However, when applied to 4 EC, both sides of (2.4) obtain 
elements in 9@(s). And 

T(f> SK&W T(s> f) Q(l) 00) 41 
= &I T(c s) T(s, 1) Q(l) h) 4 
= &@I Q(t) &, 4 
= ew dl= T(f, s)CT(s, f) ew 41 

since Q(t) = Q(f) Q(t)+ Q(t) I’(t)= Q(Z) Q(t). But, T(t, S) is an 
isomorphism from S@(S) onto w&t), (2.4) is valid. 

We now turn to t E [to, r], Since 

the operators Q(t) and p(t) are strongly continuous and uniformly boun- 
ded in [to, z]. Dichotomy estimates hold in t E [to, 73 for T(t, S) is non- 
degenerate on WQ(s), t, < s < r d 7. The proof of Lemma 2.4 is fulfilled by 
combining the results on the two intervals. Q.E.D. 

The hypotheses in Lemma 2.4 are also necessary. However, a direct com- 
putation of X,(t,) in Lemma 2.4 is hardly feasible. An alternative approach 
is to consider the adjoint system. 

LEMMA 2.5, Assume that (2.1) has an exponential dichotomy on 
J=[z, +cQ). Let t,<z. Suppose that T*(t,,z)ll/#O for any O#+E 
aQ*(r). Then T*(s, t) has an exponential dichotomy on [to, + co) and the 
hypothesis in Lemma 2.4 is satisfied. 

Proof: Obviously, T*(s, t) has an exponential dichotomy on J, %!Q*(t) 
is a finite dimensional subspace and dim &Q*(t) = dim &‘Q( t) = m. 
Proceeding as in the proof of Lemma 2.3, we see that T*(s, t) has an 
exponential dichotomy on [to, + co). Let H*(t), Q*(t) be the relevant pro- 
jections on [to, + co). The uniqueness of the stable subspace implies that 
wQ*(t)=%?Q*(t), t>r and dim@*(t)=m for all TV [to, +co). Define 
the annihilators E” and OF as 

where X is a Banach space, X* its adjoint space, E c X and Fc X*. 
Obviously 90*(r) = [WP(7)]“. Let X,(t,) be defined as in Lemma 2.4. We 
show that ‘[@*(to)] = X,(t,). 

First, for any 4 E X,(t,), let $ E 9@*(r) = [BP(r)]“. Then 
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($, T(T, to) $) =0, since T(r, ~,J~EWP(Z). Hence (r*(t,, r) II/, 4) =0 for 
any II/ Ed@*. Also, T*(tO, t): B&*(r) --f @*(to) is onto. Thus, 
4 E “t~Q*(to)l. 

Conversely, if 4 E o[B’~*(to)], the above procedure can be reversed to 
show that T(7, to) 4 E ‘[W&*(r)] = BP(r). Therefore, 4 E X,(to). 

Finally, we obtain that codim X,(2,) = dim 9@*(f,) = m = codim SW(T). 

Remark 2.6. Lemmas 2.3, 2.4 and 2.5 are valid for general non- 
autonomous linear semigroups, not only the one generated by delay dif- 
ferential equations, provided that 9Q(t) is of finite dimension. Hypothesis 
in Lemma 2.5 can be checked by considering the formal adjoint system for 
(2.1), see Theorem 3.3 in Section 3. 

3. A FREDHOLM ALTERNATIVE FOR FUNCTIONAL 
DIFFERENTIAL EQUATIONS 

In this section, we shall generalize a Fredholm operator defined for 
ordinary differential equations in [8] to the one defined for (2.1). To per- 
form the splitting induced by the exponential dichotomy in the variation of 
constants formula, we have to consider the matrix valued jump function 

x,(e) =o, -r<tl<O, 

= 1, e=o. (3.1) 

The function X0 plays an important role since the solution of the non- 
homogeneous system 

i(t) = L(t) x, + h(r), 
(3.2) 

x0=4, 

where h: R + R” is continuous, can be written as 

x, = T(t, a) c,h + 1’ T(t, s) X,h(s) ds. 
CT (3.3) 

Since X0 is not continuous, we must either extend our phase space to 
include jump functions or check the following formulas for X0: 

(1) T(t, 3) x0; 
(2) ss: T(t, s) Xoh(s) & 

(3) (ICI, T(t, s) x0> = (T*(s, t) $, x0>; 
(4) (tip JI: Qt, s) Xohb) ds) = f:tlcl, T(t, s) Xo> h(s) ds; 
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where @ E C* and t > s in J where the exponential dichotomy of (2.1) holds 
with projection operators P(t) and Q(t). The first problem is how to inter- 
pret product. Recall that $ E C* is identified with $ E B,[ -r, 01. Therefore, 
($, 4) = JO, d$(e) d(e) is defined even though the function 4 has some 
jumps. Thus defined, (l)-(3) are discussed in [9]. For example, (3) is 
precisely (4.10) on page 153. Formula (4) is merely a consequence of 
Fubini’s theorem. Therefore, our discussion starts from (5). 

An invariant basis {qi(t)}, i = l,..., m, is a basis of %Q( t) for each t E J 
and qi(t) = T(t, s) qi(s) for t, SE J. An invariant basis {q?(t)} in aQ*(t) is 
defined similarly. We assume that (q:(t), qj(t)) = 8,. This is true if we 
choose (qT(t,,), qj(to)) = 6, for any t, E J. Then 

(q*tth 4jCz)) = (q?tt)9 T(t3 lo) 4j(cO)) 

= (~*(kb f) q*(t)? 4j(b)) 

= (4*(tO)v qjttO)> 

= 6,. 

