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Suppose r is a heteroclinic orbit of a Ck functional differential equation 
i(t) =f(x,) with a-limit set a(T) and o-limit set w(T) being either hyperbolic 
equilibrium points or periodic orbits. Necessary and sufficient conditions are given 
for the existence of an 7 close to f in Ck with the property that i(t) = 3(x,) has a 
heteroclinic orbit p close to f. The orbits p are obtained from the zeros of a finite 
number of bifurcation functions G(b, 3) E iw”, BE lRd+ I. Transversality of f is 
characterized by the nondegeneracy of the derivative D,G. It is also shown that the 
f which have heteroclinic orbits near r are on a Ck submanifold of finite 
codimension = max{ 0, - ind T} or on the closure of it, where ind r is the index of 
f. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Let C[ -r, 0] be the Banach space of continuous functions from [ -r, 0] 
into R” with the supremum norm. Suppose x is any continuous function 
from R into R”, x,(0) = x(t + 0), -r < 8 < 0 is an element in C[ -r, 01. Let 
D be a bounded open ball in C[ -r, 01, and let xk = {f 1 f e Ck, f: iT; + R”} 
be the Banach space with the usual @-norm )I * Ilk. For a givenf E xk, sup- 
pose the autonomous retarded functional differential equation 

i(t) = f(xt) (1.1) 

has a heteroclinic orbit Tc C[ -r, 0] with a-limit set a(T) and o-limit set 
w(T) being hyperbolic periodic orbits or equilibrium points, 
l-u w(T) u a(T) c D. 

Suppose X is a Banach space, the parameter space, g E C“(D x X, W), 
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with g(., p)Exky II g(., pL)llk =OOPI) as p + 0 and consider the pertur- 
bation of (1.1) given by 

4t) = Ax,) + g(xt, CL). (1.2) 

The purpose of this paper is to determine conditions for the occurrence 
of a heteroclinic orbit rfl of (1.2) in a neighborhood of r for p in a 
neighborhood of zero. We also want to specify these conditions in terms of 
computable quantities which can be used to determine either the transver- 
sality or the order of nontransversality of the heteroclinic orbit. 

In order to be specific about the results, let us assume first that 
M(T) =y,, w(T)=y,, where yl, y2 are periodic orbits of periods o,, 02, 
respectively. Let IV’(yj), WS(yj) be, respectively, the unstable and stable sets 
for yi, j= 1, 2. We refer to these as manifolds, even though it may not 
always be true that they are manifolds globally. The local unstable and 
stable manifolds wO,(yj), W;,,(yj) near yi are @-manifolds. 

Let p(r): C[ -r, 0] + C[ -r, 01, t 2 0, be the Ck-semigroup generated 
by (1.1); that is, i?(t)4 is the solution through 4 at t =O. In the following, 
we let r= UleR GzJ, y1 = UtcR htL y2 = UIER b2,A where 4, ply p2 
are solutions of (1.1). 

DEFINITION 1.1. Tc W’(yl)n uIs(y2) is said to be a transverse 
heteroclinic orbit if for s, t > 0 large enough such that q --s E W;l,,(y 1) and 
qt E W~0c(y2) then ?( t + S) sends a disc in v,,(y , ) containing q ~ ,~ trans- 
verse to IV;,,(yz) at qr. 

The important concept of general position will play an important role in 
the study of nontransversality. 

DEFINITION 1.2. Tc IV”(yl) n IV(y2) is said to be in generaI position if 
r is either transverse or, if, for any s, t > 0 large enough such that 
q--s E v,,(y,) and qt E W;Jy2), then f(‘ct + s) sends a disc in IV&,(y,) con- 
taining q _ s diffeomorphically onto its image and 4, is the only tangent vec- 
tor in CpCt+sS) Wh,(~~)l n WOc(y2) at qr. 

DEFINITION 1.3. The index of l-c W”(yl)n W(y2) is ind r= 
dim IV”(y,) - dim IV’“(y2). 

If ind r= - 1, the concept of general position has been referred to as 
quasitransversal in the study of diffeomorphisms (see Sotomayor [12], 
Newhouse and Palis [lo]). 

For p small, there is a family of hyperbolic periodic orbits 7,” = 
U,, R {P$}, yy = yj with Q,(Y;), ~o,(~,“) being Ck in p, j= 1,2 (see C31). 
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One of the main results of the paper is the following. 

THEOREM. If Zc W”(ri) n W(yJ, Z=max{O, -ind Z) then, for p 
small, there are Ck submanifolds M(Z) c xk of codimension Z such that 
f + g(., ~)EM(Z) if and only if (1.2) has an orbit fP c I%‘“(?‘;) n W(y$) 
close to r and in general position. Furthermore, f E Cl M(Z); that is, if r is 
not in general position, then there is a perturbation g of f such that 
f+ ge M(Z). 

In particular, this result implies that there are Z linearly independent per- 
turbations to break the heteroclinic orbit Z if I> 0. This result is a local 
version of the genericity of transversal intersection of stable and unstable 
manifolds of yi and y2. If ind Z> 0, a small perturbation can make it trans- 
verse; if ind Z< 0, a small perturbation can break it and there are -ind Z 
ways to do it. For a more complete discussion of generic properties of 
functional differential equations, see [6, 8,9]. 

Similar results hold when a(Z), w(Z) contain equilibria if we define the 
index of Z as ind Z= dim yO,(tx( Z)) - dim vO,(w(Z)) + /?, where B = - 1 
if o(Z) is a point and fi = 0 if o(Z) is a periodic orbit. Roughly speaking, 
the cause of the difference in the two cases is that for y = w(Z) being 
periodic orbits, codim W;,,(~)=dim UQy)- 1, while for y being 
equilibria, codim Q,,(y) = dim vO,(y). 

The proof of the above result uses the method of Liapunov-Schmidt to 
determine a set of bifurcation functions G(P, p) E [Wd*, b E [Wd+ ‘, such that 
there is a heteroclinic orbit Zp if and only if there is a p(p) such that 
G@(p), ZA) = 0. Furthermore, the transversality of Zp is equivalent to saying 
that D,G is onto. The degree of nontransversality of Zp is measured by the 
rank of D,G. The constant d is the number of linearly independent 
solutions which approach zero exponentially as t -+ fee of the linear 
variational equation about the solution defining Z and d* is the number 
of linearly independent solutions of the adjoint of this equation that are 
bounded on ( - cc, cc). 

The manner in which the method of Liapunov-Schmidt is employed 
follows in the spirit of the investigations of Chow, Hale, and Mallet-Paret 
[ 11, Palmer [ 111, and Lin [7] for the determination of heteroclinic orbits 
for periodically perturbed autonomous systems. The case where the orbits 
yj are periodic and the perturbation is autonomous introduces additional 
technical difficulties. First, the linear variational equation 

4t)=f'(4r)xt (1.3) 

around Z has the bounded solution 4(t) which does not approach zero 
either as t + + cc or as t + - cc. This implies that (1.3) does not have an 
exponential dichotomy. Second, since the period of 7; changes with p and 



178 HALE AND LIN 

the time that it takes to go from a transversal of yf to a transversal of y$’ is 
also changing with p, these quantities must be determined in some way. 
This involves several careful time scalings. 

We now give a brief outline of the contents of each section. Section 2 is a 
recollection of known results on stable and unstable manifold theory. Sec- 
tion 3 is devoted to the development of the theory of exponential 
trichotomies, generalizing the concept of exponential dichomoties to fit our 
needs. Section 4 is devoted to more details about exponential trichotomies 
including the roughness theorem. Also, it is shown that the linear 
variational operator around Z defines a Fredholm operator in the Banach 
space of continuous bounded functions in R weighted by a factor eyt for 
t < 0 and ePY’ for t > 0. In Section 5, we derive the bifurcation functions G 
and deduce various geometric consequences of them. In Section 6, we con- 
struct perturbations g(. , p), showing the manifold structure of M(Z), and 
that Cl M(Z) contains all the vector fields having fP near Z as a 
heteroclinic orbit. 

2. HYPERBOLIC EQUILIBRIA, PERIODIC ORBITS 

Suppose (1.1) has an equilibrium point x,, E R” and let &, E C be defined 
by a,(e) = xo, -r d 19 < 0. The linear variational equation about x0 is 

i(t) = L(Zo)x2, L(1,) =f’&). (2.1) 

The solution x0 of (1.1) is hyperbolic if all eigenvalues of the characteristic 
equation of (2.1) have nonzero real parts. Let 

W(xo)= (f3eC: f(t)f$-+2, as t-+03} 

?V”(xo) = { 4 E C: f( t)cj is defined for t d 0, 
I 

T(t)b+x, as t-+ -co}. 

The following theorem may be found in [3, p. 2301. 

THEOREM 2.1. Zf f E Ck(C, W), k 2 1, and x0 is a hyperbolic equilibrium 
point of (l.l), then there is a neighborhood U of Z. such that 

w;l,,(xo)= (46 fJ?xo), fltw u, t<O) 

Vo,(xo) = (4 E P(xo), Q’(t)d E u, t 3 0) 

are Ck-manifolds. The approach of solutions to 1, as t -+ + 00 (or t + -00) 
is exponential. 

