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Existence Theory for Damped Gravity Waves 
in a Closed Rectangular Basin 

XIAO-BIAO LIN 

Communicated by C. DAFERMOS 

Abstract 

We study existence and uniqueness of solutions of the equations for the free 
surface motion of an incompressible, irrotational fluid in a rectangular basin 
subject to vertical oscillation. After adding artificial damping, which leaves the 
flow irrotational but correctly represents *he physical rate of energy loss at high 
wave numbers, we prove global existence and uniqueness results in the appro- 
priate Sobolev spaces, provided that the initial data and forcing amplitudes have 
sufficiently small norms. Convergence of spatially discretized (finite-dimensional) 
projections is also discussed. 

w 1. Introduction 

Free surface waves of inviscid, incompressible, irrotational fluids have at- 
tracted great attention among applied scientists, engineers and mathematicians 
in recent years. By introducing a potential function for the velocity field, one can 
rewrite the Euler equation with fewer unknown functions. Moreover, the resulting 
equations possess a (canonical) Hamiltonian structure and also admit both 
Lagrangian and Eulerian formulations. These "gravity wave" equations will be 
given below: see WmTHAM [1974, w 13] for a derivation. 

Existence theorems for solutions in special classes of analytic functions have 
been proved for both Lagrangian and Eulerian formulations: See NALIMOV 
[1969], OVSJANNmOV [1971, 1974], SHINBROT [1976], KANO & NISHIDA [1979]. 
Possibly due to technical difficulties with the Eulerian formulation, existence theo- 
rems in Sobolev spaces have only been obtained for the Lagrangian formulation: 
See NALIMOV [1974] and YOSHIHARA [1982]. Moreover, all the existence results 
up to now are for short time; no global results are available in the literature. 

Nevertheless, the Eulerian formulation has the advantage of simplicity and 
clarity, and the majority of work by physicists and engineers is based on this 
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formulation. In particular, the finite-dimensional Hamiltonian systems obtained 
after (Galerkin) projection have been studied extensively, cf MILES [1984-1985], 
and much information about gravity waves has been obtained in this way. 
When such truncations are studied, they are generally justified by noting that, 
in the presence of viscosity, modes with high spatial frequency decay rapidly 
and so do not play a very important role in the long term behavior. In fact, authors 
such as MILES [1967, 1976] have added "phenomenological" damping terms after 
truncation of the Hamiltonian system at some (possibly large) number of modes. 
Discussion of the nature of damping and the effect of damping on different 
wave numbers can be found in LmnTnILL [1978], MILES [1967] and the references 
therein. 

Interesting results concerning the stability and bifurcations of steady and time- 
periodic branches of solutions have been obtained for these finite-dimensional 
problems. See the series of papers by MILES for examples. Recently, HOLMES 
[1986] has shown that finite-dimensional truncations of arbitrarily large order, 
after the addition of suitable (weak) damping, exhibit chaotic motions. His argu- 
ment uses the method of Melnikov, in which smooth homoclinic manifolds of 
an unperturbed (averaged) system are shown to split and to intersect transversely 
due to the perturbation of periodic forcing terms. Similar phenomena have also 
been studied by Gu & SETHNA [1986], Gu, SETHNA • NARAIN [1986] and VIR- 
NING, BERMAN ~r SETHNA [1986]. In this analysis the Hamiltonian structure and 
the existence of (approximate) integrals of motion is crucial. It is therefore of con- 
siderable interest to establish rigorous existence results for the Hamiltonian 
system perturbed by the addition of weak damping. 

The purpose of this paper is twofold: to prove a global existence theorem 
for gravity waves with weak damping in the Eulerian formulation, and to justify 
the truncation methods used earlier in studies of such waves. Ultimately, I hope 
that rigorous results on the undamped system may be obtained by taking the limit 
of zero damping. 

The addition of some form of dissipation is essential for the results of this 
paper, but rather than include the true dissipation due to kinematic viscosity, 
I have chosen to add an artificial damping term to the Eulerian equations which 
exhibits the correct damping rate of the total energy. According to STOKES [1851] 
or LIGHTHILL [1978], the modes with high wave number, which are the major 
source of trouble, decay at a rate proportional to 8r22 • (total kinetic energy), 
where ~ is the kinematic viscosity and 2 is the wave number. The energy for the 
linearized gravity wave is �89 g Iv ]2 + �89 ~ IV v iz -b (F(0) u, u), where v describes 
the surface of the fluid and u is the potential of the velocity field at that surface. 
The first two terms are the potential energy due to gravity and surface tension, 
and (F(0) u, u) is the kinetic energy. Let # be a damping coefficient. By adding 
the term --# V2u to the usual system for gravity waves, we obtain a linearly 
correct damping rate. For a justification, see the energy estimate in w 6. 

The Complete system is presented in (2.1)-(2.5) below. Apart from the damping 
term, this system has been derived by many authors from the Euler equations 
(BENJAMIN & URSELL [1954]) and also from Hamilton's Principle (MILES [1977]). 

In much of the work up-to now, the free surface contact with the container 
wall is assumed to be orthogonal, based on the assumption that the frictional 
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resistance and the capillary forces between the solid wall and the fluid are negli- 
gible. For a more accurate discussion of the contact angle of the equilibrium 
surface, based on the concept of wetting energy and the principle of virtual work, 
see FINN [1986]. Unfortunately, at present there is controversy concerning the 
validity of dynamic contact angle measurements. Despite its doubtful physical 
basis, the assumption that the fluid surface is orthogonal to the wall has been 
studied mathematically. BENJAMIN 8~; URSELL [1954] proved that for the linear 
equation, if the fluid surface is initially orthogonal to the wall, it stays that way. 
Whether this is the case also for the nonlinear equations is still an open problem. 
Our existence theorems provide a partial answer to this question. 

The method we use is classical. First the linearized system (5.1)-(5.3) is studied. 
The estimate of the solution (u, v) in terms of the initial data (Uo, Vo) is obtained 
in two steps, as the sum of an instantaneous solution (K, v) that satisfies the initial 

data at t : 0 and a long-time solution (u, v) that satisfies (5.1)-(5.3) with zero 

initial data. To derive estimates for (h, v), the Laplace transform with respect 
to the time variable is employed. If the total forcing energy is finite and small 
(Theorem 2.1), the nonlinear problem is solved by a simple argument involving 
the Implicit Function Theorem. If  the density of the forcing energy is finite and 
small (Theorem 2.2), an energy inequality is derived to ensure the global existence 
of solutions. The estimates for the linear problem are also used to prove the con- 
vergence of the discretization method. 

In w 2, we give a precise description of the problem and state our main results. 
In w 4, we study the elliptic free boundary value problem which links the velocity 
potential 95 to the canonical variables (u, v). In w 5, we establish the basic isomor- 
phism concerning the inhomogeneous linear system. The final results for the non- 
linear system are proved in w 6. The convergence of the semi-discretization method 
is also proved in w 6. 

The method we employ is parallel to the method of BEALE [1984], who estab- 
lished the long-time existence and regularity of solutions of the initial value 
problem for the Navier-Stokes equation with a free surface. For other works on 
this topic, see ALLAIN [1985] and FUJITA [1985]. The estimates we obtain for the 
linear problem are close to those for the Navier-Stokes equations, which provide; 
further evidence that the artificial damping we introduce gives the correct rate of 
energy attenuation. 

We conclude this introduction by pointing out that the linear system (5.1)- 
(5.3) generates an analytic semigroup in the appropriate function space. However, 
the smoothing effect is not sufficiently strong to make the classical methods work 
(cf. FRIEDMAN [1976], HENRY [1981] and PAZY [1983]). 

w 2. Statement of the problem and the main results 

The fluid we consider is contained in a 3-dimensional rectangular basin in 
(xl, x2, y)-space, with a cross section D = { 0 ~ x ~ < 1 1 , 0 < x 2 ~ 1 2 } .  The 
fluid is bounded below by a flat bottom SB = (y = --d} and above by a free 
surface SF : -  {y  --- V(Xl, X2, t)}. Let 

~Qv = {(xl, x2, y) ] (xl, x2) E D and - - d <  y < v ( x l ,  x2, t)}. 
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If  the motion of the fluid is irrotational, the potential of the velocity field, 
denoted by ch(x~, xz, y, t), satisfies the following elliptic boundary value problem: 

V2q5 = 0 in f2v, 

4~tsr = u(x~, x~, t ) ,  

(2.1) 04, = O, 
sB 

~n loDx(_d,v) = O. 
It is clear that r is completely determined by (u, v). After solving (2.1), we 

dof 04[ 
let Oy ]SF W = - -  . Thus w is a function of (u, v), and is denoted by F(v) u. Suppose 

the rectangular basin is subject to a vertical oscillation y" ( t )  = ~(t). The motion 
of the fluid can be determined from the solution of the following Cauchy problem 
in terms of (u, v): 

ut - -  # V~u - -  7 V~v -}- gv = P{o~(t) v - -  �89 ]Vxul 2 -[- �89 w2(1 -[- ]Vxvl2)), 

where 

v, = w + w lVxv] 2 - V~u .  Vxv, 

~(o) = ~o, ~(o) = ~o, 

(2.2) 

(2.3) 

(2.4) 

g is the acceleration of gravity, ), is the surface tension, and # is the damping 
coefficient. P is the projection operator defined by P f = f - -  (1112) -1 f f d x .  

