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Abstract. Vivancos and Minzoni [30] proposed a singularly perturbed rotating
convection system to model the Earth’s dynamo process. Numerical simulation
shows that the perturbed system is rich in chaotic and periodic solutions. In this
paper, we show that if the perturbation is sufficiently small, the system can only
have simple heteroclinic solutions and two types of periodic solutions near the simple
heteroclinic solutions. One looks like a figure “Delta” and the other looks like a
figure “Eight”.

Due to the fast–slow characteristic of the system, the reduced slow system has
a relay nonlinearity [21]–Solutions to the slow system are continuous but their de-
rivative changes abruptly at certain junction surfaces. We develop new types of
Melnikov integral and Lyapunov–Schmidt reduction methods which are suitable to
study heteroclinic and periodic solutions for systems with relay nonlinearity.

1. Introduction

1.1. The system. We start with the well-known Guckenheimer and Holmes system
(1.1). This system was first obtained by Busse and Clever and is successful model for
the Rayleigh-Bénard convection [12] and rotation convection problems [5, 6]. In their
system the variables (x, y, z) represent the amplitude of a convective velocity field.

(1.1)

ẋ = x(1− ax2 − by2 − cz2),

ẏ = y(1− ay2 − bz2 − cx2),

ż = z(1− az2 − bx2 − cy2).

System (1.1) possesses interesting symmetry properties, which ensure some rich
dynamical behavior: There are 12 heteroclinic solutions connecting 6 equilibria (not
including the origin). The equilibria are on the coordinate axes and the heteroclinic
solutions are on the coordinate planes x = 0, y = 0 or z = 0. The system has eight
heteroclinic cycles (homoclinic cycles in some literature), formed by three consecutive
heteroclinic solutions. The cycles are stable provided the parameters a, b and c satisfy:
0 < b < a < c, 2a < b + c, a + b + c = 1 [14, 15]. Several papers are devoted to the
bifurcation of such heteroclinic cycles under various perturbations [20, 26, 7].

In this paper we study what is called a transverse perturbation of the heteroclinic
cycles. The term transverse refers to adding a fourth equation for a new variable
that evolves in the direction transverse to the original three dimensional phase space.
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Figure 1.1. A stable homoclinic cycle in the first octant.

Although several authors [1, 20, 26] have studied such type of perturbations within the
context of equivariant bifurcation and symmetry breaking theory, our new approach is
to consider a specific transverse perturbation which gives rise to a singularly perturbed
system:

(1.2)

ẋ = x(1− ax2 − by2 − cz2) + d̄yzu,

ẏ = y(1− ay2 − bz2 − cx2) + d̄zxu,

ż = z(1− az2 − bx2 − cy2) + d̄xyu,

δu̇ = f(x, y, z, u).

Here, d̄ ∈ R denotes a parameter, 0 < δ << 1, and f(x, y, z, u) is Cr where r > 3
will be specified later. We call (1.1) the unperturbed system and refer to (1.2) as the
perturbed system.

Numerical simulations for system (1.2) have revealed some interesting dynamic
behavior such as chaotic trajectories and strange attractors [30]. In this paper, we
shall only consider the existence, uniqueness and stability of heteroclinic and periodic
orbits. Besides the interest from the dynamical point of view, system (1.2) is closely
related to a problem in magnetohydrodynamics (MHD). This was the physical mo-
tivation of [30] and also this work. For the sake of completeness, we include a short
paragraph explaining the physics underlying our system.

1.2. The physical motivation. The physical motivation of this work comes from
nonlinear magnetohydrodynamics which is the study, on a macroscopic scale, of elec-
trically conducting flows. The magnetohydrodynamic equations have been known
for a long time but still constitute a difficult problem far from being solved. The
full hydromagnetic problem has been partially decoupled into the kinematic dynamo
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problem and the problem of generation by convection of appropriate dynamo ampli-
fying flow fields. We refer the reader to Ghil and Childress [13] for a complete survey
in this topic.

In its simplest form, the dynamo effect is modeled by the so-called induction equa-
tion: ∂b

∂t
= ∆b + curl(v × b) where v and b denote the velocity and the magnetic

field respectively. The amplification of small magnetic fields can be studied in models
which neglect all coupling between v and b. This idea, studying the effect of a pre-
existing velocity field in the context of dynamo theory, defines the kinematic dynamo
problem. The purpose, of course, is to learn what choices of v are likely to cause
magnetic activity. By numerical simulations for the magnetic field of fluids confined
in spherical domains, Friedrich and Haken [11], Buses [4] have shown the existence of
periodic attractors. In a later work, Armbruster and Chossat [1] conjectured that the
dynamical behavior observed for the magnetic field in some experiments could result
as a perturbation of convective flows possessing heteroclinic cycles. These kinds of
cycles have been proven to exist in the particular case of mode interaction of the first
spherical modes. Our approach is quite different from theirs and is similar to the
so-called smoothing method. Roughly speaking, this method is based on a decompo-
sition of the magnetic field into two different scales. One scale, `, is smaller than the
core value, L, the scale of the smooth part of the magnetic field. The study of the
organization of spatial structure of the resulting magnetic field requires large-scale
flows in the convection zone in addition to the small-scale buoyant turbulence, which
also determines the strictly regular field direction.

In the conventional nonlinear theory for the MHD, one starts from the unstable
equilibrium and calculates the ensuing nonlinear evolution and saturation of small
initial perturbations. However, this approach is rather unrealistic. Since typical
times for nonlinear saturation are much shorter than the time scales of equilibrium
evolution, the unstable mode will grow as soon as the marginal point is passed. Two
different situations may then occur, either the equilibrium bifurcates in the simplest
case by a transcritical or pitchfork bifurcation, or a catastrophe occurs corresponding
to a local loss of equilibrium. In our approach, we follow the nonlinear development
of the magnetic field from a specific dynamical state, namely a flow possessing hetero-
clinic cycles, which is an initial unstable state. This approach has some justification
because it may occur that, owing to additional processes, the instability is temporar-
ily suppressed such that the system continues to evolve on the unstable branch up to
some point where the instability finally sets in.

The main physical assumption we have taken to justify our model equations from
a convection model is that there exist states where velocity and magnetic field fluc-
tuations are strongly correlated. This relaxed state is likely to occur dynamically, for
instance, in satellite observations of the solar wind. The small-scale chaotic behavior
may be considered as an ensemble of Alfven waves propagating along the average
magnetic field, see Burlage & Turner [3].

Hence, for our purposes, we will assume that the smooth part of the magnetic
field represented by the variables (x, y, z) follows these heteroclinic cycles, while the
non-smooth part that evolves in the large scale is denoted by u. As it will become ap-
parent, small singular perturbations of the original Guckenheimer and Holmes cycle
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can lead to modulated waves with very long periods close to the equilibrium points.
For such flows, states with reversed polarities are successively explored which is rem-
iniscent, for instance, of the Earth’s magnetic field physics. For these reasons we
believe that the mathematical model given in this work is relevant for the study of
magnetohydrodynamics.

1.3. The singularly perturbed system. We present a sketch of the magnetic field
in Figure 1.2. Because of the small constant δ, (1.1) is a singularly perturbed system.

L

O(RL)

B  = (x,y,z)S S RB  + B   = (x,y,z,u)

O(R  L)2

Figure 1.2. A sketch of the magnetic field with two length scales.

Vivancos and Minzoni proposed that:

(1.3) f(x, y, z, u) = u(µ− u2 + p2(x
2 + y2 + z2)) + p3xyz.

Observe that we have the symmetry

(x, y, z, u)→ (y, z, x, u),

(x, y, z, u)→ (−x, y, z,−u).
Numerical simulation shows that the singularly perturbed system exhibits various
periodic and chaotic solutions. A further simplified system derived from (1.2) and
(1.3) was considered and chaotic solutions were shown analytically in their paper.

Before going into the analysis of (1.2), some remarks are useful. When u = 0,
the unperturbed system has a heteroclinic cycle [14]. Adding a new variable u to
that cycle destroys this structure and gives rise to very rich dynamics. Sandstede and
Scheel [26] studied this kind of system within the context of the equivariant bifurcation
theory. They found slow drifting periodic orbits in the non singular case while in this
work we deal with fast relaxation oscillations along a slow periodic solution. Also
Melbourne et al [20] proved the existence and stability of periodic orbits in a similar
context, but regarding the case of a quadratic equation in the transverse direction to
the heteroclinic cycle.

To simplify the system further, we assume that x2 + y2 + z2 is a constant since it
is uniformly bounded away from 0 and ∞. After some rescaling, we are led to the
following u equation:

(1.4) δu̇ = u− u3 − xyz/D, D > 0.

The small constant d̄ in (1.2) controls the perturbation terms to the first three equa-
tions, and the small constant D in (1.4) controls the amplitude of oscillation. Again
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numerical simulation shows that (1.2) and (1.4) possess rich periodic and chaotic
solutions.
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Figure 1.3. Chaotic or long periodic solutions for (1.2)

It is still difficult to prove rigorously the existence of many exotic types of periodic
and chaotic orbits observed in this system. Notice that the chaotic solution in Figure
1.3 stays near the unperturbed heteroclinic cycles. This motivates us to further
study solutions that can directly bifurcate from the original heteroclinic cycles. We
will demonstrate that only simple heteroclinic orbits and two kinds of periodic orbits
can bifurcate from the unperturbed heteroclinic cycles. Other complicated periodic
and chaotic orbits observed numerically must be created by different mechanisms, e.
g., the tangential intersection of the orbit with junction surfaces [9, 30]. We hope
that this will be a first step towards the better understanding of the dynamics of the
system.

Equation u − u3 = 2w/(3
√
3) has three branches of inverse: u = u∗(w, s), s =

−1, 0, 1, where s = 0 is the branch near zero and s = ±1 are the positive and negative
branches. The domains of u∗(w,−1), u∗(w, 0) and u∗(w, 1) are [−1,∞), [−1, 1] and
(−∞, 1] respectively. See Fig. 1.4.

Let ε := 2D/(3
√
3). In the singular limit δ = 0, the equation for u becomes

u− u3 =
xyz

ε

2

3
√
3
.

The solution of the above is

u = u∗(
xyz

ε
, s), |xyz| ≤ ε.

Notice that if s = ±1 then u is uniformly away from zero, that is, |u∗| ≥
√

1/3.
In order to smoothly follow a heteroclinic solution to its birth place–an unperturbed

heteroclinic solution, we simultaneously scale down the constant d̄ by letting d̄ = εd.
This leads to the following “slow system” on a three–dimensional submanifold in the
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w=xyz/ ε

u=u*(w, s)

1

-1

s=0

s=-1 s=1

u

Figure 1.4. The curves u = u∗(w, s)

four dimensional space:

(1.5)

ẋ = x(1− ax2 − by2 − cz2) + εdyzu∗(xyz/ε, s),

ẏ = y(1− ay2 − bz2 − cx2) + εdzxu∗(xyz/ε, s), s = −1, 0,+1,

ż = z(1− az2 − bx2 − cy2) + εdxyu∗(xyz/ε, s).

The slow manifolds corresponding to s = ±1 are attracting, while the one cor-
responding to s = 0 is repelling. This is evident if we write the u equation in the
stretched time τ = t/δ:

du

dτ
= u− u3 − xyz/D.

In the stretched time, (x, y, z) are constants. The stability of the u equation depends
on the sign of 1 − 3u2, which is negative if u2 > 1/3 (or s = ±1), and positive if
u2 < 1/3 (or s = 0).

A well-known result indicates that if δ is small but nonzero, system (1.2) exhibits
a relaxation oscillation similar to a singularly perturbed Van der Pol equation [21].
For any given initial data, the solution will quickly jump close to one of the stable
branches of the slow manifold where u = u∗(xyz/ε, s), s = ±1 and the (x, y, z) variable
will then follow the flow on the slow manifold defined by (1.5). If the flow hits the
boundaries of this branch defined by junction surfaces xyz = 2D/(3

√
3) = ±ε, then

the solution will quickly jump close to another stable branch of the slow manifold.
Thus any heteroclinic or periodic orbit of (1.2) is near an orbit of the same kind
of (1.5). On the other hand, near any periodic or heteroclinic orbit of the reduced
system (1.5), there exists a same kind of orbit of (1.2). For this reason, we will study
the reduced system (1.5) on the two stable branches of the slow manifold in the rest
of this paper.