Suppose p(t) is a periodic solution of (1.1) of minimal period o and let 
Y=U~~~ {p,fcC be th e corresponding periodic orbit. Then necessarily 
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p E C”( R, W) and PI # 0 for all t E R. The linear variational equation about 
the periodic solution p is 

i(t) = L,(t)x, 

qt) =f’(Pt) 

and d(t) is a solution of (2.2). 

(2.2) 

(2.3) 

Let T(t, s): C + C be the solution operator for (2.2); that is, T(t, s)b is 
the solution of (2.2) which coincides with 4 at t = S. The characteristic mul- 
tipliers of (2.2) are the eigenvalues of the operator T(o, 0). The fact that 
~5, # 0 for all t E R satisfies (2.2) implies that 1 is a multiplier of (2.2). The 
orbit y is said to be hyperbolic if 

(i) 1 is a simple multiplier, 
(ii) [cr(T(o,O))\{l}]n{z~UZ: JzI=l}=@. 

The stable set W(y) for y and the unstable set W”(y) of y are defined as 

W”(y)={#EC:Qt)#+yast+co} 

W”(y)={~~C:~(t)~isdefinedfort<Oand +yast+ -co}. 

For any a > 0, define 

The sets W(y, a), W’“(y, a) are points respectively on the stable and 
unstable sets which are synchronized in time with pr + oL. 

For any neighborhood U of y, we define 

V&, a)= {tie W(y, a): f(tbje U, t>O} 

~,,(Y, a) = (4 E WYy, a): f(t)4 E U, t d O}. 

The following theorem may be found in [3, p. 242; 43. 

THEOREM 2.2. Zf f E Ck( C, R”), k > 1, and y is a hyperbolic periodic orbit 
of (1.1) then there is a neighborhood U of y such that Wf,,(y, a), y,,(y, a) 
are Ck-manifolds and 

WL,(r) = U WS,,(Y~ 4, w;l,,(~)= U VL(Y, 4 
O<a<o o<acw 

are Ck-manifolds. The approach of solutions to y either as t + + co or as 
t -+ - co is exponential. 
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3. EXPONENTIAL TRICHOTOMIES 

For t > s in some interval J, let T( t, s) be a strongly continuous non- 
autonomous semigroup of linear bounded operators in a Banach space X; 
that is, 7’(t, s) is strongly continuous in t, s, T(s, s) = I (the identity), 
T(t, r) T(z, S) = T(t, s), t 3 t > s. It is said that T(t, s) has an exponential 
trichotomy on .Z if there exist projections P,(t), P,(t) and P,(r) = 
I- P,(t) - P,(t), t E J, strongly continuous in t, and 

nt, 3) P,(s) = P,(t) T(t, s), 

T(t, 3) P”(S) = P,(t) qt, $1, 

Gt, 3) P,(s) = P,(t) qt, s), 

for t > s in J. We also assume that T( t, s): &!P,(s) + &‘P,(t) and T(t, s): 
RP,(s) + %?P,( t), t > s, in .Z are isomorphisms and T(s, t) = (T(t, s))) I, 
t > s, is defined from WP,(t) onto &Y,(s) and from .%P,(t) onto LA%‘P,(s). 
Furthermore, there exist constants LX < V-E < v+ EC 8, called the 
exponents of the trichotomy, and K > 0 such that 

1 T(t, s) P,(s) 1 Q KeaCrps), 

1 T(s, t) P”(t)1 6 Ke~s”~“‘, 

1 T(t, s) P,(s) 1 < Ke(v+E)(‘-s), 

( T(s, t) P,(t)) < Ke’-“+““‘-“‘, tksEJ. 

We shall assume aP,(t) and 9P,(t) are finite dimensional. 
The adjoint operator T*(s, t) of T(t, s) is a weak* continuous semigroup 

in X*. If T(t, s) has an exponential trichotomy on J, then T*(s, t) has an 
exponential trichotomy on J with projections P,*(t), P:(t) and P,*(t), 
weak* continuous with respect to t E J, where * denotes the adjoint 
of a continuous operator. Obviously, dim %‘Pz( t) = dim &Y’,(t) and 
dim BP,*(t) =dim BP,(t). It is also true that T*(s, t): WP,*(t) + &?P,*(s) 
and T*(s, t): BP,*(t) + %?P,*(s) are isomorphisms and the inverses 
T*(t, s)= (T*(s, t)))‘= (T(s, t))* are properly defined. See [7]. 

We call WP,(t), %P,(t), and BP,(t) the unstable space, stable space, and 
center space, since in most applications, fl> 0, v = 0, and c( < 0. The case of 
P,(t) = 0, t E J, is also called a shifted exponential dichotomy if the splitting 
is not made at v = 0. 

If (1.1) has a hyperbolic equilibrium point, then the solution map 
T(t, s) = D, ?(‘ct - s)&, of (2.1) has an exponential dichotomy for all t 2 s in 
R. This is a special case of an exponential trichotomy with the dimension of 
the center space equal to zero and CL < 0 < p. For a proof, see [3, p. 1811. 

If (1.1) has a hyperbolic periodic orbit y = u,, R {p, }, then the solution 
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map T( t, s) = D, F( t - s) ps of (2.2) has an exponential trichotomy for all 
t > s in R. This is a consequence of the decomposition theory of linear 
periodic systems in [3, Chap. 83. In terms of the notation in [3, p. 2031, 
the decomposition according to the multipliers with moduli greater than 
one yields projections P, and P, + P,. With E > 0 sufficiently small, the 
decomposition according to the multipliers with moduli greater than 1 -E 
yields projections P, + P, and P,. The adjoint system of (2.2) is then used 
to obtain the projections P,, P,, P,. 

The proofs of Lemmas 3.1, 3.2, 3.3, below, will not be given here, since 
they are similar to the case of exponential dichotomies of flows generated 
by ordinary differential equations. See [2]. The technical treatment of the 
additional difficulty caused by the noninvertibility of T(t, s) can be found 
in [7]. 

LEMMA 3.1. Let T(t, s), t 2 s have exponential trichotomies in R- and 
R+, with projections P’(t), P’(t), PC* (I), t E R’. Suppose that the 
exponents in R - and R + are the same, and the unstable spaces in R - and 
R + and the center spaces in R - and R + have the same dimensions, 
BP; (0) n (9PZ (0) @.%?Ps+ (0)) = 0, and {BP; (0) @ WP; (0)) n 
BP: (0) = a. Then T(t, s) has an exponential trichotomy in R = R- v R+. 

LEMMA 3.2. Let T(t, s) be defined in ( - co, to] and have an exponential 
trichotomy in (-co, t], to >z. Suppose that T(t,, ~)(q5, +&) #O for 
#1 E UP,, & EBP,(T), and ~5~ + ~5~ #O. Then T(t, s) has an exponential 
trichotomy in ( -GO, to] with the same exponents, and the projections P,(t), 
Ps(t), and g=(t) approach P,(t), P,(t), and P,(t) exponentially as t + - co. 

LEMMA 3.3. Let T(t, s) be defined in [to, + co) and have an exponential 
trichotomy in [T, + co), T > t,. Suppose that T*(t,, z)($~ + tiz) #O for 
$I E~P,*(z), ti2 EBP,*(T), and $I + $z #O. Then T(t, s) has an exponential 
trichotomy in [to, + co) with the same exponents, and the projections P,(t), 
P,(t), and H,(t) approach P,(t), P,(t), and P,(t) exponentially as t + + 00. 

4. THE LINEAR VARIATIONAL OPERATOR 

In this section, we give more details about exponential trichotomies for 
the linear variational operator for a heteroclinic orbit r of (1.1). 

Let 4! be the Banach space of all the linear continuous functions L: 
C( [ -r, 01, R”) + R” with the operator norm. Let Ck(R, %) be the space of 
Ck maps from R to % with the Ck uniform topology. Let T(t, s) be the 
solution operator for the linear functional differential equation 

i(t) = L(t)x, (4.1) 
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with L(.)E Ck(R, @). Let L(t)d= [tr dy(t, 0) 4(e) for 4~ C[ -r, 0). For 
each t, q(t, 0) is an n x n matrix function normalized so that r](t, 19) = 0 for 
0 Z 0, u( t, 0) = q( t, -r) for 8 G -r, continuous from the left in 8 on ( -r, 0) 
for each t and has bounded variation on 0 E [ -r, 0] for each t. Such 
matrices constitute a Banach space a0 with II dt. . ) II = 
max, gidn [c;=i Var qii(t, .)I. Each L(.)E Ck(R, %!) is associated with a 
unique q( ., * ) E Ck(R, 9&J and the relation is an isomorphism from 
Ck(R, a’) to Ck(R, 9$,). 