Let @(t) = (q,(t),..., q,,Jt)) and !P(u(t) = (q:(t),..., 42(t))‘, where r is the 
transpose. Then ($(t), Q(t)) =I,,,,,, t E J. We readily see that Q(z) 4 = 
Qb(fKlCl(t), 4) and P(t) 4 = 4 - Q(t) 4 for 4 E C. 

DEFINITION 3.1. Define 

Q(l) xc,= @(tK WC), xc,>, t E J, 

p(t) Xc, = Xo - Q(f) Xc,, t E J. 

The functions Q(t) T(t, S) X0 and P(t) T(t, S) X0 are defined similarly for 
t 2 s in J. With this definition, we observe that 

T(f, 3) Q(s) Xc, = T(f, s) Q’(s). ( W), xo > 

= Q(t)< T*h t) ‘1V(t), x0> 

= @J’(f)< Y(t), T(C s) x0> 

= Q(r). T(t, s) X,,. 

Consequently, T(t, S) P(s) X0 = Z’(t) T(t, s) X0 and (6) is justified. 
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Let $ E C*. Obviously, Q*(t) $ = (I/I, Q(t)) * Y(t). Thus, 

(3.4) 

since Q(s) XO~ C. BY (3.4), (II/, T(l, s) Q(s) X0> = <Q*(s) T*(s, l) Ic/, X0>. 
Hence, 

($9 nt, s) P(s) x3> = (p*(s) T*(s, 1) 44 x0> 

= (T*(s, t) P*(t) ICI, xcl>, t Z s, in J, 

and (7) is justified. For t2s in J, one similarly obtains 

(ti> W, t) Q(t) &> = (~4 Q(s) i'& t) Q(t) xo> 

= (Q*(t) T*(c s) Q*(s) $9 xc,> 

= (T*(t, s) Q*(s) $9 xc,>. 

Thus, (8) is justified. 
We give the estimates for T(t, S) P(s) A’,, and T(s, t) Q(t) X0, t 2 S, in J. 

Let $EC*=B,[--r,O] and 11$1/,=1. Then 

I(Ic/, T(4s)Pb)Xo)l = I<T*b, t)P*(t)*tXcl)I 

G II T*(s, 1) p*(t) 11/ll& 
<Ke-“(‘-“‘. 

I (ti, T(h s) Q(t) x0)1 = I (T*(t, s) Q*(s) $7 x0)1 

G II T*(t> s) Q*(s) $11 Bo 
< Ke-a(l-s). 

Therefore, 

\ T(s, t) Q(t) X,1 c 6 Kc-act-r) 
(3.5) 

sup I(T(t, S) P(S) X,)(e)] <Ke-a(f-s), t 2 s, in J. 
-rb.9GO 
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The second inequality of (3.5) shall be written as IT(t, S) P(S) X01 < 
Ke- X(‘--s’ although 7’(t, S) P(S) X0 is not an element in C for s < t Q s + r. 

We now define the formal adjoint system of (2.1). Let (2.1) be written as 

i(t)= j” dq(t, d)x(t+tq, 
r 

(3.6) 

where ~(t, .) E B,[ -r, 0] and is a continuous map from t E R to 
B,[-r,O]. Let ~EB[-r,O]={b ounded, measurable functions on 
[ -r, 0] >. A function y: [o, t] -+ R”‘, t > (r + r, is said to satisfy the formal 
adjoint system with mitial data c E B[ -r, 0] at t if 

Y(S) + 1’ Y(a) rl( a, s-a) da = constant, o<s<t-r, 
s 

(3.7) 
Y, = 5, 

wherey,(B)=y(t+@, -r<Q<O, q(a,s-a)=0 ifs>a and q(a,s-a)= 
?(a, -r) if s < a - r. 

The existence and uniqueness of solutions of (3.7) are known [o]. The 
solution operator P(;(s, t): B[ - r, 0] -+ B[ - r, 01, 

Y, = n:(s, t) 5 = Q’(s, t) y,, o+r<s<t, 

is a semigroup for s 6 t. 

(1) Q,,s*) q.(s*, t)= qs,, t), Sl <s*<t; 
(2) T(t, t) = I. 

When J = ( - cc, + cc ) or [(T, + cc ), y: J + R”’ is said to be a solution of 
the formal adjoint equation if for any s < t in J, y, = F(s, t) y,. 

Let x: [c-r, t) + R” be a solution of (3.2) and y: [g, t + r] + R”’ be a 
solution of (3.7), t > G. The following identity is proved in [ 11. 

v(a) da, s - a) da 1 $8) 

= y(u) x(a) + f:-, 4 [ fufr y(a) da, s - a) da] 4s) c 

+ f’ Aa) h(a) da, u $ t. 
(T 

(3.8) 
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We define an operator ~:c([a,t+r],R”*)~C([o,t],B,[-r,O]), 
Il/(u, *) = p(y)(u), (allow 0 or t to be -cc or + co), as 

Icl(u, 0) = 0, 
(3.9) 