1.4. Assumptions and the main results. Throughout this paper, we assume that
d ≥ 0. Numerical work shows that if an initial data is in the region |xyz| > ε with
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s(0) = −1 or +1, the orbit will move along the slow manifold until it is trapped in the
region |xyz| ≤ ε. We will expand on this point later. The solution will then zig-zag
between the junction surfaces and s(t) will alternate between −1 and +1 whenever
|xyz| = ε. In particular, if xyz hits ε from below at t = t̃, then s(t̃−) = +1, s(t̃+) =
−1, and if it hits xyz = −ε from above then s(t̃−) = −1, s(t̃+) = +1. The change of
s brings the orbit back to the region |xyz| ≤ ε. A projection of the reduced flow to
the xyz-plane is plotted in Fig. 1.5. We will restrict our attention to the orbits that
hit the junction surfaces transversely, or “the switching is normal” according to [21].
Otherwise the reduced flow on the xyz-plane is not well defined.

(x,y,z,u)

(x,y,z)

Figure 1.5. Projection of the 4-d system to the (xyz)-plane.

The unperturbed system (ε = 0) has 12 heteroclinic solutions connecting six equi-

libria (±
√

1/a, 0, 0), (0,±
√

1/a, 0) and (0, 0,±
√

1/a). The following assumption en-
sures that every equilibrium is hyperbolic with one unstable eigenvalue that is weaker
than the two stable eigenvalues, which we assume throughout this paper:

H 1. a+ b+ c = 1, 0 < b < a < c, 2a < b+ c.

After adding small ε > 0, numerical simulation shows that around the unperturbed
heteroclinic orbits, there seems to exist a small thin invariant band that looks like a
two dimensional manifold. This is explained in the following two lemmas. The first
lemma shows that if the orbit starts on one of the stable slow manifolds, it will move
towards an invariant region 0 < m ≤ (x2 + y2 + z2) ≤ M and will remain there.
The result is similar to that of [14, 30]. The second lemma shows that under certain
conditions, the solution will be trapped in the region |xyz| ≤ ε.

Lemma 1.1. There exist 0 < m(ε) < M(ε) such that for any initial data satisfying
s(0) = 1, xyz ≤ ε or s(0) = −1, xyz ≥ −ε, the region m ≤ x2 + y2 + c23 ≤ M is
(forward) invariant and attracting. Moreover, as ε→ 0,

M(ε)→ 1

a
, m(ε)→ 2

b+ c
.



8 XIAO-BIAO LIN AND IGNACIO B. VIVANCOS

Lemma 1.2. If η > 0 is a constant satisfying

(1.6) 0.5|d
√

1/3|ηm > max{|3− 1/a|, |3− 2/(b+ c)|},
then for any solution satisfying m ≤ (x2 + y2 + z2) ≤ M and min{x2 + y2, y2 +
z2, z2 + x2} ≥ η, the region |xyz| ≤ ε is invariant. Moreover, the solution satisfies
d
dt
(xyz) > 0 if s = 1 and d

dt
(xyz) < 0 if s = −1.

The proofs of the two lemmas are given in Appendix A. We remark that d
dt
(xyz)

may change signs if the orbit is near an equilibrium.
Under the conditions of Lemmas 1.1 and 1.2, if a solution is not near any of the

equilibria, it will not leave the region bounded by |xyz| ≤ ε andm ≤ x2+y2+z2 ≤M ,
and will travel from one junction surface to another.

If the solution is near an equilibrium so that min{x2 + y2, y2 + z2, z2 + x2} ≤ η,
Lemma 1.2 cannot be used. However, numerical works indicate that solutions are
still trapped in the region |xyz| ≤ ε. This can be explained as follows. Any orbit
starting in the neighborhood of an equilibrium is attracted to its unstable manifold
and then leaves the neighborhood following closely to that unstable manifold. The
unstable manifold is O(ε) close to the unperturbed heteroclinic orbits issuing from the

equilibrium (
√

1/a, 0, 0) while all the other orbits are O(e−λτ/ε) close to the unstable
manifold, where τ is the time the orbits are near the equilibrium. This mechanism
keeps the orbit trapped in the region |xyz| ≤ ε and hence, near the unperturbed
heteroclinic cycle.
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Figure 1.6. Chaotic or long periodic solutions, note the tangential
intersection of the orbits with the junction surface at (x = ±0.3, y =
±0.2)

Figure 1.6 shows the two dimension plot of a long periodic or chaotic solution.
At (x, y) = (−0.3, 0.2), (0.3,−0.2), we find that the solution is nearly tangent to
the junction surfaces xyz = ±ε. This causes a drastic splitting of orbits near these
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points. Bo Deng [9] and Vivancos & Minzoni [30] showed that this mechanism can
cause chaos in some model systems. To study pure heteroclinic bifurcation, we will
avoid tangential intersection of orbits with junction surfaces. We also assume that in
the regions we are interested in, orbits move monotonically from one junction surface
to another, i.e., d(xyz)/dt 6= 0. These conditions will be imposed on the “singular
heteroclinic orbits” of the system (3.2)–(3.4) in §3 and will be labeled Condition F1.
The singular heteroclinic orbits are the limits of heteroclinic orbits as ε→ 0 and are
characterized by how many times they hit the junction surfaces, i.e., how many times
s(t) switches between ±1.

Under the condition F1, which will be stated in §3 when all the notations are
defined, we can show that for every integer m ≥ 0, there exists a unique dm such
that (3.2)–(3.4) has exactly two singular heteroclinic orbits, related by the symme-
try (x, y1, z, s) → (x,−y1, z,−s). Each of the singular orbits moves monotonically
between junction surfaces, and the switching is normal at the junction surfaces.

For certain ranges of (a, b, c, d), we have numerically verified condition F1, see
Appendix B. However, it seems to be very hard to verify F1 analytically. In fact,
there may be some parameter regions where F1 is not satisfied.

The construction of heteroclinic and periodic solutions is based on the perturbation
of singular heteroclinic solutions and is rigorous. We can show that immediately after
bifurcating from singular heteroclinic orbits, there can only be two types of periodic
solutions. One looks like a figure “∆”, the other looks like a figure “8”. In Figure
1.7, the figure “∆” is computed with d = −1.07 while the figure “8” with d = −1.88.
Both with ε = 0.077.
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Figure 1.7. Periodic orbits bifurcate from the heteroclinic cycles look
like a figure “∆” or a figure “8”.

Theorem 1.3. (Main Results) Assume H1 and F1 are satisfied, then for any integer
m ≥ 0, there exists dm ≥ 0 such that precisely two singular heteroclinic solutions of
(3.2)–(3.4) exist. They hit the junction surfaces with normal switchings exactly m
times. Moreover, for any 0 < ε ≤ ε0, we have:
(1) There exists a unique dm(ε), with limε→0 dm(ε) = dm, such that the system has

exactly 2 heteroclinic solutions connecting X+ → Z+, hitting Σ = {xyz = ±ε} m
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times if and only if d = dm(ε). The total number of the heteroclinic solutions for each
m is 24.
(2) There exists a neighborhood Nm(ε) of dm(ε) s.t. if d ∈ Nm(ε)\dm(ε) then
(i) if m is even, then there exists figure “∆” periodic solutions.
(ii) if m is odd, then there exists figure “8” periodic solutions.
The number of figure “∆” periodic solutions is eight, and the number of figure “8”

periodic solutions is four.

The periodic solutions constructed in this paper are stable, due to the information
of the eigenvalues at equilibria from H1. The proof of the stability is not included in
this paper.

This paper is organized as follows. In §2, we present some basic lemmas and
introduce a Melnikov theory for the systems with relay nonlinearity. In §3, we discuss
the existence of heteroclinic solutions. In §4, we construct figure “∆” and figure “8”
periodic solutions near heteroclinic cycles. Appendix A is devoted to the proofs of
Lemmas 1.1 and 1.2. Appendix B shows how we compute the regions where F1 is
satisfied.

The collaboration of Lin and Vivancos was suggested by Jack Hale when they were
visiting Georgia Tech. We are grateful for the advise from Hale and the support from
the Center for Dynamical Systems and Nonlinear Studies in GT. We thank Marty
Golubitsky for the discussion on some systems relevant to this paper.

2. Preliminaries and some lemmas

To find a heteroclinic solution, we want to choose d so that W u(E1) ∩ W s(E2)
is nonempty. However, since both manifolds are reflected by the junction surfaces
xyz = ±ε many times, the method of computing the gap between W u(E1) W

s(E2) or
its linearization (Melnikov integral) is not available in literature. To fill in the gap, we
present some fundamental lemmas which will be useful in this paper, and hopefully
in other systems with relay nonlinearity.

Consider a general system with relay nonlinearity:

(2.1) ẏ = f(y, t, µ, s), y ∈ R
n, µ ∈ R, s ∈ {0, 1, . . . ,m}.

Assume that f is smooth in an open set adjacent to the junction surfaces, but has
continuous one-sided limit to these surfaces. Let the solution map be φ(t, τ, µ, s; ȳ),
where τ and t are the beginning and ending times, and ȳ is the initial data at τ . The
rule determining s(t) is as follows: Let the junction surfaces Γi = {(t, y) : Fi(t, y) =
0}, i = 1, . . . ,m, be cross sections of the product flow of (2.1) and ṫ = 1. This means
that the one-sided limit of the vector field is non zero and is not tangent to Γi. This
condition is also called normal switching in [21]. If y0 is a solution that starts with
t = τ < t1 and s(t) = 0 for t < t1, and successively hits Γi at t = ti, 1 ≤ i ≤ m,
then each time the solution hits a cross section, the value of s(t) is increased by
one. Thus, (ti, y0(ti)) ∈ Γi, and s(t) = i for ti < t < ti+1. For convenience, let
t0 = −∞, tm+1 =∞.

In singular perturbation problems, the vector field is the reduced flow on the slow
manifold and may only be defined on one side of Fi = 0, say Fi(t, y) > 0, but has
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a one–sided limit to Fi(t, y) = 0. In this case, we can extend the flow to the side
Fi(t, y) < 0 so that (2.1) is defined on both sides of the surface Γi. In the problem of
this paper, the surface is xyz = ±ε and the flow is undefined for xyz > ε, s(t) = −1
or xyz < −ε, s(t) = 1. To extend the flow we simply let u∗(w, s) = u∗(w,±1) if
|s| > 1.

Denote the evolution operator for the linearized flow by Φ = ∂φ/∂ȳ.
Let y0(t)+∆y(t) be a solution near y0(t) with the parameter µ0+∆µ. The smallness

of ∆y(t) implies that both solutions intersect Γi transversely and change the values
of s at the intersection. Let y0(t) + ∆y(t) intersects Γi at ti +∆ti, 1 ≤ i ≤ m at the
point P (ti +∆ti) := y0(ti +∆ti) + ∆y(ti +∆ti).

Fi(ti +∆ti, y0(ti +∆ti) + ∆y(ti +∆ti)) = 0.

Define a time cross section {t = ti}. The solution y0(t) of course hits t = ti at
y0(ti). Let π

−
i : {t = ti} → Γi be a Poincaré mapping related to the flow of (2.1) with

s = i− 1. Since the flow at t−i is transverse to the cross section Γi, π
−
i is well defined.

Let π+
i : Γi → {t = ti} be the Poincaré mapping related to s = i. Define the virtual

hitting point vP and virtual reflection point rP as follows:

vP (ti) = (π−i )
−1P (ti +∆ti),

rP (ti) = π+
i P (ti +∆ti).

Note that vP or rP may not be on the solution orbit. If ∆ti < 0, the solution
y0(t) + ∆y(t) follows the new vector field with s(t) = i before hitting t = ti. If
∆ti > 0, it starts to follow the new vector field after time ti. For this reason they are
called virtual points.