The formal adjoint equation for (4.1) is 

Y(S) + jr v(a) ?( tl,.s--)&=const, s<t-r. (4.2) s 

Let B,( [ -r, 01, R”‘) be the space of functions from [ -r, 0] to R”’ which 
have bounded variation on [ -r, 0] and are continuous from the left with 
I $ I = max c;= i Var ej. The solution operator of (4.2) defines a semigroup 
T(s, t), s < t, mapping y, E B,( [ -r, 0), R”‘) to y, E B,( [ -r, 01, R”‘). See 
[3]. From (4.2), it is clear that y(s) is absolutely continuous for s d t - r. If 
q E Ck(R, $YO), k > 1, we have that 

+ jr-’ j(a) ?(a, s - a) da = 0, s<t-2r. 
s 

So j(s) is absolutely continuous for s < t - 2r. Therefore y(s) E Ck for 
s Q t - (k + 1) r, by induction. 

Consider Eq. (4.1) in some interval Jc R. For any L(. ) E C(J, a’), let 
J(t, L) = q(t, -r + ) - q(t, -r) be the jump of q(t, t) at -r. The function 
L(. ) is said to satisfy the H-O property if for any compact set Kc J, there 
exists an E, 0 <E < r, such that 

I 
-T+E 

dh 0) ito) = 20) 4( --y), t E K, 
-I 

and the set {t I det A”(t) = 0, t E J} contains only isolated points. 

LEMMA 4.1 (Hale and Oliva [ 51). The solution operator of (4.1) is 
one-to-one if L satisfies the H-O property. Furthermore, the class of L 
satisfying the H-O property is dense in Ck(J, %) if J is compact and k > 1. 

LEMMA 4.2. Suppose that L satisfies the H-O property in J. Then the 
solution operator F((s, t), s< t, for the formal adjoint equation (4.2) is 
one-to-one for all s < t for which [s - r, t] c J. 
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Prooj Suppose that y(u) is a solution of (4.2) and there exists a con- 
stant t, [t - r, t] c J, such that y(a) = 0 for a < t. We want to show that 
there exists p > 0 such that y(e) = 0 for c1 d t + p. 

Let E > 0 be the constant in defining the H-O property. For s < t + E - r, 
y(s) satisfies the equation 

Y(S) + j;+’ y(a) r](s, s - ~1) du = const. 

Since v(s) = 0 for s < t 

I 
I+& 

y(a) ~(a, s - a) da = const, s<t+E-r. (4.3) 
f 

Let s=t+E--r in (4.3). Since t<a<t+&, -r<s-a=$&-r, we know, by 
H-O property, ~(a, s - a) = ~(a, E - r) for t < a < t + E; therefore 

I 
t+.S 

constant = y(a) da, c-r) da. I 
If t-r<s<t+s-r in (4.3), we have 

s 
sir 

AaM& s- a) - da, E - r)] da I 

s I+& + y(a)[q(cr,s-a)-?(a,~-r)] da=O. 
S-CT 

But, for t<cc<s+r, rl(&s-a)=q(a,E-r), and, for s+r<cr, 
?(a, s - a) = ~(a, -r) and so 

s t+E y(@)C?(a, -r) - da, E - r)] da = 0, t-r<s<t+E-r. 
.5+r 

Differentiating with respect to s, we have y(s + r). A”(s + r) = 0 for 
t <s + r < t + E. There exists 0 c p < E such that A”(s + r) is nonsingular for 
t<s+r<t+p. Thus y(s+r)=O for t<s+r<t+p. This proves the 
lemma. 

If we suppose that T(t, s) has an exponential trichotomy in J, then so 
does T*(s, t), s 6 t. If J= ( -co, + co) or [0, + co), the relation between 
the true adjoint operator and the formal adjoint operator (see [3, 
pp. 152 ff.]) implies that &, t) also has an exponential trichotomy in J, 
with the same exponents a < v - E < v + E < /3. 

LEMMA 4.3. Suppose that (4.1) has an exponential trichotomy in 
J= ( - 00, 0] or [0, + co) or ( - 00, + 00) with projections P,(t), P,(t), and 
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P,(t), and exponents c1< V-E < v + E < b. Assume that 6 = suptEJ jl B(t) 11, 
where B( . ) E Ck(J,+2). Then the functional differential equation 

i(t) = L(t)x, + B(t)x, (4.4) 

has an exponential trichotomy in J, with projections p,(t), P,(t), and P,(t), 
and exponents E < ij - E < v” + E < F, provided that 16 1 < 6, for some constant 
6, >O. Furthermore, p”(t)+P,(t), P,(t)-+P,(t), and pc(t)-+Pc(t) 
uniformly in t and a”, v”, 8, E” -+ LX, v, /?, E as 6 -+ 0. 

Under the same hypotheses on (4.1) and J = ( - co, 0] (or [0, co )) and 
11 B(t) 11 -+ 0 as t + - co (or t ---* CD), there is a 7: > 0 such that (4.4) has an 
exponential trichotomy on ( - CO, -T] (or [z, co)) and p,(t)-P,(t)+O, 
p,(t)-PS(t)+O, P,(t)-P,(t)+0 as t+ -03 (or t-rc.0). 

Proof We observe that, if (4.1) has an exponential dichotomy in 
J= (-co, 0] or [O, + co) with projections P,(t) and P,(t), exponents 
CI <p, and if 6 is small, then (4.4) has an exponential dichotomy in J with 
projections p,(t) and Ps(t) and exponents & -C a. Furthermore 
P”(t) -+ P,(t), p,(t) + P,(t) uniformly in t E J and L?, p- LY, fl as 6 + 0. The 
proof of these facts is similar to the roughness of exponential dichotomies 
in the ordinary differential equation case, and can be found in [2], 
although necessary changes have to be made to avoid using the inverse of 
the solution map too arbitrarily-it is only defined on the unstable spaces 
and center spaces. 

Now from the exponential trichotomy of (4.1), two exponential 
dichotomies can be defined. One is defined by Pi = P, + P,, P,’ = P,, and 
with the exponents IX < V-E. Another is defined by Pt = P,, Pf = P, + P, 
with exponents v + E < /I. From our previous observation, for small 6, (4.4) 
has two exponential dichotomies. One is defined by Pi, Pi with exponents 
d < ij - E. Another is defined by Pt, pz with exponents C + E” < fl. Also, &, pb 
are close to Pi, Pf and d, fl, v”, E” are close to a, /I, v, E if 6 is small. There are 
three cases to be considered. 

(1) J = [0, + 00). In this case, 9~~ and ~8~~ are uniquely determined 
and S%?pb c 9?!:, The difference of their codimensions is equal to dim BP,. 
We see that P,(t) = P,‘(t), P,(t) = p:(t), and p,(t) equals the operation of 
p:(t) followed by a projection from $%‘P$(t) onto the invariant subspaces 
complementary to B&t) in .@(t). 

(2) J= ( - co, 01. In this case, pi and 82, are uniquely determined and 
Pt c EA. The difference of their dimensions is equal to dim BP,. We see 
that P,(t) = P;(t), p,(t) = p,‘(t), and p,(t) equals the operation of P!, 
followed by a projection from PA(t) onto the invariant subspace com- 
plementary to 9Pt(t) in 9Pt(t). 
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(3) .I= (- co, co). We use (1) and (2) and Lemma 3.1. Note that 

BP;(O)n (aB,+(O)@aa~(o)} =0 

and 

{WP,(O)@9F’,(O)} n9q+(O)=@ 

for small 6, since these two equalities are rough under small perturbations. 
To show this, one needs that dim WP, and dim BP, are finite. 

The proof of the last part of the Lemma follows as in the ordinary dif- 
ferential equations case (see, for example, Palmer [ 11 I). An immediate 
consequence of Lemma 4.3 is the following. 

THEOREM 4.4. Let f = U,, R {qr} be a heteroclinic orbit with a(r) and 
o(T) hyperbolic equilibria or periodic orbits. If T( t, s), t 2 s, is the solution 
map for ~(t)=f'(41)x,, then T(t, s) has exponential trichotomies in 
( -co, - z] and [r, + CD), 7 > 0. The orbit r is transverse if and only if 

T(z, -z) BP, ( -t) + (9P,+ (z) 0 9P,+ (t)) = X 

or, equivalently, 

T(z, -r)(9P, ( -7) 0 BP, ( -z)) + BPS+ (T) = X. 

r is in general position if and only if r is transverse or 

T(T, -z)(aP,( -z)@BPC( -z)> nB)P,(z)= (0). 

When applying Theorem 4.4 to the special case that r is a homoclinic orbit 
and a(T) = o(T) is a hyperbolic periodic orbit, we have that r is transverse 
if and only if T(t, s) has an exponential trichotomy in R. This can be seen 
from Lemmas 3.1, 3.2, and 3.3. 

Let y, and y2 be two real constants. Let CO(y,, y2) be the Banach space 
of all the continuous functions x(t) defined from R into R” such that 
Ix(t)1 <Ke ylf t < 0, and 1 x(t) ) d Key2’, t 2 0, for some constant K > 0. The , 
norm in CO(y,, yz) is defined as 

II x II e(rl,Y2) = sup {I x(t) I eey2’, l x( -t) I e”‘}. 
I20 

Let Ck(y,, y2) be the Banach space of all the Ck functions x(t) such that 
x(‘)(t)E C’(y,, y2), i= 0, l,..., k, with the norm 

II x II c%% YZ) = i: II~(i)IIe(,l.y2,. 
i=O 

505/65!2-4 
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For L(.)EC~(R,&), k>O, the linear operator FL: Ck+‘(yl, y2)+ 
Ck(y,, yz) is defined as FL: x-h, h(t)=dx(t)/dt-L(t)x,. We write 
FL(ylr y2) to indicate the space Ck(y,, y2) under consideration. 