D 
Because of the term w = F(v) u, (2.2)-(2.4) is not a standard system of partial 
differential equations. If/~, y, and the right-hand side of (2.2) were zero, equations 
(2.2) and (2.3) would be Bernoulli's equation and the kinematic boundary condi- 
tion, respectively, rewritten so that everything is in terms of u, v, w and their x- 
derivatives. See MILES [1977]. 

The second term in (2.2) is the artificial damping. The third term in (2.2) is 
the linearized surface tension [BENJAMIN & URSrLL, 1954]. We can, in fact, handle 
the more precise, nonlinear, form of surface tension by adding higher order terms 
to the right-hand side of (2.2), without changing much of the analysis. We shall 
only look for solutions in the range of the projection P, i.e., solutions satisfying 
fD  u dx = O, which may be obtained by normalization, and fD v dx = 0, which 
expresses the incompressibility of the fluid. It can be proved that the right-hand 
side of (2.3) is in the range of P (see w 6). Therefore, the presence of P in equation 
(2.2) makes the range of P invariant under the nonlinear system. 

The appropriate boundary conditions for (u, v) at 0D are not clear physically. 
Also the corners of 0D will cause technical complications. To simplify matters, 
we shall restrict our study to a special class of solutions. Assume that the traces 
of odd order of u and v vanish at OD to the highest order. We extend u and v 

w = F(v) u, (2.5) 
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as even functions in the domain { - - I  1 < X 1 • 11, --12 < X2 < 12}- We then fur- 
ther extend u and v as periodic functions of period 2ll in xl  and 212 in x2. The 
extended (u, v) still satisfies (2.2)-(2.4). Accordingly, 4~ is also extended to {(xl, x2) 
E• 2, - - d <  y < v(x,, x2, t), t ER +} as an even function in (xl, x2) and with 
period (2ll, 212) in (xl, Xa). A classical theorem asserts that 4~ satisfies (2.1) after 
extension; see COURANT & HILBERT [1962]. Hereafter, we assume that Uo and vo 
are extendable to even periodic functions with period (2ll, 212) and we study (2.1)- 
(2.5) in the above class of periodic functions. If (u, v) is such a solution in a certain 
function space, then a uniqueness theorem implies that u and v are even functions 
in (xl, x2). Hence, the restriction of (u, v) to D = {0 < xt < ll, 0 < x2 < 12} 
will be a desired solution of problem (2.1)-(2.5), which is unique in a certain class 
of functions. 

It is well known that periodic distributions are temperate and may be studied 
by the Fourier transform. Since q5 is periodic only in (Xl, x2), it is convenient to 

avoid Fourier series expansions and use only Fourier transformations. Let ~2 
be the torus obtained by identifying the opposite edges of (--11, ll)• (--12, 12). 
Let Hr(t~2), r C 11~+, be the Sobolev space of LZ-functions with L2-derivatives 

of order r in ]~z. We assume that  the functions in Hr(~ 2) have been lifted to 

(2ll, 212)-periodic functions in f{2. Define R3 = 1~ 2 •  For r > 1, Hr(R 2) 
is continuously embedded in the Banach space /}(R 2) of bounded continuous 

functions defined on R. Let d > 0 be given. Then for each v E Hr(R 2) with 

Iv 1~ small, we have [v IB(R~ < d. Let s~ v = {(x j, x2, y) I (xl, x2) E ]1~2, --d < 

y < v(xl, x2)}. ~ is thus an open subset of ~3. Let H~(t~ 3) and H~(~)  be the 

Sobolev spaces in ~3 and D~, and assume that each function in H~(R 3) and 

H~(~)~) has been lifted to a (211,212)-periodic function in (xl, x2). Of course the 
lifted function is not L2-integrable. This difficulty can be circumvented by introduc- 
ing a special measure in z = (xl, x2, y) (or x = (xl, x2)). Define a measure 

d#(z) = dlzl(xl, x2) | d/z2(y) (or dtz(x) = dtq(xl, x2)) on P73 (or ~:~2), where 
d/z1 is the measure with compact support in (--ll ,  l l )•  (--12, 12) and uniform 
density ~22/(ll, 12), and d#2 is the usual Lebesgue measure on R. For the dual 
variable ~ = (if1, ~2, g]), we define the measure dv(~) = d~'1(~1, ~2) @ d~'20/), 
(or g = (~1, ~:2), dv(~) - d~1(~1, ~2)), where dr 1 is the sum of the Dirac measures 
with unit mass at each lattice point k C ((z~/ll) Z, (az/12) Z), and dr2 is the usual 

Lebesgue measure in R. For f E  Lz(Ra), the Fourier transform g = f =  ~ ' f  

and the inverse transform f = ~ = ~ 'g  are defined as 

g(~) = f e-iZC f(z)  d#(z), 
p~3 

f (z)  = (2=) -3 f e izr g(r &(r 
p~a 

Clearly, o~ : L=(R a, d/,) --> L2(1% a, dr) is an isomorphism and f is in H*(~ a) if 
and only if 
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In the same manner we can define H~(I~ 2) and its n o r m  in terms of a Fourier 
transformation. 

= I . f l f E  H*(R2), f f d ~  = 01, s => 0. Clearly, the mapping /~s(fi ~) Let 
I ~2 / 

/ ' f = f - ( 2 ~ )  -~ f fdl~ is continuous and surjective from H~(g 2) t o / ~ ( ~ 2 )  
5~3 

s > 0 .  
Let K( t~3xR;  r, s) = H~ H'(R3))f~ H{r-~)/2(a, H~(g3)), r >-- s >~ 0. We 

shall use the abbreviated notation K(r, s) if no confusion can arise. The norm of 
f E  K(r, s) is equivalent to the L2-norm of 

where f(- 0 is the Fourier transform o f f ( t )  and ~" is the dual variable of t. Other 
spaces similar to K ( R •  r, s) can be defined with t~ 3 replaced by ~2 or ~)~, 
with the time t E R replaced by t E 11~+ or t E (tl, t2). We next define the space 
X' (q ,  t2) to which the solution of the system (2.2)-(2.5) will belong: 

X'(t l ,  tz) = {(u, v) f(u, v) E K(R2 •  t2); r, 0 ) •  x ( t l ,  t2); r, 0), 

vt E K(r -- 1, 1), f u  dtt = f v  d/~ = 0 for all t E (ta, t2)}, 

Y'(t~, t2) = {(fl ,f2) If1E K(R2 X(h,  t2); r -- 2, 0),f2 E K(R2X( t l ,  t2); r -- 1, 1), 

f f l d l z  = f f2 d/~ = 0 for all t E (tt, t2)}, 

r>=2, t l >  tz. 

We define the norms as 

ll(u, v)llx, = lul,,(,,o) + Iv [,,(,o) + !vi i,,(,-, ,), 

[l(fl,f2)Ilr, = [f, lr(r--2,0) @ [f2 IK(,--,,1)" 
Our main results are the following: 

Theorem 2.1. Suppose r > 3 is given. There is a 01 > 0 such that ~fO < O < 01, 
U0 E/~r - l (~2) ,  Vo E /~r--1/2(~2), and o~ E H (r-2)/2 (R+; R) with 

IUo;-, + IVol,-1/2 + 1~1(,-2)J2 < (3, 

then there exists a unique (u, v) E X'(iR+), satisfying (2.2)-(2.5) with both sides o f  

(2.2) in K(r -- 2, O) and both sides of  (2.3) in K(r -- 1, 1). Moreover, uE g(R+;  
/~,-1(~2)), v E ~(R+;  ~_/,-1/2(~2)), and (2.4) is satisfied. The mapping (Uo, Vo, oO 
-+ (u, v) is in C ~ with respect to the indicated norms. The solution satisfies the 
estimate 

II(u, v)lls,<a+)=< C(luo],_, + Ivo I,-,/2 + c1((3)1~ [<r-2)/2), 

where C does not depend on (3 and C1((3) --~ 0 as (3 ~ O. Moreover (u, v) is also 
a C~-function o f  (7,/~, g) E (R+)3. 
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The hypotheses on o~(t) in Theorem 2.1 are not valid if o~(t) is a periodic func- 
tion. This important case will be covered by Theorem 2.2, in which it is assumed 
that the "energy density" rather than the total energy of a~(t) is small. 