For every orbit that is near y0(t), there corresponds a unique virtual orbit which
hits {t = ti} at vP (ti) then jumps to rP (ti) by the reflection law:

rP (ti) = r∗i (vP (ti)) = π+
i ◦ π−i ◦ vP (ti).

The virtual and the original orbits differ only between ti and ti + ∆ti and will be
denoted by the same symbol.

For every heteroclinic solution near y0 there corresponds a unique virtual hete-
roclinic solution that starts from E1 at t = −∞, jumps from vP (ti) to rP (ti) =
r∗i (vP (ti)) at each {t = ti}, i = 1, . . . ,m then approaches E2 as t→∞.

It is convenient to write

vP (ti) = y0(ti) + ∆y(t−i ), rP (ti) = y0(ti) + ∆y(t+i ).

Using linearization,

∆ti = −
∂yFi ·∆y(t−i )

∂tFi + ∂yFi · y0(t
−
i )

+O(|∆y(t−i )|2),(2.2)

P (ti +∆ti) = vP (ti) + ẏ0(ti)∆ti +O(|∆y(t−i )|2 + |∆µ|2),(2.3)

rP (ti) = vP (ti) + ẏ0(t
−
i )∆ti − ẏ0(t

+
i )∆ti +O(|∆y(t−i )|2 + |∆µ|2).(2.4)
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Figure 2.1. Define the virtual hitting and reflection points

Thus,

rP (ti)− vP (ti) = ∆y(t+i )−∆y(t−i )

= (ẏ0(t
−
i )− ẏ0(t

+
i ))∆ti +O(|∆y(t−i )|2 + |∆µ|2).

We have derived the reflection law for virtual orbits at ti:
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Lemma 2.1. The virtual orbits near y0 jump from vP (ti) to rP (ti) according to the
following reflection law:

(2.5) rP (ti) = r∗i (vP (ti)) = π+
i ◦ π−i ◦ vP (ti).

If we denote the derivative of r∗i by Ri, we have

∆y(t+i ) = Ri∆y(t
−
i ) +O(|∆y(t−i )|2 + |∆µ|2).

The n× n matrix Ri has the form

Ri = I +
ẏ0(t

+
i )− ẏ(t−i )

∂tFi + ∂yFiẏ0(t
−
i )
∂Fi.

We have the expression:

(2.6) ∆y(t+i ) = ∆y(t−i )+(ẏ0(t
+
i )− ẏ(t−i ))

∂yFi ·∆y(t−i )
∂tFi + ∂yFi · y0(t

−
i )

+O(|∆y(t−i )|2+|∆µ|2).

Lemma 2.2. If the flow is also transverse to Γi, then the matrix Ri is non-singular.

Proof. In this case the Poincaré mappings π−i and π+
i are diffeomorphisms. ¤

Consider a linear system in R
n

(2.7) Ẏ = A(t)Y + h(t), t ∈ R,

where A(t) := ∂yf(y, t, µ, s(t)) and h(t) are piecewise continuous and uniformly
bounded. Assume that there exists T > 0 such that (2.7) has exponential dichotomies
on (−∞,−T ] and [T,∞) respectively. For an introduction to exponential dichotomies
and their applications, please see [8, 22]. Denote the projections to stable and unsta-
ble subspaces by Ps(t), Pu(t), t ∈ (−∞− T ] or [T,∞). Let dimRPu(−T ) = k− and
dimRPu(T ) = k+. Suppose that the sequence {ti}m1 and T satisfy

−∞ < −T < t1 < t2 < · · · < tm < T <∞.

Let T1 > T and T2 > T . Let t0 = −T1 and tm+1 = T2.
We look for piecewise continuous, bounded solutions of (2.7) that satisfy the equa-

tion for t ∈ (ti, ti+1), and the nonhomogeneous reflection law at ti:

(2.8)

Y (t+i ) = RiY (t−i )i+ gi

= Y (t−i ) + (ẏ0(t
+
i )− ẏ0(t

−
i ))

∂yFi · Y (t−i )

∂tFi + ∂yFi · ẏ0(t
−
i )

+ gi.

Let C0({ti}) be the space of functions which are continuous in (ti, ti+1), i = 0, . . . ,m,
and admit left and right sided limits at each ti. Let C

1({ti}) be the space of functions
in C0({ti}) that has a first order derivative in C0({ti}). Let

|h|C0({ti}) = sup{|h(t)| : t ∈ R},
|h|C1({ti}) = |h|C0({ti}) + |h′|C0({ti}).
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Define the operator F : Y → (h, {gi}, φs, φu) with

h(t) = Ẏ (t)− A(t)Y (t),

gi = Y (t+i )−RiY (t−i ),

φs = Ps(−T1)Y (−T1), φu = Pu(T2)Y (T2).

The following is the main tool to prove the existence of periodic solutions bifurcat-
ing from a singular heteroclinic cycle.

Lemma 2.3. The operator F : C1({ti})→ C0({ti})×R
m×RPs(−T1)×RPu(T2) is

Fredholm with Index(F) = k− − k+.
Moreover, if we let the adjoint equation of (2.7) be

(2.9) ψ̇ + A∗(t)ψ = 0,

then (h, {gi}, φs, φu) ∈ C0({ti})×R
m ×RPs(−T1)×RPu(T2) is in the range of F if

and only if for any bounded solution ψ of (2.9) that satisfies a dual reflection law at
each ti:

ψ(t−k ) = R∗iψ(t
+
k )

= ψ(t+i ) + (ψ(t+i ) · (y0(t
+
i )− y0(t

−
i )))

∂yFi

∂tFi + ∂yFi · ẏ0(t
−
i )

,

the following condition is satisfied:

(2.10)

∫ T2

−T1

< ψ(t), h(t) > dt+
m
∑

1

ψ(t+i )gi+ < ψ(−T1), φs > − < ψ(T2), φu >= 0.

If (2.10) is satisfied and if phase conditions are posed so that the solution is also
unique, then

|Y |C1({ti}) ≤ C(|h|C0({ti}) +
∑

i

|gi|+ |φs|+ |φu|).

The constant C does not depend on T1 or T2.

Remark. The left hand side of (2.10) generalizes the Melnikov’s integral and shall
still be called a “Melnikov’s integral”.

Proof. For τ, t /∈ {t1, . . . , tm} define an evolution operator Θ(t, τ) by

Θ(t, τ) =

{

Φ(t, τ), if ti < τ ≤ t < ti+1,

Φ(t, tk)RkΦ(tk, tk−1) . . .Φ(ti+1, ti)RiΦ(ti, τ), if τ < ti ≤ tk < t.

Θ(t, τ) is continuous with respect to t, τ /∈ {t1, . . . , tm}, and has one sided limits as
t, τ → ti, i = 1, . . . ,m.

Without loss of generality, assume that 0 /∈ {t1, . . . , tm}. Using Θ(t, τ) we can
extend the exponential dichotomies from (−∞,−T ] to R

− and from [T,∞) to R
+ by

extending the stable and unstable subspaces (w = u or s):

RPw(t) = Θ(t,−T )RPw(−T ), t ≤ 0,

RPw(t) = Θ(t, T )RPw(T ), t ≥ 0.



15

The rest of the proof is similar to that of [22, 18]. Let η > 0 be a small positive

constant. Let h̃(t) = h(t) +
∑m

1 δ(t − ti − η)gi where δ is the delta function in the

theory of distributions. The solution Y we are looking for satisfies Ẏ = A(t)Y + h̃(t)
and the homogeneous reflection law Y (t+i ) = RiY (t−i ). We then have

Y (t) =



















∫ t

−T1
Θ(t, τ)Ps(τ)h̃(τ)dτ +Θ(−T1, t)φs

+
∫ t

0
Θ(t, τ)Pu(τ)h̃(τ)dτ +Θ(t, 0)φ3, if − T1 < t < 0,

∫ t

T2
Θ(t, τ)Pu(τ)h̃(τ)dτ +Θ(t, T2)φu

+
∫ t

0
Θ(t, τ)Ps(τ)h̃(τ)dτ +Θ(t, 0)φ4, if 0 < t < T2,

where φ4 ∈ RPs(0+), φ3 ∈ RPu(0−).
Thus

Y (0−) =

∫ 0

−T1

Θ(0, τ)Ps(τ)h̃(τ)dτ +Θ(0,−T2)φs + φ3,

Y (0+) =

∫ 0

T2

Θ(0, τ)Pu(τ)h̃(τ)dτ +Θ(0, T2)φu + φ4.

Note in the above Θ(0,−T1)φs +
∫ 0

−T1
· · · ∈ RPs(0

−) and Θ(0, T2)φu +
∫ 0

T2
· · · ∈

RPu(0
+). The jump at t = 0 is Y (0−) − Y (0+), which depending on the choice

of (φ3, φ4), will be denoted G(φ3, φ4). Let H = RPu(0
−) +RPs(0

+). Define projec-
tions PH + PH⊥ = id according to the splitting H ⊕ H⊥ = R

n. Then by choosing
(φ3, φ4) we have PHG(φ3, φ4) = 0. In order that PH⊥G(φ3, φ4) = 0, we must have
< ψ(0), G(φ3, φ4) >= 0 for every ψ(0) ∈ H⊥. Using the fact ψ(0) ⊥ (RPu(0

−) +
RPs(0

+)), we have φ(0) ∈ RP ∗s (0−)∩RP ∗u (0+). If ψ(t) = (Θ(0, τ))∗ψ(0), t ∈ R, then
ψ(t) is a bounded solution to the adjoint system (2.9) and satisfies the dual reflection
law at each ti.

The necessary and sufficient condition for (2.7) to have a bounded solution is

< ψ(0),Θ(0,−T1)φs +

∫ 0

−T1

Θ(0, τ)Ps(τ)h̃(τ)dτ −Θ(0, T2)φu −
∫ 0

T2

Θ(0, τ)Pu(τ)h̃(τ)dτ >

=

∫ 0

−T1

< (Θ(0, τ))∗P ∗s (0
−)ψ(0), h̃(τ) > dτ +

∫ T2

0

< (Θ(0, τ))∗P ∗u (0
+)ψ(0), h̃(τ) > dτ

+ < (Θ(0,−T1))
∗ψ(0), φs > − < (Θ(0, T2))

∗ψ(0), φu >

=

∫ T2

−T1

< ψ(t), h̃(t) > dt+ < ψ(−T1), φs > − < ψ(T2), φu >

=

∫ T2

−T1

< ψ(t), h(t) > dt+
m
∑

1

ψ(ti + η)gi+ < ψ(−T1), φs > − < ψ(T2), φu >

= 0.

Letting η → 0, we have obtained (2.10) which is necessary and sufficient for
(h, {gi}, φs, φu) ∈ RF .

Let the dimension of RPu(0
−) ∩RPs(0

+) be ν. Then dim[RPu(0
−) +RPs(0

+)] =
k− + (n − k+) − ν, and dimH⊥ = n − dimH = ν − (k− − k+). This shows that the
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codimension of RF = ν − (k− − k+). Since dimKF = ν, the index of the Fredholm
operator F is clearly k− − k+. ¤

Consider the case T1 and T2 →∞. Let t0 = −∞ and tm+1 =∞. Let C0({ti}) and
C1({ti}) be defined as before with an additional condition that the functions are also
uniformly bounded in (−∞, t1) and (tm,∞). From Lemma 2.3, we have the following
corollary:

Corollary 2.4. If we define the operator F : Y → (h, {gi}), h(t) = Ẏ (t)−A(t)Y (t),
gi = Y (t+i ) − RiY (t−i ), then F : C1({ti}) → C0({ti}) × R

m is Fredholm with
Index(F) = k− − k+.
Moreover, let Ψ be the linear space of all the bounded solutions of the adjoint equa-

tion (2.7) which satisfy a dual reflection law as above. Then (h, {gi}) is in the range
of F if and only if for any ψ ∈ Ψ, we have

(2.11)

∫ ∞

−∞
< ψ(t), h(t) > dt+

m
∑

1

ψ(t+i )gi = 0.