LEMMA 4.5. Suppose that L(.)cCk(R, %) and that (4.1) has shifted 
dichotomies in R- and R’ with exponents a1 < j?, and CQ < /Iz, respectively. 
Let a, <yl <jl and cz2 <y2 <Bz. Then FL: Ck+l(~I,~r)~Ck(y,,~Z) is 
Fredholm of index Z(F,) with 

Z(F,) = dim %?P; (0) - dim B?Pc (0) 

N(F,)= {(T(t,O)#)(O):~E%‘P;(O)nWP,+(O), tER} 

W(F,)= (h: hECk(yl, yz), !:a y(t) h(t)=Ofor all the solutions 
of the formal udjoint equation y(t) such that 1 y(t) 1 < KepD2’, 
t>O; ly(t)(<Ke-*I’, t<O}. 

Proof: To discuss the solutions of F,x= h, let u(t) =ePYrx, and 
g(t) = e-y’h( t), where y = y1 for t < 0 and y = y2 for t b 0, respectively. The 
function U: R -+ C[ -r, 0] does not satisfy any delay equation, but, from 
the variation of constraints formula (see [3]), 

x, = T(t, s)x, + s ’ T(t, u) X,,h(v) dv, s d t, (4.5 
s 

we have 

u(t) = T,(t, s) 4s) + j’ T,(t, v) Xc, g(u) do, s 6 t, (4.6 
s 

where T&t, s)= T(t, s)epY”-S) and y=y, or y2 depending on s<t<O or 
0 <S < t, and X,(0) = 0 for 8 < 0, X,(O) = Z, the identity. The operator 
T,( t, s) has the usual exponential dichotomies on R- and R + with projec- 
tions Pu’,( t) = P” (t) and P$ (t) = P’ (t). Discussion of the usual exponential 
dichotomy case can be found in [7], where we proved that the bounded 
solutions for (4.6), when g 3 0, are 

{u(t) = (T,(t, 0)4)(O) I 4 E .@Puy(O) n BP;(O)). 

Also, the set of the bounded functions g(t) such that (4.6) admits a 
bounded solution u(t) is (the symbol (, ) is the dual pairing) 

(g(t) bounded : I”, t(t) g(t)=O, 

5(t)=(T,*(t,O)r,X,),iE~P,:*(O)n~P,’(O)}. 
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Returning to (4.5) and observing that T,*(s, t) = T*(s, t) eP’(f--s), one easily 
obtains the desired results in the lemma. 

LEMMA 4.6. Assume all of the hypotheses of Lemma 4.5 except that the 
shifted dichotomies are valid only in ( -co, -21 and [z, + co ), z > 0. Then 
all the results in Lemma 4.5 are valid except that 

1(l;,) = dim 9P; ( -r) - dim WP: (z), 

M(F,)={(T(~,O)$)(O):~ER,&BP;(--z) 

(4.7) 

and T(z, -z)d E UP,‘}. 

Proof: We first assume that there is a function A E Ck(R, @), with com- 
pact support in ( -r-- 1, z + 1) and i(t) = (L(t) + A(t))x, has shifted 
exponential dichotomies in R- and R+. The existence of such an A shall 
be discussed later. It is clear that z(y)(t) = A(t) yr is a compact operator as 
a map from Ckf ‘(y,, y2) to Ck(y,, yz). From Lemma 4.5, FL+a is 
Fredholm. From the perturbation theorem of Fredholm operators, FL is 
Fredholm and ind FL = ind FL + A. This proves (4.7). 

The characterization of M(F,) is obvious. Let y(t) be a solution of 
the formal adjoint equation for (4.1), and 1 y(t)1 dKeeD2’, t 20, 
I y(t) I < Ke-“I’, t < 0. Such solutions { y(. )} form a finite-dimensional 
linear space Y. If h E WF,, then j: a, y(t) h(t) = 0 for all y E Y. Therefore, 
B?F, c (h: jEm y(t) h(t) dt = 0, for all ye !P}. One can show that 
dim NF, -dim Y = dim %fP; ( -t) - dim ,%‘P: (r). The proof is omitted 
since it is similar to standard arguments relating an operator to its adjoint 
(see [7]). Now, from the definition ind F, = dim JVF, - codim 92F,, we 
have dim Y = codim %‘F,, proving the characterization for BF,. 

It remains to show the existence of A: R -+ %. First, we assume that 
k > 1. By Lemmas 4.1 and 4.2, we can find B, E Ck( R, @), sufficiently small 
and with compact support in (--5 -$ r++), such that i(t)= 
(L(t) + BJt))x, is H-O in [ -T, z]. Thus, T(t, s) and T(s, t) are one-to-one 
in [ -7, r]. The perturbed system has exponential dichotomies in 
(-a), -z] and [z, +co) by Lemma4.3, and in R- and R+ by Lem- 
mas 3.2 and 3.3. If k = 0, we can use mollifiers to find B,(t) E C’(R, 92) 
with compact support in (-r-l,z+l) so that Z(t)= 
L(t)+B,(t)EC’([ -z-t, t+t],%). Then A(t)=B,(t)+fi,(t) is the 
desired perturbation where 8*(t) is constructed from x(t) as above. 

5. BIFURCATION FUNCTIONS 

In this section, we obtain bifurcation functions whose zeros will be in 
one-to-one correspondence to heteroclinic orbits P of (1.2). These 
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functions will also be used to characterize the transversality or degree of 
nontransversality of P. 

The linear variational equation around r= u, E R { qr } is 

i(t)=f’(qt)x, =L,(t)x, = !‘” diy(t, O)x(t+@ 
-r 

(5.1) 

with the formal adjoint equation being 

Y(S) + I’ Y(a) v( c(, s - U) da = constant, s<t-r (5.2) 
s 

Y, = ICI. 

Since q, + a(r)=y, as t -+ - co, q, -w(T)=y, as t + + 00 with 
asymptotic phase, we may assume that y1 = UrER ~r,~, y2 = UIER p2,t, 
where PI(t), p2( t) are periodic solutions of ( 1.1) and qr - pl,t + 0 as 
t-+-co,q,-p2,1-+Oast+co.Thus, 

II D,.f(qt) - D,f(P,,,) II -+ 0 as t-+--cc 

II~,f(q,) - D,f(P,,,) II + 0 
(5.3) 

as t-co. 

We have already remarked in Section 2 that a(t) = L,,(t)x, and 
a(t) = LJt)x, have exponential trichotomies on R. This fact, together with 
(5.3) and Lemma 4.3, implies that there is a r > 0 such that (5.1) has an 
exponential trichotomy on (-co, -z] and [r, co) with exponents 
a 1 < 0 < PI and a2 < 0 < bz, respectively. Let y > 0 be a small constant such 
that O<y<min{Ia, 1, Ia2 I, P1,A). 

For p small, let ry= UttR {p’;,!}, y$= UIER {p;,,} be the hyperbolic 
periodic orbits of (1.2) with py = p,, p: = p2. As remarked earlier, we wish 
to determine those solutions x”(t) of (1.2) whose orbits P are close to I- 
and have a(P) = yy, o(P) = y$ We also want to do this by considering xP 
as a small variation from the function q that describes r. To do this, 
extreme care must be exercised in order to have xP as a small perturbation 
of q uniformly in t, and approaches 0 as t + f co. Several time scalings are 
involved and that is the reason for so much of the following cumbersome 
notation. 

Let 6: R! + R + be a P-function with p(t) = 0 for t G -1, B(t) = 1 for 
t > 1. Let [Jt) be a P-function such that (I*(t) = 0 for t < r + 1, [Jt) = 1 
for tar+ 2 and let cl(t) = c2( -t). Let o,(p) be the period of pi.,(t) and 
w,(p)/oj(0) = 1 + bj(p), j = 1,2. Since the perturbed periodic solution p,,,(t) 
does not have the same period as p,(t), j = 1, 2, and xP(t) -+ P~,~( t) as 
t + +_ co, while q(t) + p,(z) as t + f co, j = 1, 2, respectively, it is necessary 
to rescale time t -+ (1 + b(p)) t near + co so that p,,,( t( 1 + 8)) has the same 
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period as pj(t), j = 1, 2. The bridge function p(t) is introduced to make the 
scaling a smooth function in t E R. Moreover, one can choose a phase shift 
so that ~“((1 +j?)t-p’;((l +/?)t) as t + - 00, but another parameter a 
has to be introduced such that xP( (1 + /?)t) --t p2( (1 + /?)t + a) as t + co. 
With the help of the bridge functions [i(t) and t*(t), a further correction 
term o(t) is to be subtracted from xp( (1 + fi)t) to make it approach q(t) as 
t -+ f co. For a E I&’ and p small define 

Since 

(5.4) 

IPf((l+Pj(~))t)-Pi(t)I=o(I~lI) as p--+0 (5.5) 

it follows that 

o(t) = da, mu) = WI a I + I P I) as (a, P) + (0, 0). (5.6) 

We need one other observation. For - r < 8 < 0, consider the equation 
for i, 

(1 + ~0 + r, m + w + i, PI -m CL)) = 0. 
By the Implicit Function Theorem, there is a solution i = l(e, t, p) = 
e+o(lpl) as p+O. In particular, ~=e(i+pI(p))-l for cd -1, i= 
e( 1 + /$(p)) ~’ for t 3 1. For any function x: R -+ R”, we define x,,~ from R 
to C( [ -r, 01, R”) by the relation x,,(e) = x(t + [(e, t, p)), -r < 8 6 0. 