Theorem2.2. Suppose r > 3 and T >  0 are given. There is a ~ ~ 0 with the 

following property: I f  0 ~ 6 ~ ~ ,  Uo E ~ - 1 ( ~ 2 ) ,  Vo E/~r-I/2(~2), and o~ E 

H (r-2)/z ((t, t" 4- T); 1%) for each t ~ 0, with 

luo],_,  4- [Vo]r-,/2 4- llo l[ < a 

where [[o~ N ----- sup ]O~]H(r--2)]2((f,~+T);R), then there exists a unique global solu- 

tion (u, v) of(2.2)-(2.5). The solution (u, v) belongs to xr(t, t 4- T), and for each 

t>= O, it satisfies (2.2) /n K(R2•  T) ; r  -- 2,0) and (2.3) in K(R2•  
(t~ t ' +  T); r -- 1, 1). Moreover, (u, v) E :~(R+;/~r,-,(fi2)) X~(~+;/~r--1/2(~:~2)), 
(2.4) is satisfied, and 

sup If(u, v)I]xr(U+T) ~ C 6. 
t-Eft+ 

Furthermore, (u, v)[6,i+7- ) E xr(t,  t 4- T) has a C~176 on (uo, vo) E 

~ - 1 •  and 0~](o,~+r)E H (~-2)/2 ((0, t4 -  T);1%) with respect to the topo- 
logy induced by the indicated norms. 

Let {9i}i%0 be the orthonormal basis in L2(~% 2) induced by the Fourier har- 
monic modes. Let PN: L2(Rz)--+L2(~2) be the projection to the subspace 
spanned by {~0i}/u= 1. (We set ~0o ~ constant in ~2). Obviously PN is a continuous 
map f rom Hs(R 2) to  Hs(R2), s ~ 0. We use the following notation: 

fl(o~, u, v) = P(o~v - -  �89 Ar �89 w2(l ~- ]VxV[2)), (2.6) 

fz(u, v) = w -- F(O) u 4- w [Vxv[ 2 -- Vxu" V~v, (2.7) 

where w is given by (2.5). We state our semi-discretization problem using the 
projection PN. Find (u N, v N) : 1%+ -~ PNL2(R 2) satisfying 

U 7 - -  # V2H N --  )2 V2x UN ~- gv N : PNfl(o~, U N, vN), (2.8) 

v~ -- g(o) u u = PNfz(u u, VZV), (2.9) 

uN(o) : PNUo, uN(o) : PNVo. (2.10) 

We can state existence theorems for system (2.8)-(2.10), which are completely 
analogous to Theorems 2.1 and 2.2 and which have the same proofs. Moreover, 
we shall prove the following approximation theorem. 

Theorem 2.3. (i) Suppose that all the hypotheses of Theorem 2.1 are valid. There 
isa 61 ~ 0 such that i f  ]Uo[r-~ + IVolr-a/Z 4- ]0~I(r--2)/2 ~ ~t, then the global 
solution (u, v) E X ' (R  +) for (2.2)-(2.4) exists, and the global solution (u N, v u) E 
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X~(R +) for (2.8)-(2.10) exists for all N >  O. Moreover (u N, vN)--~ (U, V) in 
xr(p~ +) as N--> -4-00. 
(ii) Suppose that all the hypotheses of  Theorem 2.2 are valid. There is a b2 > 0 
such that i f  ]Uo It-1 + I vo Ir--~I2 + llx 1[ < ~2, then the global solutions (u, v) for 

(2.2)-(2.4) and (u N, v N) for (2.8)-(2.10) exist, (u, v)l(~t-+T ~ E xr(t, t + T), 

(u N, vN)](U+r) E X'( t  t + T), and s u p  ] [ (u  N - -  u ,  v N - -  v ) l I x r ( 7 . t - + T )  ---> 0 as 

N--> -k cx~. 

w 3. Basic Lemmas 

In this section we collect several basic results concerning nonlinear operations 
on functions in Sobolev spaces, namely, multiplication, composition and change of  
coordinates. They will be useful in estimating the right hand sides of (2.2) and (2.3) 
especially in estimating the nonlinear functional w = F(v) u. For general refer- 
ences see the paper of BOURGUmNON & BREZIS [1974] and the book of 
MIZOHATA [1973]. 

It is well known that W~(R") is: a n  algebra for s > nip. A more general 
result has been proved by Zognsio [1977], which in particular yields 

n 
Lemma 3.1. Let r > -~  n = 2, 3. Let rl, i" 2 be such that 0 -<- rt <= r, 0 <--_ r2 ~ r 

and rl + r2 >~ r. I f  hiE Hri(lR~), i =  1,2, then hl " h2 E H~'+r~-~(~ ~) with 

We shall need similar estimates for the products of functions in K(t~ n • R;  r, s). 
For a special case of the following lemma, see BEALE [1984]. 

n-~-2 
Lemma 3.2. (i) Let r > 2 , n = 2, 3, s >~ 0 and r --  s > 1. Let rl, r 2 

be suchthai s < = l " l ~ r , s < : r 2 ~ r  and rl + r 2 > = r  + s. I f  g E K ( R  n •  

and hE K(Rn•  r2, s), then ghE K(rl + r2 -- r, s) with 

(ii) With the same r, s as in (i), let O <~ 6 -<- s. I f  gE K(r, s) and h E K(r --  d, 
s - -  ~), then gh E K ( r - -  ~ s - - O )  with 

Igh [K(r-d,s-6) ~ C [glK(r,s) Ih lIC(r-~,~-~). 

Proof. Let X be a Hilbert space. For a measurable function f :  N --> X the Fou- 

rier transformation 2~(~) ~ ? e- i~t f ( t )  dt can be defined if f E  L2(l~, i ) .  We 
- - o o  

say that f E  Hs(R, X) if (1 ~- [~ls)f(v) E L2(R, X). We have the following results, 
which are similar to those for real-valued functions. 
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(a) If  0 < s < �89 then H~(IR, X) ( LP(R, X) with continuous embedding for 
1 

- -  = �89 -- s. If  s > �89 then H~(R, J0  Q ~J(ll~, X) with continuous embedding. 
P 

(b) Let Y be a dense subspace in X with continuous injection. If  f ~  Lz(R, ]I) 
/SH~(R,X) ,  s > � 8 9  then fEM(R,[Y,X]a/2~),  where [Y,X]0, 0~<0-<- 1 is 
the interpolation space between the spaces Y and X (see LIONS & MAGENES 
[1972]). 

P r o o f  of (i): Let r ~ q - r ~ - - r = o .  We have o ~ s ,  and 

-~ C{1 § 1 r  ~,}o+ i v _  ~,i(o-~)12(1 + 1r162 

+ c{l~'l (~-')~ Ir -~ : '  ?} + c { k  - ~'l <~ 1~' I~} �9 

It follows from the identity (g- h) ̂  = ~ * h that 

]gh ]K(o,s) ~ C i w(~', v, e, s) ~ */}IL~ ,-k CIg -'~ w(~', v, ~, s)/~]L~ 

+ c 11~ i (~ k * (I + Ir I;I~ 

where w(~-, ~, ~, s) --  1 + I~1 o + kl(.o-,)/= (1 -? 1r [~)- Let g~ ---- (w(~, v, 0~ s) ~) ' ,  

then g~ C K(r~ -- o, 0), [ w(~', % ~, s) i ~ h [L~ <---- C [g~h ]u. 

Case I: r z - -  S > 1. We have h C M(I:I, H ' ,-1) and g, E Lz(R, Hr~-~ Since 
n 

r -- 1 >-~- ,  it follows from Lemma 3.1 that l g~(t) h(t)tL~(ff,) ~ C Ig~(t)}~_~ lh(t)l~,_l 

for ( r a - o ) §  1 ) - ( r -  1 ) - - 0  and H ~  2. Hence 

f~ Ig~(t)h(t) e _ !L~(R') dt -<- C 
- -co  

f~ ]gl(t)[]1-.o ]h(t)l~z=-i dt 

__<clh!~(~,~_l) f~ t 2 Igl( )lrl-oet 
< C [ h  2 = ]K(,t-e,O) 

~ - - C  2 h a = Ig[x(r,,,)] ]K(r2,*)" 

1 1 re  - -  s 
CaseH: r E - - S <  1. Then hELP(P~;H ~) with -- Also 

p 2 2 
1 1 1 - - r 2 + s  

gl E H O-r2+sll2 (R, H ~-~-1) Q Lq(R, H ~-~-I) with -- 
q 2 2 
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1 1 ! 
Note  that  ~ + --  Hence 

p q 2 "  
oo 

f lg~(t) h(t) !~(~,) dt 
--oo 

~ C ? lg~(t)[~_s_l [h(t)l~ dt (for r -- s - -  l + s---- r - -  l) 
--oo 

~ C { _ ~  Igt(t)[]-~-1 dt }2 {_f~ lh(t) Is" dt }2 

~ C  2 h 2 I g IKQ',s) [ ]K(r2,s)" 

Case III: r2 - -  s = 1. By reducing r2 and r slightly, Case lII  is reduced to Case II. 