Corollary 2.5. Assume that 0 /∈ {t1, . . . , tm}. Under the same conditions of Lemma 2.3,
if F is also of codimension one and ψ is, up to a constant multiple, a unique nonzero
bounded solution to the adjoint equation (2.9), then for every (h, {gi}, φs, φu), there
exists a unique generalized solution Y such that Y ⊥ KerF , and Y has a jump at
t = 0 along the given direction ψ(0)/‖ψ(0)‖2:

Y (0−)− Y (0+) = G(h, {gi}, φs, φu)ψ(0)/‖ψ(0)‖2.

Here G is equal to the left hand side of (2.10)–the Melnikov’s integral.

Proof. Assume that Y has one more jump of the following form at t = 0:

Y (0−)− Y (0+) = g̃ψ(0)/‖ψ(0)‖2, g̃ ∈ R.

The Melnikov integral in Lemma 2.3 gains one more term −g̃. One can uniquely solve
for g̃ := G(h, {gi}, φs, φu) so that the condition in Lemma 2.3 is satisfied. ¤

3. Heteroclinic solutions

We now study the existence of perturbed heteroclinic solutions connecting the
equilibrium X+ := (

√

1/a, 0, 0) to Z+ := (0, 0,
√

1/a). It can be constructed as
the perturbation of a “singular heteroclinic solution” (x0, εy1, z0). The construction
of the singular heteroclinic solution relies on some numerical aid, but the perturba-
tion analysis of the singular heteroclinic solution to the exact heteroclinic solution is
rigorous.

3.1. Construction of singular heteroclinic solutions. Numerical computation
shows that the heteroclinic solution connecting X+ to Z+ is narrow in the y direction.
We blow up the y direction by writing it as (x, εy1, z).

(3.1)

ẋ = x(1− ax2 − ε2by2
1 − cz2) + ε2dy1zu

∗(xy1z, s),

ẏ1 = y1(1− ε2ay2
1 − bz2 − cx2) + dzxu∗(xy1z, s),

ż = z(1− az2 − bx2 − ε2cy2
1) + ε2dxy1u

∗(xy1z, s).
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By setting ε = 0, we have a system satisfied by the “singular heteroclinic solution”:

ẋ = x(1− ax2 − cz2),(3.2)

ẏ1 = y1(1− bz2 − cx2) + dzxu∗(xy1z, s),(3.3)

ż = z(1− az2 − bx2).(3.4)

At the equilibrium X+, the eigenvalues and eigenvectors for (3.2)–(3.4) are:

eigenvalue: λ−− = −2 eigenvector: (1, 0, 0),

eigenvalue: λ− = 1− c/a < 0 eigenvector: (0, 1, 0),

eigenvalue: λ+ = 1− b/a > 0 eigenvector: (0, d
√

1/au∗(0, s), (c− b)/a).

Here the first vector is in the normal direction, the next two are tangent to the
weakest stable and unstable manifold respectively. The angle between the unstable
eigenvector and the z axis is of O(d).

Similarly, at Z+, the eigenvalues and eigenvectors are:

eigenvalue: λ− = 1− c/a < 0 eigenvector: ((b− c)/a, d
√

1/au∗(0, s), 0),

eigenvalue: λ+ = 1− b/a > 0 eigenvector: (0, 1, 0),

eigenvalue: λ−− = −2 eigenvector: (0, 0, 1).

The third eigenvector is in the normal direction. The first two eigenvectors are tangent
to the weakest stable and unstable manifolds respectively. The angle between the
stable eigenvector and the x axis is of O(d).

Based on the eigenvalues at X+ and Z+, we know that for each s = ±1, there
exists a one-dimensional local unstable manifold of the equilibrium X+ and a two-
dimensional local stable manifold of Z+,. We extend the local unstable manifold
forward and the local stable manifold backward by the flow with relay nonlinearity
and call the result the (global) unstable (or stable) manifold of X+ (or Z+). If u(t)
with s1(t) is a solution on the unstable manifold and v(t) with s2(t) is a solution on
the unstable manifold, then we say that these two manifolds have the same polarity
if s1(t) = s2(t) as t→∞; otherwise we say that the two manifolds have different po-
larity. We seek the intersection of W u(X+) and W s(Z+), with the same polarity. For
some values of d, the limiting system (3.2)-(3.4) has exactly two singular heteroclinic
solutions that connect X+ to Z+. The two solutions are related by the symmetry:
(x, y1, z, s)→ (x,−y1, z,−s). It suffices to consider the singular heteroclinic solution
y1(t, d) with s(t) = 1 for t near −∞.

Equations (3.2) and (3.4) form a system that does not depend on y1. It is known to

possess a heteroclinic solution (x0, z0) connecting (
√

1/a, 0) to (0,
√

1/a). We impose
the phase condition x0(0) = z0(0) so that the solution is unique. We assume that

the solution (x0, z0) approaches (0,
√

1/a) along the eigenspace corresponding to the
weakest stable eigenvalue, based on numerical simulations.

Let θ(t) = tan−1(x0(t)/z0(t)), 0 < θ < π/2. Then

dθ/dt =
x0(t)z0(t)((b− a)z2

0(t) + (a− c)z2
0(t))

x2
0(t) + z2

0(t)
.
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Using b < c < a, we have dθ/dt < 0. The function θ(t) is invertible with the inverse
denoted by t∗(θ). The mapping (x0(t

∗(θ)), z0(t
∗(θ))) is one-to-one between the interval

0 < θ < π/2 and the heteroclinic orbit in xz-space.
After determining (x, z) = (x0(t), z0(t)), we need to find a “heteroclinic solution”

y1(t, d) of the time-dependent equation (3.3) that approaches 0 as t→ ±∞. Equation
(3.3) is a relay system where s(t) changes sign when it hits the junction surfaces

Γ1 := {y1 = 1/(x0(t)z0(t))}, Γ2 := {y1 = −1/(x0(t)z0(t))}.
If y1(t) is such a solution with the corresponding s(t), then (−y1(t),−s(t)) is also a
solution. For simplicity, we assume that s(t) = 1 for t ≈ −∞ in the future.

Observe that for any d ≥ 0, there exists a unique y1(t) that approaches 0 as
t → −∞ and with s(−∞) = 1. In fact, if (x0, y1, z0) is the unique solution on the
one-dimensional unstable manifold of (3.2)-(3.4), then its restriction to y1(t) is such
a solution. This solution shall be denoted yu1 (t, d). The trajectory of yu1 (t, d) is called
the unstable manifold of the time-dependent equation (3.3). Similarly, for each d ≥ 0
and any ν = ±1, there exists a unique y1(t) = ys1(t, d, ν) such that y1(t) → 0 as
t→∞ with s(∞) = ν. The trajectories of ys1(t, d, ν) are called the stable manifold of
(3.3) with the polarity ν = ±1. In fact, the local two-dimensional stable manifold for
(3.2)–(3.4) can be written as y1 = S(x, z, d, ν) where (x, z) is in a neighborhood of
zero. Then ys1(t, d, ν) = S(x0(t), z0(t), d, ν). We need to find d such that yu1 (t, d)→ 0
as t→∞, that is, the unstable manifold of (3.2) meets the stable manifold with the
correct polarity. The latter means that if s(t) is related to yu1 (t, d), then s(t) = ν for
t ≈ ∞.

Let us introduce w = x0(t)y1(t)z0(t). The junction surfaces can be written as
w = ±1. We consider the region |w| < 1. We say y1(t) moves monotonically in this
region if dw/dt 6= 0.

Observe that for fixed (t, y), if d increases, then the slope dy1/dt increases if s = 1
and decreases if s = −1. This property will be used in the comparison argument
below without further mention.

Using a ODE solver, we gradually increase d from 0 and find that for every non-
negative integer m, there exists d = dm ≥ 0 such that yu1 (t, dm) → 0 as t → ∞ and
the orbit moves monotonically between the junction surfaces and will hit the junction
surfaces exactly m times. The switching is normal at the points where the orbit hits
Γν , ν = ±1, as defined in §2. We also find that there exists d̃m between dm and dm+1

such that yu1 (t, d̃m) is tangent to the junction surfaces Γ1 or Γ2. The increasing of
number of switches must come through a tangential intersection of yu1 (t, d) to Γν . In
order to ensure that the tangential intersection of the vector field with the junction
surfaces will not occur in the region where we search for heteroclinic orbits, we will
find the region where the vector field is monotone and the relation between this region
and yu1 (t, d) and y

s
1(t, d,−1). The following facts are discovered numerically and are

assumed to be satisfied by the system we study.

F1) If s = 1 and d > d̃1, then:
(1) In the region y1 ≤ 0, dw/dt > 0. The region y1 > 0 is divided by curves X+T1

and Z+T2 into three parts as in Figure 3.1. In the mid part between the two curves,
we have dw/dt > 0, while in the two outer parts we have dw/dt < 0.
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(2) The unstable manifold enters the mid region of y1 > 0 and remains there until
it hits Γ1. The stable manifold related to s = −1 enters the mid region of y1 > 0
backward in time and remains there until it hits Γ1 at Q, which is to the right of T1.
The mapping t → θ is a diffeomorphism. If we plot the slope field of (3.3) on the
(θ, y1) coordinates, then to the right means larger θ.

The observations in F1 can be extended to the case s = −1 by using the symmetry
(s, y1) → (−s,−y1) satisfied by (3.3). In Figure 3.1, we also plot the two solutions
yu1 (t, d) denoted by W u and ys1(t, d,−1) denoted by W s to confirm that W s hits Γ1

at Q which is to the right of T1.
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Figure 3.1. The unstable and stable manifolds enter the mid region
where dw/dt > 0. We choose d to be slightly above d4 and the hete-
roclinic y1(t, d4) just breaks. We plot yu1 (t, d) which approaches ∞ as
t → ∞. As we further increase d, yu(t, d) first hits Γ1 tangentially at
T1, and then hooks with ys1(t, d,−1) at Q, creating a new heteroclinic
solution for d = d5.

Assuming that the system we study satisfies F1, we can prove the existence of dm
and the corresponding heteroclinic solution y1(t, dm) by a shooting and continuation
method.

First, when m = 0, yu1 (t, 0) = 0 with d0 = 0 is clearly a desired solution. Gradually
increasing d, the zero heteroclinic solution breaks and yu1 (t, d) → ∞ as t → ∞. If
we further increase d, yu1 (t, d) will hit Γ1 tangentially at T1 for some minimum value

d = d̃0 > 0. From F1, ys1(t, d̃,−1) will cross yu1 (t, d) and hit Γ1 at Q, which is to the
right of T1.
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If we increase d further from d̃0, then, from F1 again, yu1 (t, d) will hit Γ1 transversely
at P . Furthermore the point P will move to the right and Q will move to the left.
At certain value d = d1, we have P = Q where yu1 (t, d1) = ys1(t, d1,−1).

We proceed by induction. Suppose we have found dm and the corresponding
yu1 (t, dm). Assuming m is even first. If we continue to increase d from dm, the
heteroclinic y1(t, dm) breaks and yu1 (t, d) → ∞ as t → ∞; then yu1 (t, d) hits Γ1 tan-
gentially at the point T1 first, then hits Γ1 transversely at P next (not shown on the
figure). The point P moves towards Q = ys1(t, d,−1)∩Γ1, and finally P meets Q at a
unique value d = dm+1. At this value we have yu1 (t, dm+1) = ys1(t, dm+1,−1) with the
correct polarity. See Figure 3.1. We have observed numerically that W u and T2 both
move to the right as d increases so that yu1 (t, d) never hits Γ1 tangentially. The case
m being odd can be considered similarly. One only need to replace yu1 (t, d)→∞ by
yu1 (t, d)→ −∞, Γ1 by Γ2, y

s
1(t, d,−1) by ys1(t, d,+1).

3.2. Properties of the singular heteroclinic solution. Suppose that y1(t, dm) is a
heteroclinic solution of (3.3). Assume also that the solution hits the junction surfaces
at t = t1, t2, . . . , tm, and 0 6= t1, . . . , tm. As before, assume that the corresponding
s(t) satisfies s(−∞) = 1. As in §2, define Poincaré sections for this equation:

Γi := {(t, y)|y = ±1/(x0(t)z0(t))}, i = 1, . . . ,m,

where +1 is used if i is odd and −1 is used if i is even. That is, Γi = Γ1 (or Γ2) if i
is odd (or even).