With the above notation, let us make the transformation x( (1 + jI)t) = 
q(t) + o(a, p)(t) + z(f). The equation for z is 

F(z)(t) = W, P, a, t), (5.7) 

where 

F(z)(t) = i(t) - L,(t)z, 

W, p, a, t) = Mb, P, a, f) -F(w) 
(5.8) 

+ g(q,p + mt,p + z,,p, I* )I - f(41) - qeJ, - 4#)z,. 

Any solution x”(t) of (1.2) with a-limit set y’; and w-limit set 74 must 
satisfy (5.7), (5.8). If O<y<min{Ia, 1, la, 1, fl,,/12}, where a1 <O<fil, 
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CQ < 0 < /I2 are respectively the exponents for the trichotomy of (5.1) on 
( - co, -r], [r, co), then it follows that, probably after a time shift in 
x”(t), z”(t) = xP( (1 + 8) t) - q(t) - ~(a, p)(t) must approach zero as 
t + - co like ey’ and must approach zero as t + cc like eey’. Therefore, it is 
sutlicient to consider only the solutions of (5.7), (5.8) in C’(y, -y). 

The map F: C’(y, - y ) -+ C”(y, - y ) is Fredholm by Lemma 4.6. To 
estimate N(z, CL, a, .) as a map from C’(y, - y) to C”(y, - y), we need the 
following observation. 

For 1 t 1 sufficiently large, one can use the definition (5.4) and show that 

F(w)(t) = (1 + B)Cf(Pt,p + %a) + dP,p + Wr,p PI 

-f(Pt) - Jqthl, (5.9) 

where /I = b2, p = pz if t is large and positive and /3 = /Ii, p = p, if t is large 
and negative. 

Using (5.8), (5.9), (5.6), (5.5) and the fact that z,,~ -z, = 0( 1 /A I ), one can 
show that 

as (1.4 4 z) + (0, 0, 0). 
Let E, be a projection from C’(y, -y) onto N(F) and E, a projection 

from C”(y, -y) onto W(F). Then (5.7) is equivalent to 

F(z) = Ed%, PL, ~1, . ) (5.10) 

O=(Z-E,)N(z,p,a;). (5.11) 

If Xx: W(E,) -+ .@?(Z- E,) is a right inverse of F, then X is bounded since F 
is Fredholm. If {(y’, i= 1, 2,..., d} is a basis for A’“(F) and z = 
z* + xf= i k, yi, k = (k, ,..., k,) E W’, z* E W(Z- E,), then (5.10) is equivalent 
to 

d 
z* + c ki y’, p, u, . . 

i= 1 > 

(5.12) 

Using the contraction mapping principle, one can show there are con- 
stants Cc > 0, p >O, E> 0 such that (5.12) has a unique solution z* = 
z*(a,k,p)eP(y, -y) for Ial<& [k/c& IpIcp, z*(O,O,O)=O. By 
induction, one can actually show that ~*(a, k, p) E Ck(y, - y). If we con- 
sider z* as a map from IR x R“ x X into C”(y, -y) and use an argument 
similar to the one for the proof of Lemma 2.2, Chapter 10 of [3], then one 
can show that z*: R x W’x X+ C”(y, - y) is Ck. 
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Let Y= {$l,..., $“*} b e a b asis for the bounded solutions of the formal 
adjoint equation (5.2). By Lemma 4.6, Eqs. (5.10), (5.11) are equivalent to 

G’(a, k, p)e’ j= $‘(t) N(z*(a, k, p)(t) + f kiyi, ,u, a, t) dt = 0, 
-cc i=l (5.13) 

j= 1, 2 ,..., d*. 

The functions Gj are called the bifurcation functions and the perturbed 
equation has a heteroclinic solution in a neighborhood of Tu a(r) u w(T) 
if and only if Gj(cr, k, CL) = 0, j= l,..., d*, for some 1 a 1 < a, 1 k 1 < rF and 
1~ 1 < fi. The heteroclinic solution is, up to a phase shift, 

xP((l + P)r) =4(t) + 46 CL)(t) 

+z*(a, k,p)(t)+ i kiy’(t). 
i=l 

(5.14) 

Further discussion of the bifurcation function needs the following lemma 
in which a(I) and w(T) are hyperbolic periodic orbits or equilibria. 

LEMMA 5.1. The formal adjoint equation (5.2) has a bounded solution 
$$C’(Y, -y)uC’(-Y, -y)uC’(y,y) ifandonly if 

(H) both a(I) and w(I) are hyperbolic periodic orbits and q is the 
only bounded solution of (5.1) not in C’(y, -y). 

In all the other cases, bounded solutions of the formal adjoint equation (5.2) 
are in C’(y, -y). 

Proof It is obvious that all the bounded solutions + of (5.2) are in 
C’(y, -y) if a(T) and o(T) are equilibria. 

Suppose that a(T) is an equilibrium and w(T) is a periodic orbit. If 
F(a, B) = F restricted to C’(a, /I), then ind F( -y, y) = ind F(y, - y) + 1, and 
dim NF( -y, y) = dim MF(y, -y) + 1. Therefore, codim 9F( -y, y) = 
codim BF(y, -y). This shows that all the bounded solutions of (5.2) are in 
C’(y, -y). Similarly, we can prove that all the bounded solutions of (5.3) 
are in C’(y, -y) if a(I) is a periodic orbit and o(T) an equilibrium. 

There are two cases when a(r) and w(T) are both periodic orbits. 

Case I. There are two linearly independent bounded solutions of (5.1); 
one is Q(t), another one approaches zero as t + - co, and approaches 4(t) 
as t + + co, exponentially. In this case, ind F( -y, y) = ind F(y, - y) + 2, 
and dim .NF( - y, y) = dim NF(y, - y) + 2. Thus, all the bounded 
solutions of (5.2) are in C’(y, -y). 
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Case II. Suppose (H) is satisfied; that is, there is only one bounded 
solution of (5.1) 4(t), up to the linear combination of solutions in 
C’(YY - Y). In this case, ind F( - y, y) = ind F(y, -7) + 2, and 
dim NF( -7, y) = dim .MF(y, -7) + 1. Thus, codim WF( -7, y) = 
codim WF(y, -y) - 1. This shows that there is a bounded solution Ic/’ of 
(5.2) 1(/l $ C’(y, -y). By comparing F(y, -y) with F(y, y) and also 
F(y, -y) with F( -y, -y), one shows that Ic/ $ C’( -y, -y) and + 4 C’(y, y). 
This completes the proof of the lemma. 

To study the bifurcation functions G’(cr, k, p) in (5.13) in more detail, we 
need the bilinear form associated with (5.1) (5.2). For any tj satisfying 
(5.2), qd E C( [ -r, 01, W), let 

where $‘(s)=$(t+~), Odsdr. 
If then II/j in (5.13) belong to C’(y, -y) and o is defined in (5.4) then 

s O” $j(t)F(w)(t)dt=(~,G~‘, o,), O” =O. 
-02 -cc 

Therefore, with the exception of Case (H) of Lemma 5.1, we may replace N 
in (5.13) by A4 defined in (5.8); that is, drop the term F(o) in N. 

LEMMA 5.2. Assume (H) of Lemma 5.1 and let *l(t) be the bounded 
solution of (5.2) not in C’(y, -y)u C’( -y, -y)u C’(y, y). Then 
dG’(0, 0, O)/lJa # 0. 

Remark 5.3. In case (H) of Lemma 5.1, Lemma 5.2 says that we can 
determine the variation of the transition time from a cross section of a(T) 
to another one of o(T). In the case of ordinary differential equations, it is 
not hard to construct an example with dim yO,(a(r)) = 2 and 
dim v&(o(r)) = 1, and there is a continuum of heteroclinic orbits from 
W’f’,(a(r)) hitting a cross section of o(T) at a continuum of transition 
times. Thus, the variation of transition time a cannot always be determined 
as a function of k E W’ if (H) is not valid. 