~(u,s-u)= ~‘+‘y(a)q(a,s-a)da-j”+ry(a)q+(a,u-a)da-y(u). 
u u 

Thus, when h = 0, (3.8) can be written as 

(et, .I, x,> = (ICl(a, .I, x,>. 
Hence, $(s, *) = T*(s, t) $(t, .). Unfortunately, the operator !? is not 
always invertible. Given an element $ E I?,[ -r, 01, we can not always find 
y(a), aE [u, u+ r] such that $ = $(u, .) with $(u, *) defined as in (3.9). 
Nevertheless, if $(u, .) = T*(u, u + r) $(u + r, .) E B,[ -I, 01, for some 
$(u+ r, .)E&,[ -r, 01, one can find y(a), aE [u, u+r] such that (3.9) 
reproduces t,Qu, * ); that is, 

y(a) = -$(a, O- 1, aE Ct.4 u+r], (3.10) 

where $(a, *)= T*(a, u+r)t&u+r, .) and $(a,O-)=lim,,,- +(a, 19). 
This can be shown by the relation of the true adjoint operators and the for- 
mal adjoint operators, see [9, 111. Details shall be omitted here. We obtain 
that, when $( t, . ), t E [a, + 00) or ( - co, + co) is a trajectory of the adjoint 
system, then (3.10) defines an inverse of p. We have the following lemma. 

LEMMA 3.2. Let J= [t,, + co ) or ( - co, + co ). Define 

Y, = {y 1 y(t) satisfies the formal adjoint system (3.7) on J, 
i.e., yS = ?+(s, t) y,, s < t in J} 

y’, = {W, Q, - r 6 t9 < 0 I$( t, . ) satisfies the true adjoint 
system on J, i.e., $(s, .)= T*(s, t) $(t, .), s< t in J}. 

Then 9: Y, --+ Y’, , u E J, defined as (3.9) is a linear isomorphism with the 
inverse PI-‘: Yy, + Y,, ME J, defined as (3.10). Furthermore, let Ylb c Y, be 
the subspace of the bounded solutions for (3.7) on J with the norm 

IYI Y,* = SUP lY(sNP*Y 
SCJ 
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and let !Pu, c Y’, be the subspace of the bounded solutions for the true adjoint 
system on J with the norm 

I$(., .)l$,*=SUP 1% .)I&, 
sef 

then r7/ is also a topological isomorphism of Y,, onto !Plh if 
St” IL(a)1 da<M, uEJfor some constant M>O. 

Proof Obviously, Y-’ is continuous. Conversely, 

IIcl(u, ‘N&s,= I.Y(u)l+ K+’ Aa) da, s - a) da 
> 

I 

u+r 

G Iv(u)l + Ill . Map s - aJIB, da u 

where we use I’;+’ to denote the total variation. 
It is now easy to see that if (2.1) has exponential dichotomy on J= 

[t, + co), and if s:Lr IL(a)1 da d A4, u E J for some constant A4 > 0, then the 
solution operator T(s, t) of (3.7) also has exponential dichotomy on J, and 
vice versa. 

THEOREM 3.3. Let L(t) in (2.1) be continuous for te R and L(t)-+ L’ 
for t + +co. Suppose x(t) = L’X, has zero as a hyperbolic equilibrium point 
with P’ as the projection to the stable subspace. Suppose T(t, s) 4 # 0 for 
s<t in R-, ~EC, 4~0, and p(s,t)$#O for s<t in C-r, +a~). 
II/ E B[ -r, 0] and $ # 0. Then (2.1) has exponential dichotomies in R- and 
R+ with the projections P(t) + P’ as t + +a~. 

Let Cz(R, R”) be the space of continuous bounded functions with 
supremum norm and let Ci(R, R”) be the space of functions in Ci(R, R”) 
with derivatives in Cz(R, R”), and llX[l,; = I/XII,; + IIx’(lc; for XE CA(R, R”). 
Similar definitions are given with R” replaced by R”‘. We now consider the 
operator F: CA(R, R”) + CX(R, R”), h(t) = F(x)(t) defined as 

h(t)=;x(t)-L(t)x,. 

LEMMA 3.4. Let L(t) be continuous in the operator norm with respect to 
tE R and IL(u)1 <A4 for any UE R. Suppose the equation (2.1) has an 
exponential dichotomy on R+ and R- with projections P’(t) and P-(t), 
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respectively. Then F is a Fredholm operator of index I(F) = dim 9I?Q - (0) - 
dim WQ + (0). Furthermore, 

W(F)= hlh&:(R,R”),lm 
i 

y(t)h(t)dr=Ofor 
-m 

all y E Cz(R, R”‘) satisfying the formal 

adjoint system (3.7) 
I 

ProoJ The characterization of M(F) is obvious. Let y E Ct(R, R”‘) 
satisfy the formal adjoint system in R. Then Lemma 3.2 implies #?‘, y is a 
bounded trajectory of T*(s, t) in R. Since T*(s, t) has an exponential 
dichotomy, p’, y + 0 exponentially as t + &co. The relation (3.10) implies 
that y(t) + 0 exponentially as t + fco. Therefore, if h E 9(F), 
[“lcx y(t) h(t) dt is convergent, and by (3.8) letting o -+ -co and t + +co, 
we obtain that 

s m y(t)h(t)dt=O. 
-cc 

The sufficient conditions for h EW(F) are that there exists 4 E C and a 
continuous map 88 3 t HX,E C such that 

x,=T(t,O)P+(0)~+~rT(t,s)P+(s)X,h(s)ds 
0 

- s O” T(t, s) Q+(s) Xoh(s) 4 tao, 
f 

x,=T(t,O)Q-(0)~+~rT(t,~)Q-(s)Xoh(s)ds 
0 

(3.11) 

+f’ T(t, s) P-(s) X,h(s) ds, t GO. (3.12) 
-cc 

In deriving (3.11) and (3.12), the exponential estimates of T( t, s) P(s) X0 
and T(t, s) Q(s) X0 in (3.5) are employed. Relations (3.11) and (3.12) have 
a solution 4 E C if and only if 

P”(O)-Q-CW=/T, T(O,s)P-(s)Xoh(s)ds 

+ fom T(0, s) Q+(s) &h(s) ds. (3.13) 
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Since P+ (0) is Fredholm and Q - (0) is of finite rank and, thus, compact, it 
follows that P+(O) - Q-(O) is Fredholm. Therefore, W[P+(O) - Q-(O)] is 
closed and (3.13) has a solution 4 E C if and only if ($, f” ~ + fr ) = 0 for 
all $EM(P+(O)-Q-(O))*=N(P+*(O)-Q-*(O)), If t,b~Jf(P+*(0)- 
Q-*(O)), then 

P-*(O)+ =Q+*(O)$ effo and $o~i@Pp*(0)n9i'Q+*(0,. 