If we define time cross sections

Ti := {(t, y)|t = ti}, i = 1, . . . ,m,

then (ti, y1(ti, dm)) ∈ Γi ∩ Ti.
We now consider a perturbation of y1(t, dm). For clarity, assume that m is even.

Let d = dm +∆d and yu1 (t, d) and y
s
1(t, d,−1) be the unstable and stable manifold of

(3.3). Both yu1 and ys1 can be considered as virtual orbits that obey reflection laws at
t = ti, i = 1, . . . ,m. Without loss of generality, assume 0 /∈ {t1, . . . , tm}. To have a
heteroclinic orbit we must have

G(d) := yu1 (0, d)− ys1(0, d,−1) = 0.

Consider a linear variational equation of (3.3):

(3.5) Ẏ = Y {(1− bz2
0− cx2

0)+dmx0z0
∂

∂w
u∗(x0y1z0, s)}+∆dx0z0u

∗(x0y1z0, s)+f(t).

The solution Y satisfies the reflection law at each ti

(3.6) Y (t+i ) = R
(y)
i (y)Y (t−i ) + g

(y)
i , g

(y)
i ∈ R,

where R
(y)
i = 1 +

ẏ1(t−
i

)−y1(t+
i

)

ẏ∗(ti)−ẏ1(t−
i

)
. Let ψ(y)(t) be the solution for the adjoint equation

(3.7) ψ̇ + ψ{(1− bz2
0 − cx2

0) + dmx0z0
∂

∂w
u∗(x0y1z0, s)} = 0,

that satisfies ψ(0) = 1 and the dual reflection law

ψ(t−i ) = R
(y)
i ψ(t+i ).
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Observe that the coefficients of (3.7) have the following asymptotic limits:

(3.8)
(1− bz2

0 − cx2
0) + dmx0z0

∂

∂w
u∗(x0y1z0, s)→ (1− c/a) < 0, t→ −∞,

(1− bz2
0 − cx2

0) + dmx0z0
∂

∂w
u∗(x0y1z0, s)→ (1− b/a) > 0, t→∞.

Based on (3.8), ψ(t)→ 0 as t→ ±∞.

Lemma 3.1. (1) For any i ∈ {1, . . . ,m}, ψ(y)(t) changes signs between ti−1 < t < ti
and ti < t < ti+1, assuming t0 = −∞, tm+1 =∞.
(2)

∫∞
−∞ < ψ(y)(t), x0(t)z0(t)u

∗(x0y1z0, s) > dt 6= 0. The sign of the integral is equal
to the sign of s(0).

(3) for any f ∈ C0({ti}) and {g(y)
i } ∈ R

m, there exists a unique ∆d so that (3.5) has
a bounded solution Y ∈ C1({ti}). Moreover,

|∆d|+ |Y |C1({ti}) ≤ C(|f |C0({ti}) +
∑

i

|g(y)
i |).

Proof. We use Lemma 2.3 with n = 1. From the asymptotic limits of the coefficient
of (3.5), the homogeneous part of the equation has exponential dichotomies for t ≥ T
and t ≤ −T where T > max{|ti|}. Also dimRPu(−T ) = 0 and dimRPu(T ) = 1.
The index of the Fredholm operator defined in Lemma 2.3 is −1. It is obvious that
the kernel of the Fredholm operator is zero dimensional. Thus the codimension of its
range is one. There exists a unique bounded solution to the adjoint equation (3.7),
denoted ψ(y), that satisfies ψ(y)(0) = 1.

We will now demonstrate R
(y)
i < 0. Since the flow at t−i and t+i are transverse to

the boundary Γi = {y = y∗(t)}, we have either

ẏ1(t
−
i ) < ẏ∗(ti) < ẏ1(t

+
i ) or ẏ1(t

+
i ) < ẏ∗(ti) < ẏ1(t

−
i ).

In both cases, one can show that
ẏ1(t−

i
)−y1(t+

i
)

ẏ∗(ti)−ẏ1(t−
i

)
< −1. This implies that R

(y)
i < 0, hence

part (1) of this lemma.
Since ψ(y)(t) changes sign when crossing each ti and the function u∗(x0y1z0, s) does

so as well, we find that < ψ(y)(t), x0(t)z0(t)u
∗(x0y1z0, s) > does not change sign.

Moreover, ψ(y)(0) = 1 and u∗ > 0 at t = 0 if s(0) = 1. This proves part (2) of this
lemma.

From Lemma 2.3, the necessary and sufficient condition for (3.5) with reflection
law (3.6) to have a bounded solution Y (t) is

∫ ∞

−∞
< ψ(y)(t), f(t) + ∆dx0(t)z0(t)u

∗(x0y1z0, s) > dt+
∑

i

ψ(y)(t+i )g
(y)
i = 0.

From part (2) of this lemma, we can solve for ∆d from the above.
The estimate for the solution follows from the standard theory of Fredholm oper-

ators. ¤
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3.3. Existence of perturbed heteroclinic solutions. Let (x0(t), εy1(t, dm), z0(t))
be the singular heteroclinic solution for a given m. We now consider the existence of
an exact heteroclinic solution near the singular heteroclinic solution, written as

x = x0 + ε2X, y = εy1 + ε3Y, z = z0 + ε2Z, with d = dm + ε2D.

We also need a phase condition for the heteroclinic solution. Let

Σ := {(x, y, z)|x = z}
be a cross section of the flow. We assume that the heteroclinic solution satisfies
(x(0), y(0), z(0)) ∈ Σ. In particular,

(3.9) X(0) = Z(0).

The system for (X,Y, Z,D) can be written as:

Ẋ = X(1− 3ax2
0 − cz2

0)− 2cx0z0Z + h1(t) + ε2N1,(3.10)

Ẏ = Y [(1− bz2
0 − cx2

0) + dmx
2
0z

2
0

∂u∗

∂w
] +Dx0z0u

∗(x0y1z0, s) + h2(t) + ε2N2,(3.11)

Ż = Z(1− 3az2
0 − bx2

0)− 2bx0z0X + h3(t) + ε2N3,(3.12)

where hj, j = 1, 3 is a given function of t that does not depend on (X,Y, Z,D, ε) while
h2 is a function of t and X,Z but not Y :

h1(t) = −bx0y
2
1 + dmy0z0u

∗(x0y1z0, s),

h2(t,X, Z) = −ay3
1 + dmz0Xu

∗(x0y1z0, s) + dmx0Zu
∗(x0y1z0, s),

h3(t) = −cz0y
2
1 + dmx0y1u

∗(x0y1z0, s).

The nonlinear terms (N1, N2, N3) are functions of (X,Y, Z,D, ε) and satisfy

|N1|+ |N2|+ |N3| = O(|X|+ |Y |+ |Z|+ |D|),
3
∑

j=1

|Nj(X1, Y1, Z1, D1)−Nj(X2, Y2, Z2, D2)| ≤ C(|∆X|+ |∆Y |+ |∆Z|+ |∆D|).

Here ∆U denotes U1 − U2 with U = X,Y, Z,D.
The solutions must also satisfy (X,Y, Z)→ 0 as t→ ±∞. Due to the hyperbolicity

of the equilibria, it suffices to show that (X,Y, Z) is uniformly small and bounded.
The heteroclinic solution hits Γi successively at the time ti + ∆ti, and switches

between s = −1 and s = 1. This is the relay system studied in §2. For each
heteroclinic solution, there corresponds a unique virtual heteroclinic solution that
satisfies the reflection law:

(x(t+i ), y(t
+
i ), z(t

+
i )) = r∗i ((x(t

−
i ), y(t

−
i ), z(t

−
i ))).

The above can be written as




X
Y
Z



 (t+i ) =





1 0 0

0 R
(y)
i 0

0 0 1









X
Y
Z



 (t−i ) + ε2







M
(x)
i

M
(y)
i

M
(z)
i






.
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The nonlinear terms satisfy

(M
(x)
i ,M

(y)
i ,M

(z)
i ) = O(X2 + Y 2 + Z2 +D2),

|∆M (x)
i |+ |∆M (y)

i |+ |∆M (z)
i | ≤ C(|∆X|+ |∆Y |+ |∆Z|+ |∆D|).

We use ∆M
(x)
i to denote the variation ofM

(x)
i when (X1, Y1, Z1, D1) and (X2, Y2, Z2, D2)

are the arguments.
We first study a linear nonhomogeneous system:

Ẋ = X(1− 3ax2
0 − cz2

0)− 2cx0z0Z + f1,(3.13)

Ẏ = Y [(1− bz2
0 − cx2

0) + dmx
2
0z

2
0

∂u∗

∂w
] +Dx0z0u

∗(x0y1z0, s) + f2,(3.14)

Ż = Z(1− 3az2
0 − bx2

0)− 2bx0z0X + f3.(3.15)

The forcing term (f1, f2, f3) ∈ C0({ti}). The solution is in C1({ti}) and satisfies the
nonhomogeneous reflection law:

X(t+i ) = X(t−i ) + g
(x)
i ,

Y (t+i ) = R
(y)
i Y (t−i ) + g

(y)
i ,

Z(t+i ) = Z(t−i ) + g
(z)
i ,

at each ti, i = 1, . . . ,m; and the phase condition (3.9).
Observe that system (3.13) and (3.15) have exponential dichotomies in (−∞, 0]

and [0,∞) respectively. The stable subspace of the dichotomy in (−∞, 0] is one-
dimensional. There exists a unique bounded solution (X(t,D), Z(t,D)), t ≤ 0 that
satisfies the phase condition (X(0), Z(0)) ⊥ (ẋ0(0), ż0(0)). The solution can be con-
tinued to t = T by using (3.13), (3.15) and the reflection law at each ti, 1 ≤ i ≤ m.
Finally, since f1(t), f3(t) is uniformly bounded for t ≥ T and the stable subspace of the
dichotomy in [T,∞) is two-dimensional, one can show that the solution (X(t), Z(t))
is uniformly bounded for t ≥ T . Also

|X|+ |Z| ≤ C(|f1|+ |f3|+
∑

i

(|g(x)
i |+ |g

(z)
i |)).

According to Lemma 3.1, the function Y and the parameter D are uniquely deter-

mined by (3.14) and the reflection law at each ti: Y (t+i ) = R
(y)
i Y (t−i )+g

(y)
i . Moreover,

|Y |∞ + |D| ≤ C(|f2|∞ +
∑

i

|g(y)
i |).

Denote the solution of system (3.13)–(3.15)

X = G1(f1, f3, {g(x)
i }, {g

(z)
i }), (D,Y ) = G2(f2, {g(y)

i }), Z = G3(f1, f3, {g(x)
i }, {g

(z)
i }).
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The nonlinear system (3.10)-(3.12) can be written as a fixed point problem of the
mapping P : (X,Y, Z,D)→ (X1, Y1, Z1, D1):

X1 = G1(h1(t) + ε2N1, h3(t) + ε2N3, ε
2M

(x)
i , ε2M

(z)
i ),

Z1 = G3(h1(t) + ε2N1, h3(t) + ε2N3, ε
2M

(x)
i , ε2M

(z)
i ),

(D1, Y1) = G2(h2(t,X1, Z1) + ε2N2, ε
2M

(y)
i ).

Here Nj, 1 ≤ j ≤ 3 and M
(x)
i ,M

(y)
i ,M

(z)
i are functions of (X,Y, Z,D, ε).

Let

ξ1(t) = G1(h1(t), h3(t), 0, 0),

ξ3(t) = G3(h1(t), h3(t), 0, 0),

(D̄, ξ2(t)) = G2(h2(t, ξ1(t), ξ3(t)), 0).