S!milarly, we obtain the estimate fo r  Ig ~- w((, r,  0, s)/~ IL2- To  estimate 

I1~[ (~-s)f2 ~-x- (1 + I~'[ s)/~[L2, we observe that  g2 = (1~ I(o-~)/2~)'EK(rj --  O 
+ s, s) and h2 = ((1 + I~'l~')h)'E K(r2 - -  s, 0). There are two cases to be consi- 
dered:  first, r2 - -  s > 1, for  which hz E M(R; H r~-s~-l) and g2 E L2(R, H"-~+~) ,  
and second, rz - -  s ~ 1. The latter case can be reduced to r2 - -  s < 1 to  obtain 

1 1 r 2 - -  S 1 r z  - -  s 
h 2 E L P ( R ; H ~  and g 2 E L q ( R ; H  ~) with . . . . .  , -- - -  

p 2 2 q 2 
and /~ ----- r - -  1. The estimate for  Igzhzlc: can then be obtained by the same 
method as for  [glh IL2. 

Proof  of (ii): The  p roof  is similar to that  of  (i) and is omitted. 

. f i  Lemma 3.3. (i) Let g~ . . . . .  g,, E H~(R~), r > -~, n = 2, 3. Then gi C H~(]~). 

I f  ~ is a multi-index with Io;I ~ r, then 

v (I  g, Y c O.l  
i ~ l  m j = l  

j~l  
which is Leibniz's rule. 

(ii) Let g~, g , ~ E K ( ~ •  r >  n + 2  . . . . .  2 , n = 2 , 3 ,  s ~ O ,  r - - s > l .  

m 
Then H giE K(r, s). I f  ~ is a multi-index and i f  fl is a non-negative integer with 

i = I  

I ~  then 

Dt Dx gi -- ~ (~,r DdD~ J g2 E -- -- 
j - I  i = l  m 

?n 

~ ,  eJ =r (3.2) 

where C ~ and C (~'r ...... ~m fc~z,/3D,..,,(~m,~m) are non-negative integers depending on the 

multi-indices only. 
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Proof. (3.1) and (3.2) are valid for smooth functions gl, .-., gin. In the general 
case, we use mollifiers and pass to the limit. Note  that to estimate the right- 
hand sides o f  (3.1) and (3.2), we need Lemmas 3.1 and 3.2. 

We denote by C1 (U) or fJ the closure of a subset U in a topological space. 
We denote by F o g the composition of a function F with g. 

Lemma3.4.  Let FE C~(U), where U is an open subset of R containing 0, and 
F(O) = O. Then: 

n 
(i) g-+ F o g is a C%mapping .from V to H~(R ~) for r > -~, n -= 2, 3, where 

V = {g ] g E Hr(R), C1 (Range g) C U} is an open set in HrOS~n). Moreover, the 

usual chain rule is valid when computing D~(Fo g) E Hr-I"i(l~"), lo~ l -< r. 
n + 2  

(ii) g - + F o g  is a C%mapping from V1 to K(R €  for r > - - - - f - - ,  

s > 0, r -- s > 1, where V1 -- {g [ g ff K(r, s), CI (Range g) ~. U} is an open set 
in K(r, s). Moreover, the usual chain rule is valid when computing DtDx(Fo g)E 
K ( r - -  ]o~[ -- 2fl, s), [o~[ -~- 2fl ~ r - -  s. 

Proof. We only give the proof  of (i), since the proof  of (ii) is similar. If  r is an 

integer, the proof  that F o g E Hr(R ") can be found in MIZOHATA [1973]. Let us 
n 

use a mollifier g~ = g ~- ~v~, g~ --~ g in Hr(t~ ") as ~ ~ 0. Since r > -~-, Hr(R n) 

( ~ ( R " ) .  Without loss of generality, C1 (Range g~) C U for all ~ ~ ~o. It is 

easy to show that Fo g~ -+ F o g inL2(R")as ~ -+ O. Also, D~(F o g~) --~ D~(Fo g )  

in ~'(R"),  where l o~ I ~ r. Let r = [r] + rl,  and write 
l 

= ~Y [r]. (3.1) D (ro C ........ , H D < 
l~[al j = l  

I3~1~/_<1< 

By Lemma 3.1, the right-hand side of (3.1) approaches 
l 

~j C~ ....... l(g(x)) [-[ D g(x) 
l_~1 cr j = l  

in Hr~(~"). Therefore, D"(Fo g~) --~ D~(Fo g) in Hr'(~'),  where [o~ I ~ r. We 

conclude that Fo g~-> F o g  in Hr(~n). Letting 6-+ 0 in (3.1), we find that g~ 
can be replaced by g. Thus the chain rule has been verified. 

To show that g-+Fog is a C%mapping we observe that (D~(Fog)) (hi . . . .  , hi) 
= ((DtF) o g) (hi . . . . .  ht), which approaches ((DtF) o 7g) (h~ . . . . .  ht) as g ~  

in Hr(ir ~) uniformly with respect to h~ E Hr(R'), I hi I~ < 1, i = 1 . . . . .  l. 

n 
Corollary a.5. (i) Let V1 = { g l g E  Hr(Rn), Cl(Rangeg)  > --1}, r >  -~-, n =2 ,3 .  

Then g-+ (g + 1) -1 -- 1 is a C%mapping from I71 to Hr(Rn). 
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n + 2  s>~O, (if) Let V z = ( g l g E K ( f Z " •  r > - - - - f - - ,  _ 

r -  s ~ 1. Then g ~ ( g - /  1) -1 -- 1 is a C~176 from Vz to K(r, s). 

(iii) Similar results are true for the mapping g -+ (g + 1) 1/2 -- 1. 

Lemma 3.6. Let 0 be a C~-d(ffeomorphism from ~3 to ~3. Suppose that the Jacobian 
matrix dO satisfies d O -  IE (Hr-1(~:~3)) 9, r > 5 ~, with inf {det (dO)) ~ e > O. 

For each g E H~(~a), s ~ r, the functions g o 0 and go 0 -~ are in H~(R 3) with 
[go 01~ ~ c ]g]~ and lgo 0 -~ [~ <~ C ]g]~. Moreover, d(O-q and (dO) -1 satisfy 
(dO) - i  - -  IE (Hr-l(]~a)) 9 and d(O -~) -- IE (H ~ ~(~a))9. 

Proof. That g o 0 and g o 0 -1 are in H*(R 3) has been proved by many authors 
(see BEALE [1984]). Observe that each entry ((dO)-l)id, 1 =< L j ~  3, can be 
obtained by adding the products of the entries of dO and then dividing by 

det (dO). From Lemma 3.1 and Corollary 3.5, (dO) -1 -- IE (Hr-l(Ra)) 9. Hence 
(0 -1)  - -  I : (dO) - l o  0 -1 - -  I E  ( n r - l ( R a ) )  9. 