Proof of Lemma 5.2. Since z* =O, w=O for a =O, p=O, k=O, it 
follows from (5.8) that aM(z, /J, a, *)/a~ =0 for p =O, a =O, k =O. 
Therefore, (5.13) implies that aG’(O, 0, O)/aa = -j: oD +‘(t) F(c%+O, O)/ZJa) 
(t) dt = - ($‘*‘, (840, O)/aa),), I ?g. It is easy to see that &D(O, O)/Ja = 
L(t) h(t), and so (J/‘y’, (MO, O)Pa),), + 0 as t -+ - co. For solutions e(t) 
of (5.2) and 4 E C[ -r, 01, the bilinear form ($l,‘, $), delines an element 
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IC/*(t)E C*[ -r, 01, ($‘3’, f$), = ($*(t), 4). $*(t) is a trajectory of T*(s, t) 
which has exponential trichotomies in ( - co, - r] and [r, + co). The 
hypothesis on Ii/‘(t) implies that ti*(r)~&?P,*(r)@WP,*(r), with 
P,*(z) +*(z) #O. We also know that i(t)-f’(~)x, =0 has 
exponential trichotomy with projections 8,, p,, and P,. Lemma 4.3 
implies that P,(t) + p,(t) exponentially as t+ +a. Therefore, 
P,*(t) -+ H,*(t) exponentially as t + + co. Thus +*(t) = T*(t, r) Ii/*(r) = 
T*(t, T) P,*(z) $*(z) + T*(t, z) P,*(z) ICI*(z) + T*(t, T) P,*(z) l/9*(T). 
Therefore, p,*(t) t)*(t) + T*(t, T) P,*(t) $*(r), as t + + co. Now, clearly, 
lim inf, _ m 1 P,*(t) $*(t)l >O. For large t, c*(t) = 1. Therefore, (+I%‘, 
(12ddr)r = (ti*(t), At) = (p,*(t) vQ*(t), P2,! >. Since z& spans the 
eigenspace for the simple multiplier one of the linear variational equations 
about p2, the latter quantity is nonzero. This proves the lemma. 

We now state the main result of this section: 

THEOREM 5.4. Let r= Urelw{qr} b e a heteroclinic orbit with or(T) = 
U, E w { pl,!} and o(T) = IJ fE R { P~,~} hyperbolic periodic orbits. Then there is 
a heteroclinic orbit rp = U,, Iw (xf} in a neighborhood of TV a(T) v o(T), 
with x/1 as in (5.14), zfandonly ifGj(a, k, p)=O,j= l,..., d*, kERd, IaJ <Or, 
lkl<&, Ip(<fiandG’isgiuenin(5.13).If$‘~C’(y, -y),thenNin(5.13) 
can be replaced by M in (5.8). The only situation in which there is a 
+‘# C’(y, -y) is when (H) of Lemma 5.1 is satisfied. In this case, 
aG’(O, 0, O)/aa # 0. Moreouer, d-d* = ind r- 1. If Gj(a’, k”, p”) = 0, 
j= l,..., d*, then the heteroclinic orbit F’O defined by a’, k”, p” in (5.14) is 
transverse if and only if the rank of the following matrix is d*. 

JGj(a’, k”, p”) aGj(a’, k”, p”) 
aa ’ ak ’ 

j = 1, 2 ,..., d*. (5.15) 

Proof: Only the transversality needs a proof. This will be postponed 
until the end of the next section since it involves special types of pertur- 
bations of the vector field. 

We end this section with some formulas for the derivatives of Gj. It is 
easy to show aG’(O, 0, O)/aki = 0. Also aGj(O, 0, O)/& = 0 except when (H) 
of Lemma 5.1 is satisfied. It is not hard to show that 

a2G’(o, 0, O)/ak,ak, = j- $‘(t) f”(qJy:, y3(t) dt 
-cc 

a2GiPaaki = fin V(t)f"(qr)((52P2)t, yf)(t)dt. -00 

However, the formulas for aGj/+, a2Gj/a$ki, and a2Gj/apaa are ditIicult 
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to compute for general perturbations g(#, ,u). We therefore consider only 
specific perturbations g(4, p) such that g(p,,t, p) = 0, i= 1,2. We then have 

a*G’(O, O,O)IaPaki = Srn ~‘(t)Cf”(q1)((az*/d~),, Y:) 
--m 

+ (a*dqn oWW4W)l(~) dt (5.17) 

a*G’(O, 0, OYWa = j-w ~‘(t)Cf”(q,)((az*/a~),, (i2 P2)z) 
-CD 

+ @‘g(q,, OYW4)(i2d2)rl(~) 4 (5.18) 

where &*/+ = az*(O, 0, O)/&. 

6. PERTURBATIONS TO HETEROCLINIC ORBITS 

k+l ForfEX k> 1, in (l.l), with r as a heteroclinic orbit, we want to 
show first that ihere exists a gE Xk, arbitrarily small such that (1.2) has r 
as a heterorclinic orbit in general position. Assume that (5.1) has exponen- 
tial trichotomies in ( -co, --t,] and [to, + co). Without loss of generality, 
we assume that the orbit segment {xI = qr, t E [ -t, -E, t, + E)} has no 
intersection with cc(f) and w(T), and t,, > (k+ 2)r/2. 

First, we need a lemma for the perturbation of linear equations. Suppose 
that the linear functional differential equation (4.1), L( . ) E Ck(R, a), k 2 0, 
has shifted exponential dichotomies in J, = ( -co, t,] and J2 = 
[ -to, + co), where to > ((k + 2)/2)r is a constant, with projection P;(t), 
P;(t) ((PC(t), P,‘(t)) and exponents a1 </?i (a2 <b2) for ~EJ, (teJ2). 
Let y, and y2 be two real constants, a1 <yl <fi, and a2 <y2 -c/?~, F=F,: 
Ck+‘(y,, y2) -+ Ck(y,, y2) be defined as in Section 4, F,(h)(t) =dh(t)/ 
dt-L(t)h,.Assumethatdim{WP~(O)n~P,+(O)}=b,dim~P;(O)=b+c, 
and dim %‘P,+ (0) = e + c, where b > 0, e > 0, c 2 0 are integers. If T(t, s) is 
the solution operator of (4.1), then, for any y, E WP; (0), y, = T(t, 0) y, is 
defined for all t E R. Also, it is clear that y, E S?P; (t) for t E J, . We shall use 
[dl ,..., d,] to denote the linear space spanned by d1 ,..., 4,. 

LEMMA 6.1. Assume that all the above are satisfied. Let a be an integer, 
0 <a < min(b, e). Take any basis {y: ,..., y& y$” ,..., yt} in 9P;(O) n 
9?PS+ (0) and let y’; Iw + Iw” be the solution of (4.1) through y& al zero, y’; = 
T(t, 0) ~6. 
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Consider the perturbed equation 

i(t) = L(t)x, + &B(t)X,, (6.1) 

and the operator FL+EB: Ck+ ‘(yl, yZ) + Ck(y,, yZ), where E is a real 
parameter. Then thre exists an e0 > 0 and a B(. ) E Ck(R, %!) with compact 
support in (-to, to) and B(t)4=0 $4~ [y;“,..., yf] such that,for 1~1 <Ed, 
JWL.,, )= (0) ifa=b, M(FL+,,)= [y”+‘,..., y’] ifa<b. 

Proof: By Lemma 4.5, F, is Fredholm with Index = (b + c) - (c + e) = 
b-e. Since dim M(F,) = b, we have codim &?(F,) = e. Let Y be the set of 
functions from R to R”’ corresponding to the linear space of the solutions 
of the formal adjoint equation of (4.1) defined in R, $ E Y if 
IIC/(t)I<Kee8*‘, t>O, I$(t)ldKe-a”, t < 0. Then Y is of dimension e and 
Y= [I)‘,..., $‘] where $l,..., $’ are linearly independent. 

Choose { yg+ l,..., yt+ ‘} c 9fP; (0) such that { yd}, j = l,.., b + c, form a 
basis in S?P;(O). Define yj as the solution of (4.1) through y& 
y{= T(t, O)y’,, tER,j= l,..., b + c. Obviously, { y{}, j = l,..., b + c, is a basis 
in aP,(t), tEJ,. Let Q(t)= [y,‘,..., yy] and @= {z: R+C[ -r,O]: z, = 
c;=Ibjy’;, bjE[W, j=l,..., a}. We now define B(t): C[ -r,O] + R”, 
tE( -to, to) as 

(i) B(t)z, =0 if z, E [y;“,..., yf+‘]@3P;(t), 
(ii) B(t) yf = ($‘(t))‘, i = 1, 2,..., a, where r denotes the transpose, and 

extend it linearly to Q(t). 

It is not hard to show that B(t) is Ck for t E ( -to, to - (k + 2)r). We 
proceed as follows. Let { $i}, i = l,..., b + c, be an invariant basis for P; l (r), 
te(-qtO], i.e., T*(s,t)$:=$i, -oo<s<tbto. Assume that ($f, 
yj)=6,, l<i,j<b+c. Then 

m4= i (v(t))’ m 4). (6.2) 
i=l 

From the relation of the true adjoint and formal adjoint operators, we 
know that there exist functions q’(t), t < to - r, i= l,..., b + c, such that 
(&, $) = ($“‘, 4), for t d to -r, where q’(t), i= l,..., b + c, are solutions of 
the formal adjoint of (4.1) and 

From the comment after (4.2), qi are Ck functions for t E ( -co, 
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t, - (1 + k)r). Identifying 6: with a function of bounded variation 
p(t, . ) E B, = go( [ -r, 01, R”‘) we have 

lp( t, 0) = 0, 

O lp(t, l9)= s P(t-m#-5~5+w5 -r 

After a few computations and exploiting the fact that q( ., . ) E Ck(R, &Jo), 
we see that p( *, . ) E Ck( ( - 00, to - (1 + k)r), B,). This implies that ($f, . ) 
is C”(( -co, to - (1 + k)r), a). The Ck smoothness of B(t) follows from 
(6.2). 