Then h2(t,X1, Z1)−h2(t, ξ1, ξ3) is a linear homogeneous function of (X1−ξ1, Z1−ξ3),
denoted h̃(X1 − ξ1, Z1 − ξ3). The mapping P cam be written as

X1 = ξ1 + ε2G1(N1, N3,M
(x)
i ,M

(z)
i ),

X3 = ξ3 + ε2G3(N1, N3,M
(x)
i ,M

(z)
i ),

(D,Y1) = (D̄, ξ2) + ε2G2(h̃(G1, G3) +N2,M
(y)
i ),

where h̃(G1, G3) = h̃(G1(N1, N3,M
(x)
i ,M

(z)
i ), G3(N1, N3,M

(x)
i ,M

(z)
i )).

Let Bδ be a δ ball centered at (ξ1, ξ2, ξ3.D̄):

Bδ := {(X,Y, Z,D) : |X − ξ1|+ |Y − ξ2|+ |Z − ξ3|+ |D − D̄| ≤ δ}.
If ε is small, it is easy to see that P maps Bδ into itself and is a contraction mapping.
Thus, there exists a small ε0 > 0 such that if 0 < ε < ε0, then P has a unique fixed
point (X∗, Y ∗, Z∗, D∗) in Bδ. This fixed point corresponds to a unique heteroclinic
solution near the first approximation of the heteroclinic solution (x0, εy1, z0). Denote
this heteroclinic solution by (x∗, εy∗, z∗) corresponding to dm(ε) = dm + ε2D∗.

4. bifurcation of heteroclinic cycle to periodic solutions

Let

κ1 := (x, y, z, s)→ (−x, y, z,−s),
κ2 := (x, y, z, s)→ (x,−y, z,−s),
κ3 := (x, y, z, s)→ (x, y,−z,−s),
r := (x, y, z, s)→ (y, z, x, s).

System (1.5) respects the symmetry group (Z2)
3×Z3 where (Z2)

3 and Z3 are reflection
and rotation subgroups:

(Z2)
3 := {κi

1κ
j
2κ

k
3, i, j, k = 0, 1},

Z3 := {r`, ` = 0, 1, 2}.
There are 24 elements in the group (Z2)

3 × Z3.
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System (1.5) has 6 nonzero equilibria on the three coordinate axes, denoted by

X± = (±
√

1/a, 0, 0), Y ± = (0,±
√

1/a, 0), Z± = (0, 0,±
√

1/a).

Since s(t) is part of a solution, we denote a heteroclinic solution by H = (q(t), s(t))
where q : R → R

3. In §3, we have shown the existence of a heteroclinic solution, with
s(−∞) = 1, connecting X+ to Z+. Denote this solution by

H1 := (q1(t), s(t)) = (x(t), y(t), z(t), s(t)).

There is another heteroclinic solution connecting X+ to Z+, but with s(−∞) = −1.
It is related to H1 by

κ2H1 := (x(t),−y(t), z(t),−s(t)).

If we apply the 24 elements of the group (Z2)
3×Z3 on H1, we have 24 heteroclinic

solutions connecting the 6 equilibria. Any of the two equilibria not symmetric about
the origin are connected by exactly 2 heteroclinic solutions which are associated by
one of the reflections κj, j = 1, 2, 3. For clarity, we use H(E1 → E2, s(−∞) = ±1) to
denote the heteroclinic solution connecting E1 to E2 starting with s(−∞) = ±1.

System (1.5) can have many complicated periodic solutions. However, periodic
solutions that bifurcate from heteroclinic cycles by changing parameter d slightly
from dm(ε) can be described as follows. Without loss of generality, we consider a
heteroclinic cycle that starts with H1 = H(X+ → Z+, s(−∞) = 1).

Theorem 4.1. Suppose that {Hi}`1, with H1 = H(X+ → Z+, s(−∞) = 1), is a
heteroclinic cycle that can bifurcate into a periodic solution, and suppose that each Hi

hits the junction surfaces m times, m ≥ 0. Then:
(1) If m is even, we have ` = 3 and either Hi+1 = rHi or Hi+1 = κ1κ2rHi for all

1 ≤ i ≤ `. Here r, κ1, κ2 are the group elements defined above. The corresponding
cycle is either

H1 = H(X+ → Z+, s(−∞) = 1),

H2 = H(Z+ → Y +, s(−∞) = 1),

H3 = H(Y + → X+, s(−∞) = 1),

or

H1 = H(X+ → Z+, s(−∞) = 1),

H2 = H(Z+ → Y −, s(−∞) = 1),

H3 = H(Y − → X+, s(−∞) = 1).

This kind of heteroclinic cycle looks like a figure “∆”.
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(2) If m is odd, then ` = 6. Either Hi+1 = κ1rHi or Hi+1 = κ2rHi for all 1 ≤ i ≤ `.
The cycles is

H1 = H(X+ → Z+, s(−∞) = +1),

H2 = H(Z+ → Y +, s(−∞) = −1),
H3 = H(Y + → X−, s(−∞) = +1),

H1 = H(X− → Z−, s(−∞) = −1),
H2 = H(Z− → Y −, s(−∞) = +1),

H3 = H(Y − → X+, s(−∞) = −1),

or

H1 = H(X+ → Z+, s(−∞) = +1),

H2 = H(Z+ → Y −, s(−∞) = −1),
H3 = H(Y − → X−, s(−∞) = +1),

H1 = H(X− → Z−, s(−∞) = −1),
H2 = H(Z− → Y +, s(−∞) = +1),

H3 = H(Y + → X+, s(−∞) = −1).

This kind heteroclinic cycle looks like a figure “8”.

Applying elements of the symmetry group to the above, we can generate all the
other figure “∆” and figure “8” heteroclinic cycles. There are eight figure “∆” and
four figure “8” heteroclinic cycles which can bifurcate into a periodic solution. Ob-
serve that figure “8” heteroclinic cycles are symmetric about the origin while figure
“∆” heteroclinic cycles are near the boundaries of an octant.

The proof of Theorem 4.1 is presented in the rest of this section.
Suppose that H1, . . . , H` is a heteroclinic cycle that can bifurcate into a periodic

solution P (t) = (p(t), s(t)), p : t→ R
3. In this cycle, we have

qi(+∞) = qi+1(−∞), and si(+∞) = si+1(−∞).

We say Hi+1 follows Hi, or qi+1 follows qi.
Assume that Hi+1 = γiHi where γi is a mapping in the symmetry group. For

convenience, let H`+1 = H1, H0 = H` and γ`+1 = γ1, γ0 = γ`. Recall that Hi = (qi, si)
is four-dimensional. We often want to drop the si and consider only the (x, y, z)
component of a solution. If (qi+1, si+1) = γi(qi, si), then qi+1 is uniquely determined
by γi and qi. By restricting ourselves to qi, we will write qi+1 = γiqi, with some abuse
of notation.

Assume that qi connects the equilibrium Ei to Ei+1, with E`+1 = E1. Let Σi be a
2-dimensional plane passing through qi(0) and perpendicular to q̇i(0). The periodic
solution must hit Σi successively. Let the time P (t) spent traveling from Σi−1 to Σi

be 2ωi. Assume that the orbit of P (t) is the union of pi(t), i = 1, . . . , ` with pi(t) near
qi(t) for −ωi ≤ t ≤ ωi+1. See Figure 4.1.
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Figure 4.1. A generalized periodic solution near {qi}. At t = 0, pi(t)
may have a jump.

4.1. Existence of figure “∆” and figure “8” periodic solutions. Assuming that
ε is small but fixed, we want to find all the sufficiently large {ωi}`1 and sufficiently
small perturbations of d such that there is a corresponding periodic solution P (t).
We will first assume that ωi = ω for all i. This assumption will be removed in the
next sub-section.

Let pi = qi + Qi where Qi = (Xi, Yi, Zi), i = 1, . . . , `. We derive the equation for
Q1 and omit the subscript to simplify the notation. First, the heteroclinic solution
H1 = (q1, s1) is a perturbation of the singular heteroclinic solution corresponding to
dm(ε) = dm + ε2D∗. Recall that the heteroclinic solution has the following form:

x∗(t) = x0(t) + ε2X∗(t),

εy∗(t) = εy1(t) + ε3(t)Y ∗(t),

z∗(t) = z0(t) + ε2Z∗(t),

where (X∗, Y ∗, Z∗, D∗) is the fixed point of the contraction mapping P as in §3. Next,
write p1(t) as

x∗(t) +X, εy∗(t) + Y, z∗(t) + Z, with d = dm(ε) +D.

We study the virtual orbit related to p1(t). Suppose that the heteroclinic solution
q1(t) hits the junction surfaces at {ti}mi=1. Using (x, y, z, d) for (x∗, y∗, z∗, dm(ε)) to



28 XIAO-BIAO LIN AND IGNACIO B. VIVANCOS

simplify the notation, we find that for t 6= ti, i = 1, . . . ,m,

Ẋ = [X(1− 3ax2 − cz2)− 2cxzZ]

− bε2y2X − 2bεxyY + ε2Dyzu∗ + εdY zu∗ + ε2dyZu∗

+ εdyz
∂u∗

∂w
(̇Xεyz + xY z + xεyZ) +N (x),

Ẏ = [Y (1− bz2 − cx2) + dx2z2∂u
∗

∂w
Y + εDxzu∗]

− 3aε2y2Y − 2bεyZ − 2cεyX + εdXzu∗εxZu∗

+ εdxz
∂u∗

∂w
(̇Xyz + xyZ) +N (y),

Ż = [Z(1− 3az2 − bx2)− 2bxzX]

− cε2y2Z − 2cεyzY + ε2Dxyu∗ + ε2dXyu∗ + εdxY u∗

+ εdxy
∂u∗

∂w
(Xεyz + xY z + xεyZ) +N (z),

N := (N (x), N (y), N (z)) = O(|X|2 + |Y |2 + |Z|2 + |D|2).

The nonlinear terms N (x), N (y), N (z) are functions of (X,Y, Z,D). Let εD = D̃. Then
the linear terms outside [. . . ] are of O(ε). The linear terms inside [. . . ] are similar in
form to system (3.10)–(3.12) but the coefficients are ε perturbations of those of the
system (3.10)–(3.12).

With Q = (X,Y, Z) and B(t) = (εyzu∗, xzu∗, εxyu∗)τ , we can write the above as

(4.1) Q̇ = A(t)Q+B(t)(εD) +N.

At t = {tj}mj=1, we have the reflection law:

Q(t+j ) = RiQ(t−j ) +Mj.

The nonlinear terms satisfy

Mj = O(X2 + Y 2 + Z2 +D2),

∆Mj = O(|∆X|+ |∆Y |+ |∆Z|+ |∆D|).
Here ∆Mj denotes the change of Mj due to the change of (X,Y, Z,D).

The linear homogeneous part of (4.1) has exponential dichotomies on R
− and R

+

with RPu(0
−) and RPu(0

+) being one dimensional. The adjoint system of (4.1)

(4.2) ψ̇ + A∗(t)ψ = 0

has exponential dichotomies on R
± with RPu(0

±) being two dimensional. Let ψ(t)
be the unique bounded solution to (4.2) that satisfies ψ(0) = (O(ε), 1, O(ε)). We have
the following lemma:

Lemma 4.2.
∫∞
−∞ ψ(t)B(t)dt is nonzero with a sign equal to that of s(0).

Proof. The lemma is true if ε = 0 for, in this case, the heteroclinic solution is the
unperturbed one and the result follows from Lemma 3.1. The general case ε 6= 0
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follows since both ψ(t) and B(t) are O(ε) perturbations of unperturbed ones. In
particular B(t) = (0, x0z0u

∗, 0)τ +O(ε). ¤

Similarly, we find that {Qi}`1 satisfies the following system

Q̇i = Ai(t)Qi +Bi(t)εD +Ni(Qi, D),(4.3)

Qi(t
+
ij) = RijQi(t

−
ij) +Mij(Qi, D), j = 1, . . . ,m,(4.4)

and the matching conditions

(4.5) Qi(ω)−Qi+1(−ω) = di := qi+1(−ω)− qi(ω).

In the above, Ni and Mij are nonlinear functions of Qi.
Since the diffeomorphism γi maps the flow in a neighborhood of qi to that of qi+1,

it is easy to verify the following invariance properties:

(4.6)

Ai+1(t) = γiAi(t)γ
−1
i , Bi+1 = γiBi(t),

Ni+1 = γiNiγ
−1
i ,

Ri+1,j = γiRijγ
−1
i , Mi+1,j = γiMijγ

−1
i .