In proving Lemmas 3.1-3.6, we have used the Fourier transform for functions 

defined on R" (or R" • It is known that each g E H~(g)o) admits a continuous 

extension ~ E H~(R a) and that each g E K(]~" • (t j, t2); r, s) admits a continuous 

extension gE K(~n• r, s). Therefore Lemmas 3.1-3.6 are valid with ~ re- 

placed by (q,  t2) ( l Z  or ~a  replaced by s Later we shall show that under 

certain conditions on v, H ' ( ~ )  admits a continuous extension to H*(Ra). Thus, we 
can replace ~Z 3 by ~ in Lemmas 3.1~3.6. Our final remark is that in Lemma 3.6 
we did not discuss the case in which 0, g E K(r, s). We shall see in w 4 that only a 

change of variable for functions in H~(Ra), not in K(r, s), is needed. 

w 4. An Elliptic Problem with a Free Boundary 

The potential 4~ of the velocity field is determined by (u, v) via the elliptic 
boundary value problem 

V2~ = 0 in t~ ,  

d#]s F = u(xl, x2, t), (4.1) 

a4 = 0 .  
Uy s~ 

If  v = 0  a n d  u E  Hs(R2),s >3  O'~.l. =~- ,  then 4~EHS+~/z(~o). Thus, w =  
vy]~ F 

E Hs-a(R2). Explicit formulas for ~ and e~ can be found when v = 0. Let 
u = ( 2 ~ )  - 2  f~ e iCx fidr, where dv is atomic as defined in w 2. Then 

= (2~) -2 f e ~x {cosh ~(y + d)/cosh ~ d} t)(~:) dr, 

w = (2~) -~ f e i~ [~ tanh ~ d] fi(~) dr. 
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It follows that ~(~) ---- (~ tanh ~ d) h(~) and that the mapping w = F(0) u ex- 

tends to all u E HS(ll~2), s => 0, with ]w Is-, ~ C [u Is- Suppose fa~ u(x) d~ = o. 
Then f~oq5 d/~ = 0 and fa~ w d/~ = 0. Therefore h(~) = ~($) = 0 almost 
everywhere for {1~:~] < ~ / l l } A  ([~21 < Jr/12} with respect to the measure dr. 
Thus, we have a bounded inverse u = (F(0)) -1 w, ]u[~< C [w]~_l. Also 

<F(0) u, u)a. = f (~ tanh ~ d) Ih(~)12 dv >= C [u 12/2 

for all u E /t312(~:~2) with C being independent of u. Therefore, u -+ F(0) u is a 

self-adjoint positive-definite operator in Hm(l?~2). 
The purpose of the rest of this section is to determine the dependence of w 

on (u, v) in suitable Sobolev spaces. Assume that v E H~(R 2) ~ Ca(R2), r > 2, 

[v ]~ < d. When ~ is small, sup Iv(x) ] < d and the domain ~)~ is well defined. 

However, the upper surface of X)~ is not  smooth enough to apply the classical 
theory of elliptic boundary value problems. We shall use a change of variable 

0 : ~o -+ ~ ,  where 0 is a diffeomorphism and 4~-+ qSo --~ 4~ ~ 0 maps H S (~ )  

to HS(~o). The function 4~o will satisfy an elliptic boundary problem with its 
coefficients depending on 0, and hence on v. Since q~o is defined on a smooth 

domain ~o, the classical theory applies. Hereafter we use x to denote (x~, x2). 
Consider an auxiliary Dirichlet problem: 

V2v(x, y, t) = 0 in ~o, 

-v (x, O, t) = v(x, t), (4.2) 

v(x, --d, t) ----- 0. 

Here we introduce t as an independent variable for future use. For  the time being 

e t t  be fixed. For v E Hr(~a),  (4.2) has a unique solution v(., t) E Hr+l/2(f2o), 

and IVlr+l/2 ~ C IUIr ~ co. We can extend v t o R  3 SO that [-Ulttr-kl/Z(ffa)_~__. C 1 ~. 
Let 0 : ~3 __~ ~3 be defined as 

X ~ X o ,  

Y = Yo + "~(Xo, Yo, t) def V(Xo, Yo, t). 
(4.3) 

When b is small, one can prove that 0 is a C~-diffeomorphism on R 3 and maps 

~o onto ~v. Note that ]dO -- I]r_l/2 ~ C ]O-{[r_l/2 ~_ C ]V[r+l/2 ~ CO. Thus, when 
d is small, all the hypotheses in Lemma 3.6 are satisfied and the map g - ~  g o 0 

defines a change of variable in HS(~3), for 0 _< s --< r + �89 and r > 2. After a 
close look at the proof  of Lemma 3.6, cf. BEALE [1984], one finds that the same 

proof  yields that the mappings g .-+ g o 0 from H~(~)v) to HS(~o) and g . ~ g  o 0 -1 

from H~(~o) to H~(~ )  are both linear and bounded, for 0 _< s ~ r - k  �89 and 

r > 2. The proof  does require a continuation of functions in HS(SQo) to HS(~3), 

but does not need a continuation of functions in HS(~v) to Hs(Ra). 
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Lemma 4.1. I f  v E H'(R2), r > 2, Iv ], < O, 3 is sufficiently small, and i f  0 <~ 
s <= r -5 �89 then there exists a linear bounded operator E : HS(~)  -+ H~(t~ 3) 

such that REg = g for all g E H~(~) ,  where R is the restriction of  functions in 

to 

Proof. Using 0 defined by (4.3), we set g = E(g o O) o 0 -~. Then g -+ ff is the 
desired mapping. By Lemma 3.6, Ig ln~(~ ~) ~ C ]E(go O)[it~(~) ~ C ]go 0 1/4,5~o) 

CIg [n~(~0. Notice that we have employed the extension E:  H~(l)o)-+ H~(Ra). 

More general results concerning the extension operator E:  Hs(.Q) -+ Hs(R"), 
s > 0, can be found in GRISVARD [1985, Theorem 1.4.3.1], where s is bounded 
and open with a Lipschitz boundary. As a consequence of Lemma 4.1, all the 

basic lemmas in w 3, which have been proved for functions defined in ~a,  are valid 

with ~3 replaced by ~v. 

If v E C~(]R 2) and q5 E C (g2~), then the traces / "  = {7o, 71 . . . .  ,3~.} are 
defined for 95 in the sense that 7j95 = ~J95/OnJl~, where n is the outward unit 
normal vector, 0 =< j --< r*, and r* is the largest integer such that r* < r -- 1 
and r ~ � 8 9  We have 

r* 

j=0 

Thus, /" extends to Hr({2~) -+ 11~*=o H~-J-I/2(]~ a) as a bounded operator. 

The operator /" is  surjective and has a bounded right inverse G. For v E H'(~2),  

r > 2, Iv [, < 6 small, we can prove a similar result for H~(~) .  

Lemma 4.2. Suppose v and r are as above, �89 ~ s G r + �89 and s* is the largest 
integer such that s* < s -- 1. Then /" = {7o . . . . .  )'~*} is well defined from 
H S ( ~ )  to 11]* o H~-J-1/2(~ 2) and is linear, bounded, and surjective. This operator 
has a bounded right inverse G. 

Proof. Let 95 E C~(s Let 0 be defined by (4.3). Obviously, 7095 = (70(95 ~ 0)) 
o 0 -1. Moreover 17o4[s-1/2 G C [70(95 ~ O)Is_l/2 ~ C ]950 0 Is ~ C 141s, by virtue 
of Lemma 3.6 and the fact that the upper surface of ~v is modelled by ~2, i.e., 
7o95(Xl, x2) = 95(x~, x2, v(x~, x2)). Similarly, we have [yo(DJ95)ls_j 1/2 ~ C 195[s, 

2 V 2 "~--1/2 (__Vxl, l)  E j<~s*.  Now the normal of Se is n = (1 + Vx~ + x~, --vx~, 
H'-1(1R2), by virtue of Lemma 3.1 and Corollary 3.5. Therefore yj95 = (7o(DJ95)} �9 

( n , . . . , n ) E  HS-J-1 /a~ z) for 956HS(~v) and ]yj41~_j_l/z G C[951~, O G j G  s*. 
j-fold 

We now derive the boundary value problem satisfied by 950 d~f 95 o 0. Assume 
that the constant 6 is small. From V = Yo �9 v(xo, Yo, t), ]v],+1/2 -< C6, r ~ 2, 
we see that VE C 1 and (Sv/~yo) -- 1 is small. The Implicit Function Theorem 
implies that there exists a Cl-function V-l(xo, y, t) such that 

V(xo, V-l(xo, y, t), t) ---- y.  (4.4) 
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Moreover 0 -1 has the form 

X 0 ~ X~ 

Yo = V-a( x, Y, t).  

For the time being, assume that Vand V -~ are C~-functions, and that V(xo, Yo, t) 
--Yo and V- l (x ,  y, t ) - - y  both have compact support in the y-direction. It 
is easy to obtain from (4.4) that: 

COy -- 1 = o 0 -1 1, (4.5) 

COx 0-1' (4.6) 

COy2 - -  \COY~] ~Yo o 0 -1,  (4.7) 

{ 
cox ~ - - t c o x i t c o y o !  + 2 ~  ~ _ _7YTyo 

_ (COV] 2 [ U V ]  [COVt-31 0 -1 (4.8) 
\coXo/ \coy2] \coyo/ j o . 