We observe that B(t) sends @ injectively into !P. We also observe that, if 
$ E y, e(t) +k 0 for t E R then II/ I Cr,r +rl ti 0 restricted to some interval 
CT, 7 + rl E ( -to, to - (k + 1)r). Otherwise, since p(‘(s, t) has a shifted 
exponential dichotomy in [ -to, + 00 ), the assertion $1 Cr,r + ?, E 0 together 
with the exponential estimate for elements in Y implies that e(t) z 0 for all 
tER. 

Let B(t)=<(t) B(t), where 4: R-t R is C”, l(t)= 1 on [r, t+r], t(t) 
has compact support in ( -to, to-(k+l)r), and t(t)>0 for tER. If we 
extend B(t) = 0 outside ( -to, to), then B(. ) E Ck(R, %). It is easy to see 
that, for any z E @, z, & 0, t E R, there exists at least one $ E Y such that 

J‘ 
cc 
~ co et) B(t)zt lit + 0. (6.3) 

For example, we can choose $(t) = &t)z,. 
We have to show that B(t) is the desired perturbation. Solutions of (6.1) 

are denoted by y(t, s) with y(t, E)= y(t, 0) for t< to. If u(t)= 
ay(t, a)/& lezO, then u(t) satisfies the system 

4t) = L(t)4 + B(t) y,, 
u(t) = 0, t< -to. 

(6.4) 

If YE@, y, & 0, teR, we infer that u$Ck+‘(y1,y2) in (6.4). For 
otherwise, B(t) y, E W(F,), which contradicts (6.3). Moreover, 
u $ C!‘(y,, y2). For otherwise, (6.4) implies that u E Ck+ ‘(yr , y2). 

Let u’(t) be the solution of (6.4) corresponding to the forcing term 
B(t) y’,. We show that {u: ,..., u;, yP+ l,..., yf + “}, t > to, are linearly indepen- 
dent and [u: ,..., u;, yp+ l,..., Y:+~] n %?P,+( t) = (O}, t 2 to. For this, suppose 
that there exist real constants {ai}, j = l,..., 6, such that ii, = &,“= 1 aju’; + 
Cjbfbc+ 1 aj Yf E BP,+(t), t > to. It is easy to see that ii(t) is a solution of (6.4) 
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with the initial condition ii(t) = cj_+;+ , LYE yj( t) for t < -to, corresponding 
to the unique forcing B(t) jj, = B(t) c;= i CQ y’;, J E @. But ii, E C’(y, , y2), 
since ii, eWP:(t), t > t,, and ii, l LS?P;(t), t < -t,. This would be a con- 
tradiction to (6.3) unless aj = 0, j = l,..., a, b + l,..., b + c. 

We now prove that {y:(.,s) ,..., ~;(a,&), yf+‘(.,s) ,..., JJ~+~(.,E)) are 
linearly independent and [y:(.,~) ,..., #(.,E), yf+‘(.,~) ,..., yf+‘(.,e)Jn 
BP,+(t)=(O) for t<t,, O<lel<& 0, Ed is some small constant. It suffices 
to show that [vi&., E)-Y~&., Oh..., Y;&., E)-Y:&., 01, yfo+Y., cl,..., 
Y~~=(.,&)lnWP,+(t,)={O} since y’,( ., 0) E 9P; ( to), j = l,..., a. That is, 
[EU:, + O(E),..., &UFO +o(E), y;b+‘+O(l),..., y~b+‘+O(l)]~BP:(t,)= (0). 
Dividing by E in the first a vectors, we obtain [u:, + o(l),..., u;~ + o(l), 
yfo’ l + o( 1 ),..., $+ c + o(l)] n 9P,+ (to) = (0). Since the last equality is 
valid if o( 1 )‘s are dropped, it is valid if E is sufficiently small. 

Finally, the proof of the lemma is completed by observing that 
BP; ( -to) and WP: (to) are independent of E. 

Define 6 N: C[ -r, 0] + RflN by s& = ($(O), @( -r/N),..., 4( -r + r/N) = 
(%,..., wN _ 1 ), wj E R”, j = 0 ,..., N- 1. For N sufficiently large, 4 + S,d 
embeds the periodic orbits yj = U tE R pi,,, j= 1,2, and the segment of the 
heteroclinic orbit ql, t E c-t,, -E, to + E] into RflN with disjoint images in 
RnN provided that rj n {qr, t E C-t, -E, t, +E]} is empty, j= 1,2. 

The proof of the above is similar to a lemma in [7] and shall be omitted. 

LEMMA 6.2. For f E xk+ I, k > 1, there is an arbitrarily small g(. ) E xk 
such that g= 0 on Tu a(T) u o(f) and a(t) = f’(q,)x, + g’(q,)x, has 
exponential trichotomies in (-co, +t,] and C-t,, + 00). 

Proof: We first construct a linear perturbation to (5.1). There exists 
B,(. ) E Ck( R, @) with compact support in J= ( -to - E, to + E) and 
arbitrarily small such that t(t) + B,(t) satisfies the H-O property on 
[ -to, to]. This is seen from Lemma 4.1, followed by a multiplication of a 
C” cutoff function. We claim that an additional perturbation All,(t) can 
be made such that B, + D,(t) = B,(t), L(t) + B,(t) satisfies the H-O 
property on [ -to, to] and B,( t)cjt = 0 for all t E R. To see this, consider 
the map B,(t) + l(t), Ck(.Z, u%r) + Ck(.Z, R”) given by l(t)=B,(t)tj,. This 
map has compact support in J. Let N be a large number such that 6, 
embeds (qt, t E 53 into RnN. We can find a finite set of integers (kI,..., k,), 
0 d ki d N- 1, and open intervals {Zi ,..., I,} which cover .Z and 
11&t - k,r/N)/I > ti > 0 in Ii. Also, in Ii, we can solve the equation wk, = 
q(t - kir/N) for t = ?(w,,). There is a C” partition of unity { rj} on J sub- 
ordinate to (Ii}, i= l,..., m, and x:I; ti(t)= 1 for te J. Let All,(t): 
C[ - r, 0] + R” be defined as 

ABI(t - f <i(t)4(t-kir/N).&-kir/N)l(t)/lli(t-kir/N)I/2. 
r=l 
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Then dB,( .) E Ck(J, @) and depends continuously on 1( .) E Ck(~, R”). 
Moreover, Aer(t = -I(t); hence, (B,(t) + dB,(t))g, = 0 for all t E R. 

The support of B*(t) = B,(t) + dB,(t) has some overlap with ( --co, --t,] 
and [to, +co). However, from Lemma 4.3, a(t) = (L(t) + &(f))x, has 
exponential trichotomies in ( -co, -r,] and [to, +co) if B*(t) is small. 
Moreover, by Lemmas 3.2 and 3.3, the domain of the exponential 
trichotomies is extended to ( -co, t,,] and [ -t,, +a ). 

The proof of Lemma 6.2 is fulfilled if we prove the following lemma. The 
same notation as above will be used in the proof. 

LEMMA 6.3. ZfB(~)~C~(R,‘42)withsupportinJ=(--t,-~,t,+&)and 
B(t)q, = 0, and the orbit segment { qr, t E [ - t, - E, t, + E] }, has no inter- 
section with a(T) and o(T), then one can find g( . ) E xk such that g = 0 on 
Tuy, uy, andg’(q,)=B(t), PER. 

Proof Let Ui, i= l,..., m, be an open covering of {6,q,: TV J> in RnN, 
with Ui n (a(r) u o(T)) = @. Let Ui n (6,q,: TV R} = {dNqr: t E I;>. Let 
B(t)#= jOrdnB(t, 0)4(e). For 6Nd~ U,, we define 

where t = ?(w,,) is the solution for wk, = q( t - kir/N) and nk,6,q5 = 
q5( - kir/N). Direct computations show that 

d(q,)d = j-O 
-, 

4Af, 014 - j” 

di 

The last term vanishes since B(t)Q, = 0. Let ti(w), i = l,..., m, be a partition 
of unity in RnN subordinate to { Vi} such that Cy 4,(w) = 1 for w being in a 
neighborhood of {6,q,: ~EJ} in RnN. Then q(4) =x7 <,(S,&) g,(d) is the 
desired perturbation. 

THEOREM 6.4. Let I=max{ -indf,O}, fexk+‘, k2 1. 1s I- is a 
heteroclinic orbit of (1.1) and is in general position, then f E M” + ‘(I), a 
Ck+’ submanifold of xk+’ with codim Mk+‘(I) = I. The equation 
x(t) = 7(x,) has a heteroclinic orbit in a neighborhood of Tu a(r) u w(T) 
and f is close to f in xk + ’ if and only iffy Mk ’ ‘(I). If I’ is not in general 
position, there exists a perturbation g E xk, arbitrarily small, and I- is a 
heteroclinic orbit in general position of the perturbed equation 
i(t)=f(x,)+ &t). 