Note also that the linear homogeneous part of (4.3) has exponential dichotomies on
R
± with projections Pi,s(t) and Pi,u(t), which satisfy

Pi+1,u(t) = γiPi,u(t)γ
−1
i , Pi+1,s(t) = γiPi,s(t)γ

−1
i

We say that {Qi}`1 is a generalized solution if each Qi is allowed to have a jump at
t = 0 along the direction of ψi(0), which is orthogonal to RPi,u(0−) +RPi,s(0+):

Qi(0
−)−Qi(0

+) = δiψi(0)/‖ψi(0)‖2, δi ∈ R.

Following [18], we can show that for each given sequence {ωi} and D, there exists a
unique generalized solution {Qi}`1. The proof is outlined as follows.

First, consider a linear system associated to (4.3), (4.4),

Q̇i = Ai(t)Qi +Bi(t)εD + fi(t),(4.7)

Qi(t
+
ij) = RijQi(t

−
ij) + gij, j = 1, . . . ,m,(4.8)

and the matching conditions (4.5). In the above, fi is a given function of t ∈ [−ω, ω],
gij and di are given vectors in R

3. We look for a generalized solution {Qi}`1 where
each Qi has a jump along the direction of ψi(0). Assume also Qi(0) ⊥ q̇i(0). For each
1 ≤ i ≤ `, let us introduce

φi,s = Pi,s(−ω)Qi(−ω), φi,u = Pi,u(ω)Qi(ω).

Using Lemma 2.3 and Corollary 2.5, with (φi,s, φi,u) undetermined, for each 1 ≤
i ≤ `, the generalized solution of (4.7) and (4.8) uniquely exists and is denoted by
Qi(t, φi,s, φi,u). To satisfy the matching condition (4.5), we look for {(φi,s, φi,u)}`1 so
that

(4.9) φi,u+Pi,s(ω)Qi(ω, φi,s, φi,u)− [φi+1,s+Pi+1,u(−ω)Qi+1(−ω, φi+1,s, φi+1,u)] = di.

By linearity, we first solve (4.7), (4.8) with the nonhomogeneous terms {fi}, {gij}
and D without considering (4.9). We then solve (4.7), (4.8) and (4.9) with {fi} =
0, {gij} = 0 and D = 0.
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Let λ+ > 0 and λ− < 0 be the unstable and weakest stable eigenvalues of each
equilibrium. From H1, λ := min{λ+, |λ−|} = λ+.

From the existence of exponential dichotomies of (4.7) and the integral representa-
tion of solutions in the proof of Lemma 2.3, we have

|Pi,s(ω)Qi(ω, φi,s, φi,u)|+|Pi+1,u(−ω)Qi+1(−ω, φi+1,s, φi+1,u)| ≤ Ce−λω max
i

(|φi,s|+|φi,u|).

If ω is sufficiently large, (4.9) is clearly a small Lipschitz perturbation of the equation

(4.10) φi,u − φi+1,s = di := qi+1(−ω)− qi(ω).

Since the subspaces RPi,u(ω) and RPi+1,s(−ω) where φi,u and φi+1,s belong are expo-
nentially close to the unstable and stable eigenspaces at the equilibrium Ei+1, (4.10)
has a unique solution

|φi,u|+ |φi+1,s| ≤ C|di|,
with the constant C independent of ω. In particular, φi,u ∼ qi+1(−ω) and φi,s ∼ qi(ω).
Therefore, system (4.9) has a unique solution ({φi,s}`1, {φi,u}`1) which is bounded by
maxi |di|.

Substituting ({φi,s}`1, {φi,u}`1) into Qi(t, φi,s, φi,u), we have proved the existence of
the generalized solution, denoted by

Qi = Q∗i (t, {fi}, {gij}, {di}, ω,D).

The existence of the generalized solution of the original nonlinear system can be
obtained by a contraction mapping principle. Using the generalized solution, the gap
functions δi := Gi(ω,D) are functions of ω and D. From Lemma 2.3,

(4.11) Gi(ω,D) =

∫ ω

−ω

< ψi(t), Bi(t)εD +Ni(Q
∗
i , D) > dt

+
m
∑

j=1

ψi(t
+
ij)Mij(Q

∗
i , D) + ψi(−ω)φi,s − ψi(ω)φi,u.

To have a true solution, we must solve the “bifurcation equations” Gi(ω,D) = 0, i =
1, . . . ,m.

We now show that if the bifurcation equations have a solution, we must have γi ≡ γ1

for all i. To this end, we use an asymptotic estimate from [18] which is still valid in
our case with an almost identical proof.

(4.12)

∫ ω

−ω

< ψi(t), Ni(Q
∗
i , D) + εDBi(t) > dt+

m
∑

j=1

ψi(t
+
j )Mij

+ ψi(−ω)qi−1(ω)− ψi(ω)qi+1(−ω) + o(e−2λω) = 0.

As ω →∞,

ψi(−ω) ∼ C1ae
λ−ω, qi−1(ω) ∼ C2be

λ−ω,

where a or b is a left or right stable eigenvector of the matrix Ai(−∞). We have
|ψi(−ω)qi−1(ω)| ∼ C−e

2λ−ω. Similarly, |ψi(ω)qi+1(−ω)| ∼ C+e
−2λ+ω. Since |λ−| >

λ+, we have |ψi(−ω)qi−1(ω)| << |ψi(ω)qi+1(−ω)| as ω → ∞. In [18], it is shown
that the solution Qi(t) is larger at = ±ω and decays exponentially as t→ 0. We can
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drop the nonlinear terms Ni, {Mij}m1 and the boundary term ψi(−ω)qi−1(ω) and only
introduce an error of o(e−2λω). We end with

∫ ω

−ω

< ψi(t), εDBi(t) > dt− ψi(ω)qi+1(−ω) + o(e−2λω) = 0.

Another observation is that
∫ ω

−ω
ψi(t)Bi(t)dt does not dependent on i. This is due

to ψi(t) = γ∗i ψi+1(t) and Bi+1(t) = γiBi(t). Denote

k(ω) :=

∫ ω

−ω

< ψ1(t), B1(t) > dt.

We have derived the following important condition

(4.13) sign{ψi(ω)qi+1(−ω)} = sign{k(ω)}.
Lemma 4.3. If the bifurcation equations have a solution (ω,D), then

γi = γ1, for all i = 1, . . . , `.

Proof. Observe that for certain `′, the finite sequence {γj
1q1}`

′

1 forms a cycle. The
proof is as follows. Since q2 = γ1q1 follows q1, applying γ

j
1, we find that γj+1

1 q1 follows
γj

1q1. Since there are only finitely many heteroclinic solutions, the sequence must be
periodic for certain `′. However, we have not proven that ` = `′.

Now observe that as ω →∞, ψ(ω) approaches one of the two directions orthogonal
to W s(Ei+1), while qi+1(−ω) follows one of the two directions of the unstable man-
ifold W u(Ei+1). With (4.13), the direction qi+1 must follow is uniquely determined.
Moreover si+1(−ω) = si(ω). Thus Hi+1, which follows Hi, is uniquely determined by
(4.13). Since εD > 0, we have

k(ω) '< ψi(ω), qi+1(−ω) >
=< γ∗i ψi+1(ω), qi+1(−ω) >
=< ψi+1(ω), γiqi+1(−ω) > .

Here ' means that the signs on both sides are the same. Notice that

k(ω) '< ψi+1(ω), qi+2(−ω) >
=< ψi+1(ω), γi+1qi+1(−ω) > .

Based on this, we can show that γi = γ1. Let i = 1 first. At the beginning of this
proof, we showed that γ1q2 = γ2

1q1 must follow q2. By the definition of γ2, γ2q2 must
also follow q2 . They are placed on the same side of the stable manifold, since their
inner products with ψi+1(ω) are of the same sign. This shows γ2 = γ1. The proof
follows by induction on the index i. ¤

Using γi ≡ γ1 for all i, we can show that if {Qi} is a generalized solution, then
Qi+1 = γ1Qi. To this end, applying γ1 to (4.7), (4.8) and (4.5), we find that {Q′i},
with Q′i = γ1Qi−1, is also a generalized solution to the same system. The desired
result follows from the uniqueness of the generalized solution.

Lemma 4.4. For all 1 ≤ i ≤ `, Gi−1(ω,D) = Gi(ω,D).
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Proof. We examine the first term (integral term) in (4.11)

Gi =

∫ ω

−ω

< ψi(t), Bi(t)εD +Ni(Q
∗
i , D) > dt+ . . . .

Using the invariance properties (4.6), Qi = γ1Qi−1 and γ∗1ψi(t) = ψi−1(t), we have
∫ ω

−ω

< ψi(t), Bi(t)εD+Ni(Q
∗
i , D) > dt =

∫ ω

−ω

< ψi−1(t), Bi−1(t)εD+Ni−1(Q
∗
i−1, D) > dt.

Similarly, we can show that every term of Gi is equal to a corresponding term of
Gi−1. ¤

Suppose now that γ1 is a mapping in the symmetry group, and H2 = γ1H1 follows
H1. By going through all the possible H2 that can follow H1, we find that either (1)
γ1 = r or γ1 = κ1κ2r or (2) γ1 = κ1r or γ1 = κ2r. In Case (1), s1(−∞) = s2(−∞) = 1.
In Case (2), s1(−∞) = 1 but s2(−∞) = −1. Recall that s1(∞) = s2(−∞) since the
orbit does not hit the junction surfaces when close to an equilibrium. Therefore, in
Case (2), s1(−∞) and s1(+∞) change signs but not in Case (1), which can happen
if and only if qi hits the junction surfaces an odd number of times. This proves the
types of heteroclinic cycles that can bifurcate into a periodic solution, as stated in
Theorem 4.1.

Theorem 4.5. Assume that {Hi}`1, where ` = 3 or 6, is a heteroclinic cycle as
in Theorem 4.1 and that ε > 0 is sufficiently small. Then there exists Ω(ε) which
approaches ∞ as ε→ 0, such that for all ω ≥ Ω(ε), there exists a unique D > 0 such
that with d = dm(ε) +D, the system has a periodic solution P (t) that is close to the
period cycle {Hi}`1, and the time P (t) travels from Σi−1 to Σi is 2ω.

Proof. We use the estimate in Lemma 3.2 of [18], which in our case has almost an
identical proof:

∂Gi

∂D
=

∫ ∞

−∞
ψ(t)iεBi(t)dt+O(e−λω + |D|).

Thus, there exists C > 0 such that if e−λω + |D| < Cε, the latter being small but
fixed, then ∂Gi

∂D
6= 0. Let i = 1. The equation G1 = 0 clearly has a solution ω = ∞

and D = 0. By the Implicit Function Theorem, G1(ω,D) = 0 can be solved in a
neighborhood of (ω,D) = (∞, 0). The proof of the theorem follows since Gi = G1 for
all 1 ≤ i ≤ `.

¤

4.2. Nonexistence of some solutions. In this sub-section, we show that if D is
sufficiently small, the time a periodic solution spends from Σi to Σi+1 is the same.
This can be proved by an estimate on the derivative of bifurcation functions. We also
want to show that multiple heteroclinic solutions do not exist. A multiple hetero-
clinic solution starts from an equilibrium, passes near one or more equilibria before
approaching a final equilibrium. To summarize, the figure “∆” and figure “8” pe-
riodic solutions are the only interesting solutions that can directly bifurcate from
heteroclinic cycles.
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Consider two cases: (1) P (t) is a periodic solution near the heteroclinic cycle {Hi}`1;
(2) P (t) is a multiple heteroclinic solution near a heteroclinic sequence {Hi}`1, ` ≥ 2.
Let P (t) be the union of {pi(t)}`1 with pi(0) ∈ Σi as in §4. We assume that the time
P (t) travels form Σi−1 to Σi is 2ωi. Thus pi(t) is near qi(t) for ωi ≤ t ≤ ωi+1. In Case
(1), we assume that ω1 = ω`+1; while in Case (2), ω1 = −∞ and ω`+1 =∞.