Since bo = b ~ 0, 

Assuming that bo 

cob 
COx 

cob 
m ~  

COy 

CO2 b 

COx 2 

CO2,/, 
COy2 

we have b = b o  ~ 0 -1, i.e., b(x, y, t) = bo(x, V- l (x ,  y, t), t). 
C c ~  N E (~o), we easily deduce 

~bO ~ 0__ 1 -1 t (CObO o ~ COV-1 
COXo \8-~o O-i] "--cOx ' (4.9) 

~ V-I, 
,COYo (cob~ ~ 0-1) '  -8-Y-Y (4.10) 

coZbo ~ 0_ 1 ( CO%o 0_1) COV -1 
cox~ + 2 o �9 \coXo COYo COx 

+ \COy~ o 0- '  \ ~ x  ] + \~yo ~ 0-1 " COx z ' 

coCo icon-'\ ~ (cobo ~ ? ~ v - D .  
COy02 o 0--1) �9 t-~-y ) ~L_ '~---~0 0 - - 1 ) ~ ' ~  ] 

Since ~2 b = 0, it follows that bo satisfies the following equation 

[ ? r - , ?  -co~-, ~ 
t'57-~y~ o - ' )  

( 4 . 1 1 )  

(4 .12)  

(coy D ( c o % )  
+ 2 \ COx ] \COXo COYo ~ 0-1 

[CO2 V-1 CO2 V-1 ( (~o  o0.)=o 
t~-~o " 
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Applying o 0 to both sides, we see that qSo satisfies the following boundary value 
problem: 

824'0 824'0 0q'o 
--~72~bo : A(v) ~ ~- B(v) OXo Oy------"~oo + C(v) ~Yo in ~o,  (4.13) 

cbo(xo, O, t) : U(Xo, t), (4.14) 

0+o (xo, --d, t) = 0, (4.15) 
Oyo 

where 

t\ox / \oy I 1 o0, B(v)=2 .3  ~ oO, 
(4.16) 

~3 2v -1 0 2V-1~ 
C(v) = + o. 

We have formally obtained the boundary value problem satisfied by %. 
Our next goal is to put all these formal computations in suitable function spaces 
and solve (4.13)-(4.15) by the Implicit Function Theorem. The following is the 
main result of this section: 

Theorem4.3.  Let u, vEK(R2• r, 0), r > 3 ,  ]VlK(r.O)<~, where 6 is 
small. Then ~ b o E K ( ~ o • 1 8 9  ) and w :  F(v) uE K(R2• -1,�89 
Moreover, cb o and w are C~-functions of (u, v) in the indicated spaces. 

Proof. Assume that Iv[r_~ is small for any fixed tER+. Since r -- 1 > 2 we 
can define ~, V, V -1 and 0 as we did for the smooth functions. Using mollifiers, 

we can prove that (4.5) and (4.6) are satisfied in Hr-312(~,) and that (4.7) and (4.8) 

are satisfied in Hr-5/2(O~). Also by the use of mollifiers, we can prove that for 

~bE H~-I/z(~2~) and for each t, we have that qSo E H~-1/2(~), that (4.9) and (4.10) 

are satisfied in H r- 3/z(~), and that (4.11) and (4.12) are satisfied in H ' -  5/2(~0. 

Finally, looking for a solution q5 E H~-l/2({2~) of (4.1) is equivalent to looking 

for a solution 4~o E H~-1/2(~o) of (4.13)-(4.15), for any fixed t. Observe that 
A(v) E Hr-3/2(~2o), B(v) E Hr-3/2(~2o) and C(v) E Hr-5/2(~-2o), and that they are 
small in the indicated spaces if Iv lr_l is small. Also they are C~-functions of 
v E H~-~(~2), for any fixed t. Since --V 2 : H~-1/2(~o) --> H~-5/2(~o) is an iso- 
morphism with the boundary conditions (4.14) and (4.15), we use the Implicit 
Function Theorem to conclude that the problem (4.13)-(4.15) has a unique solu- 

tion 4~o E Hr-1/2(~2o) and that ~b o is a C~-function of (u, v) if Iv 1~-1 is small, for 
any fixed t E 1%+. 

Now according to the hypotheses of the lemma, lvl~;(,,o) < O is small, r > 3. 
We have Iv I~c~+H-I(~ < C 6, r -- 1 > 2, by virtue of the trace theorem, of. 
LIONS & MAGENES [1972]. Therefore, if 6 is small, then for each t E ~  +, (4.13)- 

(4.15) is solvable and has a unique solution ~o E ~(~+,  H~-1/2(~o)) with C ~- 

dependence on u, vE K(r, 0). (In fact SE ~(~+,  H~-m({2~)) and has C~-de - 
pendence on u, v E K(r, 0); however, we shall not need this result.) 
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More regularity can be obtained for the solution 4~o of (4.13)-(4.15). Observe 
that the inequalities Iv ]r(~,0~ < ~ and r > 3 imply that 1~ IK(r+~,~) < C c~ by 
(4.2). l~rom our basic lemmas in w 3, A(v) and B(v) E K(r -- 1 ~, 0), C(v) E K(r -- 3, 0), 
and they are C~-functions of v E K(r, 0) and are small in the indicated spaces if 
r is small. Notice that the o 0 operator in (4.16) cancels o 0 -a in (4.5)-(4.8). We 
now look for a solution q5 o E K(r + 3, 2) for (4.13)-(4.15). Here A(v) and B(v) 
are good multipliers by Lemma 3.1(i), and by the fact that r -- 1 >  (3 + 2)/2. 
Since C(v) E K(r _ ~-,3 0) and OCho/Oyo E K(r -- ~-, 1), by Lemma 3.1(ii), we have 
that C(v)(OCho/OYo)E K ( r _  ~,3 0). As both sides of (4.13) are functions in 
K(r- -  3 0) by virtue of the fact --V 2 : K ( r + - ~ , 2 ) - + K ( r -  3 0) is an iso- ~-, ~-, 
morphism with the boundary conditions (4.14) and (4.15), we can use the Implicit 
Function Theorem to conclude that (4.13)-(4.15) possesses a unique solution 
Cbo E K(r -? 3, 2), which has C~-dependence on (u, v) E K(r, O) • K(r, 0). Since 

K(r § 3, 2) C N'( ~+, H~-1/2(~)o)) with continuous embedding, by the uniqueness 

of the solution in ~(R+,  H~-m(~o)) ,  our previous solution +o defined by 4~o = 
4~o0 is in K(r + �89 2). 

From the continuity of the trace ~'o and from (4.10), we obtain 

o - -  o w = Vo = ~,o 10yo Oy 0 E 7oK(r -- 3, 1) ~ K(r 1, 3); 

w is a C~176 of (u, v)E K(r, O)• 0). Here we have employed the 
3 + 2  fact that O~bo/Oyo E K(R 2 • r - 3, 1) is a good multiplier since r -- �89 > ~- 

OV-I  
and r - -  1 - - � 8 9  1. Also - -  o0 has the form 1 + K ( r - - 3 , 0 ) ~ l  + Oy 
K(r -- 3, 1). That ~'o commutes with o 0 (or o 0 -1) is easy to verify. The proof of 
Theorem 4.3 has been completed. 

w 5. Estimates for the Linear Equations 

The linear inhomogeneous problem corresponding to (2.2)-(2.4) is 

u t - - t  ~ V2u-- 7 V2v + gv = f l ,  

/ ) t  - -  F(0) u = f2, 

u(0)  = Uo, v(0)  = Vo. 

Let r ~ 2. For each (u, v) E xr(1R+), 

(5.1) 

(5.2) 
(5.3) 

define the linear operator d ( u ,  v ) =  
(# V2u + 7 V2v -- gv, F(O) u) and the linear operator L(u, v) = (ut, vt) -- d (u ,  v). 
Obviously, L : X [(R+) -+ Yr(R+) is continuous. Also, from the trace theorem, 

" U " l) " IC l ~ r - l r R 2 > ' x I ~ r - 1 / 2 r ~ 2 ~ 2 ~  with for such(u,v)  we have that (Uo, Vo)=tTo , / o  J~ t ) t ) 
]Uo It-, + lVo ]~ 1/2 ~ C II(u, v)Ilx~. Thus, (5.1)-(5.3) define a linear continuous 
mapping ~ :(u, v) -~ (Uo, Vo, f l , f2) ,  in the indicated product spaces. The objective 
of this section is to show that ~o admits a bounded inverse ~ - 1  : ~ r - 1 ( ~ 2 ) •  
~ - l / a ( f {z ) •  y~(]~+)__~ xr(R+), SO that (5.1)-(5.3) has a unique solution. 

First we use the Laplace transform to estimate (5.1)-(5.3) with "zero initial 
data to the highest order". 
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DefinitionS.1. Let X~0(R+), Y~o(~Z~q-), goo(R2X~+; F, s) be the subspace of 
functions in X'(2:~+), Y'(R+), K(Rz•  r, s) that extend to functions in 

X'(~), Y'(~), K(R z • r, s), respectively, and that are 0 for t < 0. 