The function $( t, * ) = def T*(t, 0) tiO, TV R is a trajectory of the adjoint 
system in B, and t&t, . ) + 0 exponentially as t -+ fco. Also, 

= s ' (T*(s,O)P-*(O)t+b,X,)h(s)ds 
-m 

+ jom (T*(s, 0) Q+ *tOI ICI, xo> 4) ds 

+ jam CT*@, 0) Ii/o, xo> 4s) ds 

cc = I_, (T*(s, 0) $0, xo> 4s) ds 

= I m $(s,O-)h(s)ds. 
--m 

By Lemma 3.2, $(s, 0- ), s E R is a bounded trajectory of the formal 
adjoint system in R. Therefore (+, j’? co + s; ) = 0 if s?“co y(t) h(t) dt = 0 for 
all bounded trajectories of formal adjoint system y( . ). The characterization 
of W(F) is justified. It is now easy to see that N(F) and 9?(F) are closed in 
Ck(R, R") and Ci(R, R"), respectively. Furthermore, dim M(F) = 
dim[WP+(O)nwQ-(0)], codim9(F)=dim[WP-*(O)nWQ+*(O)], and 
both dim M(P) and codim g(F) are finite. Therefore, F is Fredholm and 
I(F)=dim[WP+(O)naQ-(0)] -dim[WP-*(O)nwQ+*(O)]. 

We now prove that Z(F) = dim *Q-(O) - dim WQ’(0). Let {qr,..., q; } 
be a basis in WQ - (0) n BP+ (0). We can add {qkf , ,..., q,& }, where m, = 
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dim BQ-(0) to form a basis (q;,..., q,) in 9Q-(0). We also choose a 
basis {q;’ *,..., qh+*} in 9tQ’*(O)nWP-*(O) and add {qt++l,..., qg*} to 
form a basis { q1+ *,..., q; * } in WQ’*(O), where m, = dim WQ’*(O). Let 
Ce I ,..., eP] denote the linear space spanned by vectors {e, ,..., e, >. If q* # 0, 
q* E C4~+*1,--, qm: *I, we claim that there is a qe [qi+l,..., q;,] such that 
(q*, q) # 0. Otherwise, q* E [qk+ 1,..., q;,]’ and we already know that 
q* E [qr,..., qk]‘; thus q* E [9$Q-(O)]” = BP-*(O) and q* E BP-*(O) n 
SQ+*(O) = [q: *,..., ql*], contradicting the fact that [q: *,..., qz *] n 

c4;+*1,..., qm:*1 = (0). 
The same type of argument shows that, for q # 0, q E [qi+ 1 ,..., q;,], there 

is a q* E [qh+:l,..., q&* ] such that (q*, q) # 0. Therefore, we easily see that 
dimCq;+ , ,..., q;,]=dim[q;,* ,,..., q&*1, i.e., m,-k=m,-h. Finally, 
Z(F)=k-h=m,-m,. Q.E.D. 

4. HOMOCLINIC TRAJECTORIES AND QUASI-LINEAR EQUATIONS 

In this section, we shall construct autonomous scalar delay equations 
with one delay and bearing a homoclinic trajectory asymptotic to the 
equilibrium. Homoclinic trajectories are rare. Generally, the unstable set 
w”(0) misses the stable set W”(0) and a small perturbation would destroy 
the homoclinic connection even if it does exist. However, in one parameter 
families of vector fields, one often enounters a homoclinic orbit for some 
value of the parameter. For Hamiltonian systems, IV’(O) and IV(O) lie in a 
codimension one energy surface and they generically intersect transversely 
within this surface [4, 7, 151. Here we shall take an alternative approach. 
For a given scalar function x = p(t), p(t) + 0 as t + +oo, we show that 
with some general conditions on p(t), there exist a(x), /I(x) such that the 
quasi-linear scalar equation 

i(t)=a(x(t))x(t)+/?(x(t))x(t- 1) (4.1) 

FIG. 4.1. Systems bearing homoclinic trajectories form a surface H. By changing p we pass 
H at some p = pO, or we consider H as parameter&d by p. 
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has x = p(t) as a solution. Thus, we obtain a family of equations 
parameterized by p. Although this approach seems upside down, in 
applications, we do have situations in which data are collected before the 
coefficients of an equation are determined. And (4.1) includes many 
interesting equations that are currently being studied extensively. Further- 
more, we are close to saying that if there is a certain homoclinic trajectory 
of (4.1), the coefficients have to be determined uniquely in this way. 

Let x = p(t), t E R be a smooth (P) function satisfying the following 
conditions: 

(1) p(t)>0 for t<O, b(t)<0 for t>O, p(O)=max,,.p(t) and 2a= 
p(o) < 0. 