Moreover, if ind r> 0 and r is in general position (transverse) and H is 
the set of heteroclinic orbits of (1 .l ) near r, then H n wO,(a(r)) is an 
(ind Z-t I)-submanifold of w&(a(f)). 15 in addition the flow near r is 
one-one-one, then H is an immersed (ind r+ 1 )-submanifold. 
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Proof: We first observe that being in general position is rough for the 
perturbations that do not destroy the heteroclinic orbit; that is, ifTis close 
tofin xk+’ and with a heteroclinic orbit p close to Z which is in general 
position, then p is in general position. Nothing has to be proved if Z is 
transverse. Suppose Z is in general position and ind Z? 0, I > 0. We want 
to show thatfEM k+ ’ Z ( ). In this case 4(t) is the only bounded solution of 
(5.2) not in C(y, -y) and there are no solutions of (5.1) in C(y, -y). Thus, 
the bifurcation function Gj(cr, p) in (5.13) will depend only on tl, p. By 
Lemma (5.1), there exists a bounded solution of (5.2), denoted by t++‘(t), 
not in C’(y, -y), and there are d* - 1 bounded independent solutions 
I(/j(t), j = 2,..., d*, in C’(y, -y), which, together with e’(t) form a basis of 
the bounded solutions of (5.2). From Lemma 5.2, aG’(O, O)/aa # 0. Let 
g(cp, cl) =g(d) = C;‘f. 1 ,uIg,(d). Using the technique in [8], we can find Ck 
functions gl: RnN + R” such that, if g,(b) = g,(6,#), then 

+ m V(t) g,(qJ dt 

j = l....,d* 

-m I= 1,...,lf* 

is nonsingular. Moreover, gl(p,,,) = 0, i = 1, 2. Details are omitted, From 
(5.16), aGj/ap, = s: co 11/j(t) g,(q,) dt. We solve a = a(p[) from G’(a, ,LL[) = 0. 
For j = 2,..., d*, aGj( 0, O)/aa = 0. Therefore, 

dGj(0, 0) iYGj(O, 0) + aGj(O, 0) da 

41 = 34 
- 

aa 4, 

= acqo, 0) 
I 

O” 

ap, = -= Vg,(qr) dt, j = 2,..., d* 

and the matrix 

has rank d* - 1 = I. This shows that f E A&“+ ‘(I). 
Now suppose Z is not in general position, By Lemma 6.2, we assume 

that f E xk, f’(q,) E Ck(R, W, and (5.2) has exponential trichotomies in 
( -co, to] and [to, + co). We use Lemma 6.1 to prove that there is a per- 
turbation &g(4) to make Z a heteroclinic orbit in general position. For this, 
observe that p;(t)=P;(t)+P;(t), P,(t)=P;(t), tE(-a, to] and 
p: = P: (t), H,+ (1) = P,’ (t) + P:(t) define shifted exponential trichotomies 
in ( -co, t,] and [ - t,, + co). In the notation of Lemma 6.1, nothing is to 
be proved if %?P; (0) n Wfi,t(O) is of dimension b = 1, spanned by 4(t). If 
not, let b > 1 and ~8 = Q0 and {y:,..., vi-l, yt} be a basis in 
BP;(O) n BP: (0). It is clear that if e = 0, Z is transverse. Thus, we assume 
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e> 0. Let a = min(b- 1, e), and &B(t) be the perturbation determined by 
Lemma 6.1. Since eB(t)g, = 0, by Lemma 6.3, we can find ge xk such that 
g = 0 on Tu a(r) u w(T) and g’(q,) = .sB( t). For the perturbed equation, r 
is clearly in general position. There are two cases. If b - 12 e, then 
ind r> 0, and r is transverse with respect to the perturbed equation. If 
b - 1 < e, then the perturbed equation has 4(t) as the unique bounded 
solution for its linear variational equation. Thus, I’ is in general position 
after perturbation. 

The last part of the theorem follows from (5.13) and (5.14). For, in that 
case, d* = 1, d = ind r, one can choose 1 k 1 < E, k E Rd in an arbitrary man- 
ner and obtain o! from (5.13) since aG/ik # 0. This completes the proof of 
the theorem. 

The bifurcation functions Gj and results similar to Theorem 6.4 are 
easier to obtain in the other three cases in which r is a heteroclinic orbit of 
(1.1) and a(r) and o(T) are hyperbolic: 

(1) cr(T) and o(T) are equilibria. 
(2) cc(T) is an equilibrium and w(T) is a periodic orbit. 
(3) a(r) is a periodic orbit and w(T) is an equilibrium. 

In case (l), exponential dichotomy is employed and no frequency fl and 
phase variation a are needed. However, since 4(t) E .MF(y, -y), we let 
x(f)=q(f)+z(f), with z(t)~C@[y’,..., ydP’], where (4, y’,..., yd-‘) is a 
basis of JlrR’(‘(y, -y) and C@ MF(y, -y) = C“+ ‘(y, -y). Then we assume 
z=z*+C;‘-‘k,y’with z*EZ. 

In cases (2) and (3), we need P(t, p) for only one side and by a proper 
phase shift we assume that xp( (1 + fi)t) + p;(t) as t -+ + co or --co for 
i= 1, 2. No parameter c( is needed. 

The following is true for a(T) and o(T) being hyperbolic periodic orbits 
or equilibria, with general position defined in an obvious way. 

THEOREM 6.5. Let ind r = dim w;l,,(cr(r)) - dim w;l,,(o(r)) + 
dim w(r) - 1. Then the results of Theorem 6.4 are valid with a(f) and w(T) 
being hyperbolic periodic orbits or equilibria. 

Completion of Proof of Theorem 5.4. We owe the readers a proof of 
transversality in Theorem 5.4. If the heteroclinic orbit Pa is transverse, 
then, for a small perturbation g(d) to g(& PO), there is a heteroclinic orbit 
rg which is within U( 1 g 1) of Pa and the phase variation ~(2) is also 
within 0( ) 2 ( ) to ~1’. Conversely, if we denote Pa = u, E R xf’, and if Pa is 
not transverse, we can find a family of perturbations &gl(d) to g(#, p”) such 
that trajectories starting from W;l,,(cl(P”)) are moved to a direction trans- 
verse to ZW”(cr(P”)) + TW(o(P”)). Thus, we either eliminate the inter- 
section of W”(cr(P”)) and W(o(P”)) or move it to a distance > O(j cgl I). 
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To show the existence of such ii, we use the technique in proving 
Theorem 6.4 to construct a Si E xk+’ such that g1 =0 in some 
neighborhoods of a(r) and w(f), di(x’t”) 4: h?F,+ Dgc.,p~j( -y, y). Let t, > 0 
be sufficiently large and consider the solution x(t, E) of 

i(t) = f(xt) + ‘dxt, PO) + Q?lb,) 

x(t) = xq t), t< -to. 

It is not dillicult to show that (ax(t, ~)/a&),~ $ 99pS(fo) + (T(t,, 
-to) 9@,( -to)), where PS and PU are projections associated with the 
shifted exponential dichotomies in ( -co, to] and [to, + co) for the 
linearized equation around PO. Therefore, sgi is the desired perturbation. 

On the other hand, we consider the extended perturbations gi(d, p, B) = 
g(#, p) + g(4), with the parameters (p, g) E Xx xk+ ‘. If the matrix in (5.15) 
has rank d*, then, for small g, there exist IX’+ ha, k” + 6k such that 
G’(a’ + &X, k” + 6k, PO, g) = 0, j = l,..., d*, and da, 6k = 0( 1 2 I). Therefore, 
there is a new heteroclinic orbit P, 0( 1 g I) near Pa and with a phase 
variation a(g), 0( 1 g 1) near LX’. Conversely, if the matrix in (5.15) has rank 
< d*, without loss of generality, let 8Gj”(cro, k”, p”)/iYki = 0, 8Gj”(ao, k”, 
p”yaa = 0, i = l,..., d. Fot the extended family of perturbations, it is clear 
that iTGh(ao, k”, PO, O)/ag # 0 from the proof of Theorem 6.4. Thus, there 
are small g such that either we cannot find a, k near a’, k” such that Gj”(a, 
k, p”, d) = 0, or they are moved to a distance > 0( 12 1) to a’, k”. The 
heteroclinic orbit r” is moved to a distance > 0( 1 g 1) in the latter case if we 
can show that &/&, az/8ki, and ax@(t)/at are linearly independent. It is 
obviously true when a0 =p”= k’=O, for then az*/aa=az*/ak, =O, and 
&@a = c2( t) &(t) and 

$.(ikJ)=y’(t), i=l,..., d. 
1 1 

The linear independence holds for a’, PO, k” being small. 
We have two characterizations by which the perturbation g will not 

break the heteroclinic orbit PO and only move it to a distance = 0( 1 g 1). 
By comparison we see that the transversality of P” is equivalent to the 
rank of the matrix in (5.15) being d*. 
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