Assume that (u, v) E X~0(R+), ( f l , fz)  E Y~o(R+), and (Uo, Vo) = 0. In view 
of Definition 5.1, we are assuming that (5.1) and (5.2) hold for all t E R .  Apply- 
ing the Laplace transform to (5.1) and (5.2), we have 

2~ -- # V2h %- (g -- 7, V 2) b = j~, (5.4) 
^ 

X~ -- F(0)/t = f 2 ,  (5.5) 

where X ~- ~r %- iz. Note that f~ and f2 are defined for tr ~ 0 and are analytic 
for tr > 0. The norm of (f , , f2)  E Y~0(R) is equivalent to the L:-norm of 

I?,(i~)l,-= + I~:1 "-~,/2 l]](i~)Io + I?~(i~)I,-, + I~1 ~'-~)/~ If i (~)1,.  

Lemma 5.2. Let  r ~ 2. Suppose that (SI(X),f2(X)) E ~ , -2 (~2) •  for  
each 2 with REX-----a> 0. Then (5.4) and (5.5) have a unique solution 
(~/(~.), ~(X)) E Hr(~z~2) • H'(R2) sat is fying 

I~,l + iZl '/2 I~lo + I~1, + l,~l "/~ I~lo 

< C(/f~ I,-2 %- I x / ('-2)/2 IL Io + If~ I,-, + l X t ( ' -  =>/= If: I,). (5.6) 

The proof of ]_emma 5,2 will be postponed to the end of this section. As a 
consequence of Lemma 5.2, we can prove the following. 

Lemma 5.3. L : X~0(R +) -+ Y~0(R +) is an algebraic and topological isomorphism. 

Proof. The L2.norm of  [j~(tr %- i~)l,-= + IXl ''-2'/~ IA(~ %- i~)[o %- IA@ + i~)l,-, 
+lZl( ' -2)12[f2(a%-ir)l l ,  for a ~ 0  f i x e d , - - c ~ < r < o %  is bounded by 
c II(A,A)Ilr~o, where C is independent of tr ~ 0. From Lemma 5.2, (b(X)), (~(2)) 

can be constructed for a ~ O, and is analytic in X. By the Paley-Wiener Theorem, 
u ( t ) = v ( t ) = O  for t < O .  Observe that on the line R e X ~ a  with a > 0 ,  
it(a %- it) and v(a %- i~) are the Fourier transforms of e -~ u(t) and e -~t v(t), 
as functions of -- c~ < ~" < %- cx~. From Lemma 5.2 (e -at  U, e -~t v) E (Koo(r, 0)} 2 
and [l(e -~t u, e -~t v)H{Koo(~,o)}~ ~ C II(f~,f2)llr~ o. It follows from Fatou's I,emma 

and the Lebesgue Convergence Theorem that (u, v) E {Koo(r, 0)} 2 and (e -ot u, 
e -~t v) --~ (u, v) in {Koo(r, 0)}2, whence [(u, v)[{Koo(,,0))~ ~ C ll(A,T=)ID,~0. The 

estimate [vtlK(,_l.1 ) <= C Il(A,f2)llrSo follows directly from (5.2). 

We now construct ~ - 1  : (Uo, vo, f~, f2)  -+ (u, v). First consider the case 
r = 2. Let (Uo, vo) E/~l  • ~3/2. Let G be the right inverse of the trace of (u, I:) 
at t = 0. Define (~, ~) = (Guo, Gvo). Then (~, ~) E K2(R +) and 11(~, ~) Ilx~ --< 
C(luo 1~ ~- [Vo 1312). Let (u, v) = (h, ~) + (~, ~). We are to solve 

L(~, ~) =(f~,f2)  -- L(~, v). (5.7) 
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The right-hand side is in K(0, 0)• 1) = Koo(O, 0)• 1) = Yo2o0%+). 

Lemma 5.2 implies that (5.7) has a unique solution (h, ~) E X~o with 

I1(~, v--)llxo2 o =< C(l l f f , ,A) l l rg  o + IIL(~, ~)llrg o} 

<= C{ll(f,,f2)llrg o + lUo 11 -~ Ivo 

Therefore we have proved that 2 '-~ : H* • • yz ___> X = is bounded. 

Suppose that r >  2 and r~  {integers} t-) {integers + �89 Obviously c~o-,: 

/~ , -1•215 y , _ + X 2  is bounded. We shall show that the image of5r  - t  

is in X' and that ~ - ~ : [ - F - I • 2 1 5  r is bounded. The method is 

similar to that for the case r = 2. We write (u, v) = (~, v) -t- (u, v), where 

(u, v)E X~o so that Lemma 5.3 applies to (5.7). However, (~, v) has to satisfy 
more compatibility conditions at t = 0. We assert that for each (Uo, vo,f~,f2)E 

#.* 
~ - 1  •215 K(r _ 2, O)• -- 1, 1), there exists a unique ({uj}~= 1, {vj}j=l) E ~ *  

r* ,* [_ir-zj-arfl3a• ,* /~,-2s(f%2) such that if we set ~ = G({us}j=o), v / /~=1 ~, J j = l  
r* G({vi}j=o), then 

?L(~, ~) = f i (f , ,A).  (5.8) 

Here r* is the largest integer less than (r -- 1)/2, F(f~,f2) = (Ff~, Ff2) is the 

trace operator with / ~ =  {70, 7~ . . . . .  7x,,_l}, and G is the right inverse of / ' =  
{TXo . . . . .  7Xr,},/'(u, v) = (Pu, Iv) .  We need the following basic results. 

Lemma 5.4. 
r*--I  

_?: v'(a+)--, lq 
j=O 

1~" xr(~2~-}-) --3" ~ I  hr--2j--1 X /-~r--i l2x [-I r -2 j  
j=O 

are bounded and surjective and admit bounded right inverses G and G respectively. 

r* Proof. For each {vj};:o C h r-112(]~2) X gf_* 1 /~r-2j(~2), we construct v such that 
r* ['v : (@j=o- The rest of the proof is left to the reader. (C f  LIONS & MAGENES 

[1972]). Let us write v = v ~ + v (2). Let v (1) E H~ +,/~,(~2))/~ Hr(R+, ~o(t~2)) 
be defined as the q-tuple v (1) -- G~(vo, 0 . . . . .  0), where q is the largest integer 

<1" -- �89 and G1 is the right inverse of /~1 : H~ +, H'(R2)) A H'(P~+, H~ -+ 
/ f q : 0  ~Ir-j-li2(]R2) �9 Let V(2) E K(R 2 •  r + 1, 1), v (a) = G2(0 , V 1 . . . . .  Vr*), 

r* where G2 is the right inverse of /'2 : K(r -f- 1, 1) -> Hj=o/~,-2~ (~2). Obviously 
v : v  (1 )+v  (2) CK(r,O) and v t E K ( r - -  1,1), with 

{ "* } Ivl (,,o) + C IvoI,-,/  + Ivjl,-   [] 
j = l  
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The kernel o f / '  in X~(R +) (T in  y'(lZ+)) will be denoted by X~(R+) (y~(R+)). 
For r ~ {integers} L/{integers -+- �89 r > 2, we have X~(R) +) = X~o(R+), and 
r~(a+) = Y;0(R+). 

We can easily prove our assertion concerning (5.8) now. Observe that /~ Dt = 

{ ~ , . . . ,  V~.} and D~xF = l~D~x on X r. Thus {us}~2_ 1 and {vj}~*_-i can easily be 
computed from (5.8) provided that (Uo, Vo) is given. For the same reason, 

r *  r *  II(~, ~)Ilxr < c(Xj=o{iujl,-2j-, + Xj=I I OL-=J + I~0i,-~/=) ~ C(l"ol,-~ + I~ol,-,2 
+ 1[(7~, f2)lit'}. 

Now since (~, 5) = (u, v) -- (~, 5), we are led to (5.7) again. From (5.8) and 
the ident i ty  Y;(R +) = Y;o(R +) it follows that the right-hand side of (5.8) 
belongs to Ygo(R+). Applying Lemma 5.3 to (5.7), we have a unique solution 

(u, v) C X~0 = X; and 

II(~, ~11% ~ C([uo [,_a + [vol,_,/z + I[(fl,fz)I[r@ 

Thus, the construction of ~ - 1  for r ~ {integers} W {integers + �89 r > 2 has 
been completed. 