Let ω = min{ω1, . . . , ω`} in Case (1) and ω = min{ω2, . . . , ω`} in Case (2). Let
ω = ωk for certain (nonunique) 1 ≤ k ≤ `. We use o(1) to denote a number that
approaches zero as ω →∞.

Lemma 4.6. Suppose that εD > 0 but small. Then in Case (1), ωi = ω + o(1) for
all i; while in Case (2), ωi = ω + o(1) for 2 ≤ i ≤ `+ 1.

Proof. As in §4, Qi = pi − qi satisfies (4.3) for t ∈ (−ωi, ωi+1)\{ti1, . . . , tim}, and
reflection law (4.4) at {tij}mj=1. The matching condition (4.5) becomes

Qi(ωi+1)−Qi+1(−ωi+1) = di := qi+1(−ωi+1)− qi(ωi+1).

The above is true for i = 1, . . . , ` in the Case (1), and is true for i = 1, . . . , ` − 1 in
Case (2). Moreover, we have

Q1(−∞) = Q`(∞) = 0, in Case (2).

If ω := min{ωi} is sufficiently large and D is sufficiently small, with an almost
identical proof as in [18], we can show that there exists a unique generalized solution
{Qi}`1 that satisfies phase conditions Qi(0) ⊥ q̇i(0) for each i, but is allowed to have
a jump along the direction ψi(0) at t = 0. The gap Qi(0+) − Qi(0−) depends on
({ω}, D):

Gi({ω}, D) =

∫ ωi+1

−ωi

< ψi(t), Bi(t)εD +Ni(Q
∗
i , D) > dt

+
m
∑

j=1

ψi(t
+
ij)Mij(Q

∗
i , D) + ψi(−ωi)φi,s − ψi(ωi+1)φi,u.

Let L(∞) =
∫∞
−∞ ψi(t)Bi(t)dt which does not depend on i. Then

∫ ωi+1

−ωi
ψi(t)Bi(t)dt =

(1 + o(e−λω))L(∞). The bifurcation equations have the following asymptotic form

(1 + o(e−λω))L(∞)εD + ψi(−ωi)qi−1(ωi)− ψi(ωi+1)qi+1(−ωi+1) + o(e−2λω) = 0.

Since ωi ≥ ω for all i and the weakest stable eigenvalue at an equilibrium satisfies
|λ−| > λ, we have ψi(−ωi)qi−1(ωi) = o(e2λω). Thus

L(∞)εD = ψi(ωi+1)qi+1(−ωi+1) + o(e2λω).

Observe that ψi(ωi+1)qi+1(−ωi+1) ∼ Ce−2λωi+1 . We have

(4.14) L(∞)εD = Ce−2λωi+1 + o(e2λω), 1 ≤ i ≤ `.

Let i+ 1 = k where ωk = min{ωi}. Then
(4.15) L(∞)εD = Ce−2λω + o(e2λω).

The estimate ωi = ω + o(1) follows from (4.14) and (4.15). ¤
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As a consequence of Lemma 4.6, multiple heteroclinic solutions (ω`+1 =∞) do not
exist.

To show ωi ≡ ω for all i, we need a nonzero lower bound for the partial derivative
∂Gi

∂{ω} . See [31]. A similar result has been obtained in [25].

Lemma 4.7. If the sequence of time {ωi} satisfies 1
k
< ωi

ωi+1
< k for some constant

k > 1, then

∂Gi

∂ωj

=
∂

∂ωj

(< ψi(−ωi), qi−1(ωi) > − < ψi(ωi+1), qi+1(ωi+1) >)+o(e
2λ+ωi+1)+o(e−2λ−ωi).

The condition of Lemma 4.7 is satisfied since ` is finite.
From our assumption, the heteroclinic solution is tangent to the eigenvector corre-

sponding to the weakest negative eigenvalue λ−. Therefore, qi(t) ∼ aie
−λt for t ≈ −∞

and qi(t) ∼ bie
λ−t for t ≈ ∞. Recall that ωi ≈ ω. Thus

∂Gi

∂ωj

= − ∂

∂ωj

< ψi(ωi+1), qi+1(−ωi+1) >) + o(e2λω).

It is now clear that ∂Gi

∂ωj
is of order e−2λω if j = i + 1 and is of order o(e−2λω) if

j 6= i + 1. Using this, we can prove that there do not exist two distinct sequences
{ωk

i }, k = 1, 2 that solve the bifurcation equations for the same D. Otherwise, let
∆ωi = ω2

i − ω1
i and let ωi(µ) = ω1

i + µ∆ωi. We have

Gi({ωi(µ)}, D) = 0, µ = 0, 1, and for all i.

There exists 0 < µ̄ < 1 such that dGi

dµ
({ωj(µ̄)}, d) = 0. Let ∆ων = max{∆ωj, j =

1, . . . , `}. Then
∑

j

∂Gν−1

∂ωj

∆ωj = 0,

∂Gν−1

∂ων

∆ων = −
∑

j 6=ν

∂Gν−1

∂ωj

∆ωj.

But from Lemma 4.7, the left side of the last equation is of e−2λω while the right side
is of o(e−2λω). We have reached a contradiction, which shows that ∆ωj = 0 for all j.

Appendix A. Proof of Lemma 1.1 and Lemma 1.2.

Proof of Lemma 1.1. We start from

(A.1) 0.5(x2 + y2 + z2)′ = (x2 + y2 + z2)− a(x4 + y4 + z4)

− (b+ c)(x2y2 + y2z2 + z2x2) + 3εduxyz.

Using 2a < b+ c, we have

(A.2) 0.5(x2 + y2 + z2)′ ≤ (x2 + y2 + z2)− a(x2 + y2 + z2)2 + 3εduxyz.
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Assuming that x2 + y2 + z2 ≥M , we want to show (x2 + y2 + z2)′ < 0. Assume first
s(t) = 1 and xyz ≤ 0. Then since d ≥ 0 and u > 0, we have 3εduxyz ≤ 0. Since

(A.3) (x2 + y2 + z2) ≤ (x2 + y2 + z2)2

M
,

if 1
M
−a < 0, then the right hand side of (A.2) is negative. Thus d

dt
(0.5(x2+y2+z2)) <

0.
We then assume that s(t) = 1 and 0 < xyz < ε. We need an elementary inequality

(A.4) |xyz| ≤
(

x2 + y2 + z2

3

)1.5

.

In this case, the value |u| is bounded uniformly with respect to ε. Based on this,

|3εduxyz| ≤ 3ε|du|(x
2 + y2 + z2)2

M0.531.5
.

Using (A.3) again, we see that the right hand side of (A.2) is negative if 1
M
+ 3ε|du|

M0.531.5 ≤
a. In this case, we also have 0.5(x2 + y2 + z2)′ < 0. The condition is true if M is
sufficiently large.

Finally, it is easy to see thatM can be any constant larger than 1/a if ε is sufficiently
small.

Similar arguments can be applied to the case s(t) = −1 and xyz ≥ −ε. This
completes the proof of d

dt
(x2 + y2 + z2) < 0 if x2 + y2 + z2 ≥M .

Assuming that x2 + y2 + z2 ≤ m, we want to show that (x2 + y2 + z2)′ > 0. From
(A.1), using b+ c > 2a again, we have

(A.5) 0.5(x2 + y2 + z2)′ ≥ (x2 + y2 + z2)− b+ c

2
(x2 + y2 + z2)2 + 3εdxyzu.

First assume that s(t) = 1 and xyz/ε ≤ −1. Since u3 − u = −xyz
ε

2
3
√

3
, for this

range of xyz, there exists k > 0 such that ku3 < −xyz
ε

2
3
√

3
. Thus there exists K > 0,

independent of ε, such that 0 < u < K(−xyz)1/3/ε1/3. From (A.4),

3ε|duxyz| ≤ 3K|d|ε2/3(xyz)4/3

≤ 3|d|Kε2/3 (x
2 + y2 + z2)2

32

≤ 3|d|Kε2/3 (x
2 + y2 + z2)m

9
.

Thus 0.5(x2 + y2 + z2)′ > 0 if

b+ c

2
m+

1

3
ε2/3|d|Km < 1.

The latter is true if m > 0 is sufficiently small. It is also clear that m can be any
positive constant smaller than 2/(b+ c) if ε is sufficiently small.

Next, assume that s(t) = 1 and |xyz| ≤ ε. The proof is easy in this case since the
value |u| is bounded uniformly with respect to ε . We will leave this to the readers.

A similar argument can be applied to the case s = −1. ¤
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Proof of Lemma 1.2. Let w = xyz, then

(A.6) ẇ = (3− (x2 + y2 + z2))w + εdu(x2y2 + y2z2 + z2x2).

First, suppose that a solution starts with s = −1 and |xyz| ≤ ε. Then since min{x2+
y2, y2 + z2, z2 + x2} > η > 0, we have

|3− (x2 + y2 + z2)| ≤ max{|3− 1/a|, |3− 2/(b+ c)|}+O(ε),

|0.5du((x2 + y2)z2 + (y2 + z2)x2 + (z2 + x2)y2)| ≥ 0.5|du|η(x2 + y2 + z2)

≥ 0.5|du|η(m+O(ε)).

Since |w| ≤ ε which is sufficiently small, using condition (1.6), the sign of ẇ is
determined by du(x2y2 + y2z2 + z2x2). Therefore, ẇ < 0 until the orbit hits w = −ε.

Similarly, if s(t) = 1 and |xyz| ≤ ε, then ẇ > 0, until the orbit hits w = ε. ¤

Appendix B. Determine the regions where dw/dt > 0

Since we do not have formulas for (x0(t), z0(t)), we will accept some observations
from numerical computations as basic facts. For all the parameter values of (a, b, c)
we tested that satisfy H1, we find
F2) (x0(t), z0(t)) are positive and dx0(t)/dt < 0 and dz0(t)/dt > 0 for all t ∈ R.
The solution (x0, z0) is tangent to the weakest stable eigenvector (1, 0) as t → ∞.
Moreover, x2

0(t) + z2
0(t) > 3.

We shall assume that the systems we study satisfy F2.
Assume s = 1 and we try to determine the sign of dw/dt for −1 ≤ w ≤ 1.

Elementary computation shows:

dw/dt = w(3− x2
0(t)− z2

0(t))− dx2
0(t)z

2
0(t)u

∗(w, s).

Thus

sign
dw

dt
= sign[d

x2
0(t)z

2
0(t)

x2
0(t) + z2

0(t)− 3
− w

u∗(w, 1)
].

If −1 < w ≤ 0, it is clear that dw/dt > 0. We now discuss the case 0 < w < 1.
Using the change of variable (t, w) → (θ, v), where v = w

u∗(w,1)
, and letting f(θ) =

d
x2
0
(t)z2

0
(t)

x2
0
(t)+z2

0
(t)−3

, we plot f(θ) and v = 1
u∗(1,1)

in Figure B.1. By comparing the two

graphs, we find the region {(θ, v)|0 ≤ θ ≤ π/2, 0 ≤ v ≤ w/u∗(w, 1)} is divided
into three parts. See Figure B.1 for (a, b, c, d) = (0.3, 0.15, 0.55, 1.2). In the subset
bounded by Z+ → T1 → T2 → X+ → Z+, we have dw/dt > 0 while in the two outer
regions dw/dt < 0. Map the region back to (θ, y1) coordinates, in Figure 3.1, we see
that between the y1 axis and Γ1, the sign of dw/dt > 0 in the region bounded by
Z+ → T1 → T2 → X+ → Z+ and is negative to the left of the curve Z+T1 or to the
right of T2X

+. The two points T1 and T2 are important, for the flow is tangent to Γ1

at T1 and T2. The points T1 and T2 divide Γ1 into three parts. In the middle part,
the flow is pointing outwards of the junction surface and in the two outer parts, the
flow points inwards Γ1. In the region below the y1 axis and above Γ2, we always have
dw/dt > 0 (if s = 1).
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Figure B.1. The regions in the (θ, v) coordinates.
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