(2) There are smooth functions G(z), H(z), G(0) = H(0) =O, G, = 
G(0) > 0, H, = h(O) > 0, and constants T> 0, 1, > 0, 1, < 0 such that 

p(t) = G(e”l’), t-c -T, 

p(t) = H(e’z’), t> T, 

LEMMA 4.1. Assume (1) and (2). Then there are smooth functions a(x) 
and b(x) uniquely defined on [0, p(O)] such that x = p(t) is a solution of 
(4.1). The functions CL(X), p( ) x can be extended smoothly to x E R. Further- 
more, -p(x) 2~ >O on [0, p(O)] and, x1 = eil’, x2 = eA2’ are solutions of 
a(t)=cr(O)x(t)+j3(O)x(t-1). 

Proof For 0 <x < p(O), there correspond unique t, < 0 and t, > 0 such 
that p(tl)=p(t,) =x. By the Implicit Function Theorem, t, = t,(x) and 
t, = t,(x) are smooth functions of x. It is obvious that p(t, - 1) < p(t2 - 1). 
Solving 

At1) = 4x1 x + P(x) p(t, - l), 

P(b) = u(x) x + B(x) P(t* - I), 

FIGURE 4.2 
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we obtain that 

a(x) = b(t1) P(f* - 1) - P(b) P(f1- 1) 
X.(P(f*- l)-p(t, - 1)) ’ 

acx, = 
d(b)-B(tl) 

P(t*-l)-P(f,-l)’ 

(4.2) 

where t,, f2 are functions of x. Therefore, a(x), p(x) are uniquely defined 
smooth functions on x E (0, p(O)). Also j(x) < 0 since P(tz) - P(tl) < 0 and 
P(tz-l)-p(tl-l)>O. 

Let p(t) = p(O) + at*(l + D(t)) in a neighborhood of t = 0, where a < 0 
and D(t) is a smooth function, D(0) = 0. If y* = (p(t) - p(O))/a and 
sgn y = sgn t, then y = t( 1 + D(t))‘/*, which is a smooth function of t in a 
neighborhood of t = 0. By the Implicit Function Theorem, we have t = t(y), 
t(0) = 0, dt/dy I,,=, = 1, where t(y) is a smooth function defined in a 
neighborhood of y = 0. Thus, we have t, = t( + y), r2 = t( T y) if y 60. In 
any case, if y # 0, 

x. a(X) = B(l( -Y)) P(l(Y) - 1) - @(f(Y)) P(l( -Y) - 1) 
P(l(Y)- I)-P(t(-Y)- 1) 

= CEi(t(-Y)) P(f(Y)- 1)-9(t(v)) P(t(-Y)- 1)1/Y 
CP(t(Y)- l)-P(t(-Y)- 1)1/Y . 

The denumerator and numerator are even functions of y and as y + 0, 

The numerator also has a limit -2&(O) * p( - 1) >O. Hence, x’ a(x) is a 
smooth even function for y in a neighborhood of 0. Substituting 
y = Jm, for x E (p(0) - E, p(O)], we obtain that a(x) is a smooth 
function in (p(0) - E, p(O)], where E > 0 is some constant. More precisely, 
a(x) E ?(p(O) - E, p(0)) and a(“)(x) has a limit as x --+ p(O), k = 0, 1, 2,... . 

It is a good exercise to show that a(x) can be extended smoothly to 
x E [p(O), + cc ) and we shall omit it here. 

Similar arguments apply to b(x), showing that j?(x) is smooth for 
XE (p(0) - E, p(O)] and is extendable to x E [p(O), + co) smoothly. 

&P(O)) = lim 
Mt(r)) - d(l( -Y))l/Y 

Y-+0 Cp(t(y)- l)-P(t(-y)- II/Y 

w3) <o 

=2po . 

505163/2-S 
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We now study the behavior of tl(x) and a(x) when x + 0,. Since 

cI(x) = Cli(t1) P(f2 - 1) - P(b) P(ll - 1w 
CP(t2-1)-P(t,-l)l/.~ ’ 

to show a(x) E C” [0, E), it suffices to show that p(t,)/x, @(tz)/x, p(t, - 1 )/x, 
P(b - 1 l/x have smooth extensions for XE(-&,E) and 
lim x 4 o+ CP(f2 - 1) - P(tl - 1)1/*x f 0. 

Let G(z) = G,z + G,(z) and H(z) = H,z + H*(Z), where G, and H, are 
positive constants and G,(z) = O(z2), H2(z) = O(z’). By the Implicit 
Function Theorem, x = G(z) can be solved in a neighborhood of x= 0, 
z-0, as z=Z(x) with Z(O)=0 and Z(O)= l/G,. If &‘=z, we have 

-=GG,.A, 
dt 

. .z + G;(z) 2, ’ z 

=G,.E,,.Z(x)+G;(Z(x)).I,.Z(x). (4.3) 

Since Z(x)/x~ P( -6, E), (dp(t,)/dt)/ x can be extended as a C” function 
for xE(-s,.s) by (4.3) and 

lim d(tl)/x=A1 (4.4) x-o+ 

for lim, _ 0 Z(x)/x = l/G1. Similarly, we can show that b( t,)/x can be exten- 
ded as a C” function for x E ( -8, E) and 

lim @( t2)/x = AZ. (4.5) r-o+ 

Since 

p(t, - 1) = G1zePil + G2(zeeAl) 

=G,ep”‘~Z(x)+G2(epA1Z(x)) 

we obtain that p(t, - 1 )/x can be extended as a C” function for x E ( -6, E) 
and 

lim p(tl - l)/x=e-“I. 
x-o+ (4.6) 

Similarly, p( t, - 1 )/x can be extended as a C” function for x E ( -6, E) and 

lim p( t, - 1 )/x = e -AZ (4.7) x-o+ 

lim x-o+ [p(t2-- 1)-p(tl - l)]/x=e-“2-eP”1>0. Thus, we conclude that 
M(X) has a smooth extension on (-E, E). Finally, it is easy to see that CL(X) 
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has a smooth extension on R. In the same manner, we show that /I(x) has a 
smooth extension on ( -E, E) and is extendible to x E R smoothly. From 
(4.2), (4.4), (4.5), (4.6) and (4.7), 

Therefore, p(x) < 0 for x E [0, p(O)] and there is an v > 0 such that 
-p(x) > q since [0, p(O)] is compact. 

In the equation 

i;-(t) 
x(t) = 4x(t)) + m(t)) x(t - l)lx(th 

let x = p(t) and t + -co. We obtain ;1, = a(O) + p(O) e-“I. Similarly, letting 
t -+ +oo, we have & = a(O) + b(O) ePa2. Therefore, x = e”’ and x = e12’ are 
solutions of x(t) = a(O) x(t) + /I(O) x( t - 1). This proves Lemma 4.1. 

We shall need the following lemma, the proof of which can be found in 
PI- 

LEMMA 4.2. Let A, >/ A2 be two real characteristic values for 

i(t) = Ax(t) + Bx(t - l), 

where A and B are real constants. Then all the other characteristic values are 
complex and have real parts less than &, 

In our case, A, > 0, Iz, -C 0. Therefore, 0 is hyperbolic equilibrium of (4.1) 
with the local unstable manifold w”(0) of dim 1 and the local stable 
manifold w”(0) of codim 1. The function x = p(t) defines a homoclinic tra- 
jectory connecting V(O) to W”(O). 

A simple example constructed to have x = (sh 1). (ch t) -’ as a 
homoclinic trajectory is 

x(t)=(ch l)(sh 1))‘.x(t)-(sh 1))‘(1 +x’(t))x(t-1). (4.8) 

FIGURE 4.3 
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FIGURE 4.4 

Remark 4.3. Our method can be employed to construct a scalar delay 
equation (4.1) with x=x1, x=x2 as two equilibria and x=p,(t), x=pz(t) 
as two heteroclinic trajectories joining x = x1 and x = x2 as t + _+ co. See 
Fig. 4.3. 

We can also construct a scalar delay equation (4.1) with any sinuous 
periodic solution x = t(t), t( t + w ) = t(t) which oscillates slowly, i.e., 
QO)=~(t,)=Qw)=O, [>O in (O,t,) and &O in (to,o), {(t,)= 
max, l(t) > 0, <(f2) = min, c(t) < 0, t1 3 1 and t, - t, 2 1. See Fig. 4.4. 

Less obviously, our method can be refined to construct scalar delay 
equations with a homoclinic trajectory looking like Fig. 4.5, i.e., p(t) - e”“, 
t < -T and p(t)-e-i’cos(wt + 0,), t > T, for some constants o, BO, A1 > 0, 
i > 0 and T> 0. It is suggested by Hale that z? =f(x(t), x(t - l), x(t - 2)) 
would be a good candidate for such an equation. We only give a few 
suggestions of how this can be accomplished. The orbit of 
(p(t), ~(t - l), ~(t - 2)), t E R, lies in a two-dimensional plane in R3 for 
PI(t) = epi’ cos(ot + 0,), while for p*(t) = e”l’, it is a straight line in R3. 
Assigning a linear functional on the plane and the line, we find i = Ax(t) + 
Bx( t - 1) + Cx(t - 2) will have pi(t) and pz(t) as solutions. The general 
situation can be handled by a smooth change of coordinates. It was first 
discovered by Sil’nikov [ 181 that three-dimensional ODES having this type 
of homoclinic trajectory may have chaotic behaviors in a neighborhood of 
the homoclinic orbit. We shall show that this is the case for certain delay 
equations elsewhere. 

t 
x 

< 

FIGURE 4.5 
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5. PERTURBATIONS OF HOMOCLINIC ORBITS 
AND BIFIJRC~TION FUNCTIONS 

We have constructed (4.1) such that a(x), /3(x) E C”(R), x = 0, is a 
hyperbolic equilibrium with dim IV’(O) = 1 and codim W’(0) = 1. The 
function x = p(t) defines a homoclinic trajectory asymptotic to x = 0 as 
t + &co. Furthermore, --b(x) > rl> 0 for x E [0, p(O)]. In this section, we 
study the perturbed system of (4.1): 

i(t) = f+(f)) x(f) + P(x(t)) x(t - 1) + MC x,, P), (5.1) 

where /A E X, a Banach space and h: R x C x X-+ R is C’ with bounded 
derivative, and h(t + o, 4, p) = h(t, $, p), o > 0, a constant. We assume that 
h(t, 4, p) = 0( 1~1) for ,n close to 0, uniformly with respect to t, $. Since zero 
is a hyperbolic equilibrium, from a standard result of perturbation theory 
[9], we know that for p sufficiently small, (5.1) has a unique periodic 
solution x = Z,(t) with period o in a neighborhood of 0 and lT,J + 0 as 
p -+ 0. The solution 1, is hyperbolic and the local unstable manifold W]: 
and the local stable manifold W; of ZP are C’ close to P(O) x R and 
W”(0) x R when p is small. We shall study the conditions that ensure the 
existence of some homoclinic trajectory x = p,(t) in a neighborhood of 
x = p(t) and W; intersects W; transversally along the orbit of x = p,(t). 
The investigation uses the method of Liapunov and Schmidt and 
Lemma 3.4. This method was first used to treat a similar problem in ODES 
[4, 8-J; see also [ 14, 163. The appearance of the transverse homoclinic orbit 
in delay equations is of great interest since it has been proved that trajec- 
tories near x = p,(t) are very complicated. Discussions using symbolic 
dynamics may be found in [lo]. 

We first consider the linear variational equation of (4.1) with respect to 
x = p(t). 

i(t)=d(t)x(t)+~(t)x(t- l), 

4f) = 4dt)) + Wf)) P(t) + km P(f - 1 h (5.2) 

g’(t) = m(t)). 

Define the operator L(t): C + R, t E R, as 

It is clear that L(t) is continuous with respect to t and is uniformly boun- 
ded since d(t) and a(t) are uniformly bounded for t E R. Then (5.2) can be 
written as Z(t)=L(t)x,. 

Since d(t)+cr(O), a(t)-+fi(O) as t -+ fco, and Z=c~(O)x(t)+ 
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p(O) x( I - 1) has an exponential dichotomy, by Corollary 2.2, there is a con- 
stant t > 0 such that (5.2) has an exponential dichotomy on ( - co, -s] 
and[z, +co),withdimgQ*(t)=l.Since -fi(x)~~>O,x~[O,p(O)],we 
have -B(t) 2 r~ > 0 for t E R. Thus, T(t, s) d # 0 for any 4 E C, 4 # 0 and 
s < t, since the uniqueness of the backward continuation [9] applies to 
(5.2) when -S?(t) > r~ > 0. 

The formal adjoint equation of (5.2), in a form equivalent to that of Sec- 
tion 3, is 

j(t)= -d(t) y(t)-qt+ 1) y(t+ 1). (5.3) 

Similar reasoning as above shows that the forward continuation (to the 
direction of the increasing t) of any solution of (5.3) is unique when 
-W(t)>tj>O, tcR. Therefore I,$ E B[ -Y, 01, $ # 0 implies that 
T((s, t) @ #O for s d t. We can now apply Theorem 3.3 to conclude that 
(5.2) has exponential dichotomies in R+ and R- with dim WQ-(0)= 
dim WQ’(0) = 1. Hence, by Lemma 3.4, F= d/dt - L(t) is Fredholm 
from C:(R) into C:(R) with Z(F) = dim BQ-(0) -dim WQ +(O) = 0. 
Dim M(F) = dim[WP+(O) n BQ-(0)] < 1. Since 9(t) E J-m, 
dim M(F) = 1 and M(F) is spanned by x = d(t). Codim g(F) = 1 follows 
from Z(F) =O. It is now clear that (5.3) has a unique bounded solution 
y = ye(t) & 0, t E R, up to a scalar multiplication and y,(t) -+ 0 exponen- 
tially as t + +co. And 

We assume that fEoo yi( t) dt = 1. We choose to E R such that $(t,,) # 0 and, 
define x,,(t) = g(t)/fi(to). Thus, x,(t) spans -Y(P) and x,(to) = 1. 

DEFINITION 5.1. Projections E,: C:(R) -+ M(F) and E,: C:(R) + &?(I;) 
are defined as E,:xHx,, xl(t)=x(to)xo(t) and E2:f~f,,f,(t)=f(t)- 
.dt) fo0c.s ~o(s)f(s) ds. 

Note that XEB?(Z- E,) if and only if XE C:(R) and x(t,) =O. And 
f~ !B(Z- E2) if and only iff= kyo(t) for some constant k. 

It is known that F: W(Z- E,) + W(E,) is one-to-one and onto. Denote 
the inverse as X: W(E,) -+ a(Z- E,). X is continuous; that is, there is a 
constant k > 0 such that for f~ W(E,) = W(F), 

(5.4) 

Let x = x(t) be any trajectory of (5.1) whose orbit is in the 
s-neighborhood of the orbit of x = p(t), when both are considered in the 
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space C[ - 1,O J. We write x(t) = p( t + {) + z(t + 6). Since d(to) # 0, we can 
choose [ such that z(t,) = 0, if E is sufliciently small. We have 

.?E9(J-E,). (5.5) 

z(t) satisfies the equation 

F(z)(t) =fb L P)(t), (5.6) 

where j q(R) x R x X -+ CO,(R) is defined as 

fk L p)(t) = a(p(t) + z(f)Mf) + z(f)) 
+ m(t) + z(l))Mt - 1) + z(t - 1)) 
- Cab(t)) p(f) + B(p(t)) P(t - 1 )I 
- [aqt)z(t)+%qt)z(t- l)] 

+ h(t - t-3 P, + zr3 P), (5.7) 

f(O, L 0) = 0, f(z, 5, B) = O(lz12 + Id), f,(O, i;, 0) = 0. By the Liapunov- 
Schmidt method, (5.6) is equivalent to 

F(z) = &Sk 5, P), 
0 = V- E2) Sk i, P). 

(5.8) 

By (5.5), the first of (5.8) is equivalent to 

z = ~JW-(Z, L cl). (5.9) 

Before applying the Implicit Function Theorem to (5.9), we mention that 
according to Irwin [13],fis not C’ as a map from C:(R) x R xX to C:(R). 
However, for 1~1 d pO, p. >O, is a constant, we easily get an a priori 
estimate for Ilzll,-; from (5.4) and (5.9). Let Y = {Z~ZE C;(R), llzllc;< M} 
for some positive constant M. (zI I z E Y, r E R) is a precompact subset of 
C[ - 1, 01. The argument in [ 133 can be modified to show that f: Y, x R x 
Z-+ Y, is C’, where Y1 in the domain off is the set Y furnished with Ci 
metric while Y, in the range off is the set Y furnished with Cz metric. 
From the Implicit Function Theorem, there are open balls B,,(E,) c Y,, 
BX(aZ) c X, with radii cl, Q, both are centered at zeros, and a unique C’ 
map z = z*([, CL): Rx BX(Q --, By,(sl), such that z = z*([, 11) is the solution 
of (5.9) for (z, 5, p) E BYI x Rx BX(aI), and z*(<, ,u) = 0( 1~)) for p close 
to zero, uniformly with respect to 5 E 08. Note that to derive the above 
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result, we need f(z, [ + o, p) =f(z, i, p). The bifurcation equation is 
obtained by substituting z*(c, p) into the second of (5.8) 

Obviously, 

G(L PL) = fin ye(t) h(t - L PI, P) df + 4114 1. (5.10) 
-cc 

Since Jmm y,,(t) * [g(t)] dt: q(R) + R is a linear continuous functional, 
we readily see that G([, p): R x X-, R is C’. An analogous argument based 
on the perturbations of a vector field as in the case of ODES [3,4], shows 
that for (~1 <po, [ER and G(Lp)=O, x(t)=p(t+4’)+z*(c,p)(t+[) is a 
transverse homoclinic orbit if and only if (a/al) G(c, p) # 0. Details will 
appear in a later paper with more general cases being considered. 

We have the following theorem. 

THEQREM 5.2. Let h(t, 4, p) satisfy all of the assumptions made 
previously after (5.1). Then there exists p. > 0 such that x = x(t) is a trans- 
verse homoclinic trajectory of (5.1), 1~1 < p. with its orbit being in a 
neighborhood of the orbit of x=p(t) ifand only lfx(t)=p(t+[)+z*([,p) 
(t + [) with z*([, p)(to) =0 and 

$ WC, P) Z 0. 

COROLLARY 5.3 (Palmer [ 161). Let p E X= R. Assume further that 
h: R x C x R + R is C2 with all derivatives up through second order being 
bounded. Let 

d(i) ‘Sf ja; ye(t) h,(t - 6-3 PI, 0) & 
-02 

with 

h,(t, 4, PL) = f h(t, 4, PU), P#O 

=$ h(t, ho), p = 0. 
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Zf&5,)=0 and A’(lo)ZOf or some co E R, then tere is a unique transverse 
homoclinic trajectory of (5.1) near x= p(t) for each p, IpI <p,,. Further- 
more, 5 is a C’ function of p, c = c*(p), /pi <p. and co= c*(O), and the 
homoclinic trajectory is 

x(t) = At + 5*(P)) + z*b4 r*(P))(t + r*(P)). 

Proof: Using the Implicit Function Theorem and (5.10). 
A special case in which the condition of Corollary 5.3 is easily verilied is 

presented in the following corollary. 

COROLLARY 5.4. L.et h(t, 4, p) = p cos t, p E R. Define 

A(() 2’ lrn ye(t) cos(t - i) dt. 
-‘x 

Zf A(c) f 0 for all [ E R, then the conditions of Corollary 5.3 are satisfied for 
some co. 

EXAMPLE 5.5. Consider the equation 

~(t)=(chl)(sh1)-1x(t)-(sh1)-1(1+x2(t))x(t-l)+~cost, PER. 

(5.11) 

When p = 0, the equation has a homoclinic solution x = (sh 1 )(ch t)- ‘. The 
formal adjoint system relevant to the linear variational equation with 
respect to x = (sh l)(ch t)-’ has a unique bounded solution y = y,(t), up to 
a scalar multiplier, and ye(t) + 0 exponentially as t + rf: co. Although the 
explicit form of ye(t) is not known, the coefficients d(t) and 93(t) in (5.3) 
are known. Therefore, it is not hard to compute yo( t) and A(c) numerically. 
We summarize our numerical calculation as follows. 

Take the initial data to be ye(t) = e-’ for 10 < t < 11. Use Adams- 
Moulton scheme with the step size h = l/128. We compute the unique ye(t) 
(not normalized) from yo( lO)w4.54 x 10e5 backwards to yo( -8)~ 
6.59 x 10w5. There is only one maximum yo(1.58)w0.118, one minimum 
yo(- 1.08) x -0.105 and one zero y,(O.37)~0 in between. We claim that 
IA(l) - j’os ye(t) cos(t - [) dtl d 2 x lop4 for all c E R. Integrating from -8 
to 10, we obtain A( -1.27) x -0.31, A(O.30)=0 and A’(O.3O)xO.31. The 
other extrema and zeros are obtained by considering A({+n)= -A([), 
and A(~)xO.31 sin([-0.30). Therefore, for small p, (5.11) would have a 
unique transverse homoclinic trajectory in the neighborhood of the orbit of 
x= (sh l)(ch t)-‘. 

Remark 5.6. A similar technique can be applied to periodic pertur- 
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bations of an autonomous retarded functional differential equation in a 
neighborhood of a heteroclinic orbit asymptotic to hyperbolic equilibria 
which may have unstable manifolds of more than one dimension. The 
bifurcation function G(i, ,u, ki) will have some parameters ki, which are the 
coordinates in the null space N(F). Also, Lemma 3.4 can be improved 
such that the exponential dichotomies are required only in (- CD, -t] and 
[T, +co) for some r>O. 
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