Finally, the restriction r ~ {integers} W {integers + �89 can be removed by 
the interpolation method. The interpolation of the spaces H"~(f2• can be 
found in LIONS & MAGENES [1972]; see also the notations there. It follows easily 
that 

[X% X'qo = X "~~176176 
r l >  r2=>2, 0 < ~ 0 <  1. 

[y~,, yr~]o = yr~(l-o)+r~O, 

We summarize our results in the following theorem. 

Theorem 5.5. Let  r >= 2. Then ~Le : (u, v) ~ (Uo, Vo, f l ,  f2) is an algebraic and 
topological isomorphism o f  X'(R+) onto /4~- '(~2) •  1/2(1~2 ) • yr(R+). 

We conclude this section with the proof  of Lemma 5.2. 

Proof of Lemma 5.2 We decompose the right-hand side of (5.4) and (5.5) into 
(~ ,  0) 3 + (0,f2) ~, and apply the principle of superposition. First let f2 = 0. 
Substituting b ----- 2 -1 F(0) ~ into (5.4), we obtain 

^ 

2h + Aft + 2 -I  Bh = f l ,  (5.9) 

B = (g -- ~,V 2) �9 F(0). There exist positive constants where A = - - / z V  2 and 
C 1 and C 2 such that 

(A~, ~) > c~ 7, l], 
(B~, ~) ~ C~ I~ l~/=- 

Here we have used the facts that the damping # ~ 0 and that fR2 u d# = 0. 
It is clear that (5.9) has a unique solution fie/~r+1(~2). Assume that h is suffi- 
ciently smooth with respect to the spatial variables. Equation (5.9) implies that 

2(h, lDi:~h + (ah, ID[2k ~) + 2-'(Bh, ]D[2a ~) -- (f~, IDi2k~), (5.10) 
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where lDl is  the singular integral operator with the symbol I~ e I. Taking the real 
part of (5.10), we have 

I,~/L, < e l } , '  = ]k--1 l U l k + l  

since R e 2 > 0 ,  Re2 - * > 0 .  Letting k = r - -  1, we find that 

I,~1, < elY, I, 2. (5.11) 

The smoothness assumption on fi can be removed by applying (., [D 12k hi) to 

(5.9), where h~ is the Fourier truncation of ft, yielding Ifi~ I, ~< e If~ I,-2. Letting 
l - - ~ ,  we have (5.11). This kind of obvious procedure will be omitted in the 
sequel. 

We now prove that 

lZl 1,~1o ~ c If7lo. (5.12) 

By letting k = 0 in (5.10) we obtain 

1,~ 121,~ to2 <= c{I,~/,~z2 + I~l 1,~ If + 1~1 I,~ Io IA Io}. 
From 

I,~ I~ ~ c I~ loft 

Izl l ~ l i ~  c la l  I~1o I,~1~ ~ cl,~l I,~1o If~ Io, 
1 

IZl 7,1o tXIo = 2 ~-e 

we have 12! 2 Ifi]o 2 ~ C lf, Ig, which implies (5.12). 

For fz = 0, we have proved that lfil, -1- IZl "/2 l~lo _< C!lf~ll~-> where we 

have used the notation II]] 11,-2 = If1 [,-2 + I~, ](,-2)/2 if~ 10- We shall derive the 
estimates for b under the same assumption that f2 = 0. Letting k = r -- �89 in 
(5.10), we obtain 

/~l -~ 1~1~+,/2 < c{IXl I~/~ + I~JL, + 1~ 1~-3/2/hlk+3/z} �9 
From 

we have 

k -  312, 

ISt i- '  " I" 1~ +,/= < c / <  If~ ~ ]k-3/e, whence 

IZl-' 1,~1,+, < clflr-2. (5.13) 
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Since f2 = 0, 

XIAO-BIAO LIN 

we obtain from (5.5) that 

I ~ l , -  -< cI21 -~ I~1~+~--< c Ifllr-2- 

We now derive the estimate for [~ Io under the same hypothesis that 
the convexity of the norm, 

(5.14) 

f z =  0. By 

Since lfil~[ =< ClLf~]lr-2 and I~tlo =< C I~I - '  I~1o ~ c I2! -~/2 rill;_= by(5.12), 
we obtain from (5.15) that 

Therefore 
12] rz2 [b]o ~ c I21 -~22 l[f, llr-2. (5.16) 

From (5.14) we infer that ]V[o ~ C11)~1[[~_2; thus 

121 ~/2 ]b[o <= C ]2I"/z Ilf~ 11~-2. (5.17) 

Combining (5.16) and (5.17), we have 121 r/2 [~1o =< f i l l ,  lit 2. Adding this to 
(5.14), we obtain 

1b [~ § ]2 (/2 ib [o ~ c [Ifx ][~-2. 

Lemma 5.2 has been proved for the case f2 = 0. 
Next, we set f ,  = 0 and derive the estimates for (h, b) in terms of fz. From 

(5.4) and (5.5), we obtain 

fi = --(4 § A) -1 (g -- y V z) b, (5.18) 

b § 4-* B(2 + A)-* ~ = 2-a f2. (5.19) 

Letting ~ = ( 4 + A )  - i v ,  we have 

~,b + A~ + 2 -~ Bb = 2-*f2. (5.20) 

This is completely analogous to (5.9), with 2-* J'~2 in place ofJ~, Therefore, recalling 
that 372 E ~r by our assumption, from (5.11)wehave [b[r+~ ~ C ]41-~ ]f2[r-1- 
From (5.13), Ibis+2 =< C 1f21~-1; thus 

ib; < [(2 + A)~l~< c{lzl l~lr + [~l~+=} < cl f~l ,_ , .  (5.21) 

From (5.12) it follows that 1412 Ib]o ~ C []~ 1o. Inequality (5.11) yields 121 1~12 
< c IL/o. Thu~ 

12]l;~lo<12[. l(2+A)~lo<IXl2l~[o+ClZll~[2<clf21o.  (5.22) 

(5.15) 
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Combining (5.21) and (5.22), we obtain 

(5.23) 

From (5.18), and the fact that 

1I(2 § -1 = a )  II~(Hk-2,n~ < C, 

where C is independent of a ~> 0, we have I~1, ~ C Iv]. and [~]o ~ C I~1o. 
Therefore, 

I ; , I ,+  < c{l? l, - ,  + 1o}. (5.24) 
Lemma 5.2 has been proved also for J] = 0. Therefore the proof of Lemma 5.2 
has been completed. 

w 6. Nonlinear Problems and Semi-discretizations 

The nonlinear problem (2.2)-(2.4) can be written as 

.~e(u, v) -- (Uo, vo,fl(o~, u, v),f2(u, v)) = O. (6.1) 

The operator ~e is defined in w 5 and (fl(o~, u, v),f2(u, v)) is defined in (2.6) and 
(2.7). We shall prove Theorem 2.1 by the Implicit Function Theorem. From 
Theorem 5.5, L~ a :X*(R + ) - + / t ' - l ( ~ z )  • • y,(R+) is an isomorphism 
for r ~ 2. To estimate the nonlinear functions we assume that r > 3. Let 

II(u, v)1[.v,< el. If  sl > 0 is sufficiently small, then w = F(v) uE K(R2•  
r -- 1, �89 by Theorem 4.3, and w is a C~176 of (u, v) E X'(R+). Clearly 
VxuE K(r -- 1,0), VxvE K(r -- 1,0), and K(r -- 1, O) Q K(r -- I, �89 From 
Lemma 3.2(i), K(r -- 1, �89 is an algebra since the space dimension is n = 2, 

2 + 2  
r - -  1 > . ~ ,  and r - -  1 - - � 8 9  1. Let us view 0~CH('-2)/z(R +,R) as an 

element in K(]~+• r, 2), constant with respect to the spatial variables. 
Then Lemma 3.2(i) also implies that ~ �9 v E K(r -- 1 ; 1). We have just proved 
for each (u, v) E X ' (R  +) and each 0~ E H ('-2)/z(R+, R), small in their norms, 
that fl(oc, u,v) E K ( r - -  1 , 1 ) ( K ( r - - 2 , 0 )  and f2(u,v) E K ( r - -  1,1), with 
H(fl,fz)N = O{lul 2 + Iv[ 2 § I~ with respect to the indicated norms. We 
know that f~fx(o~, u, v) (t) dff = 0, for t ~ 0, by virtue of the projection P. 
To show that fR~fz(u, v) (t) d/z ---- 0 for t =>_ 0, one has to evaluate fa2 {w(1 § 

IV~v[ 2) -- VxU" V~v} dff. But this comes from __.11 F - -  (t) dS = f ~  V24~(t) d~ = 0, 

where 4 is the solution of(2.1). Therefore, (ft(~., u, v),f2(u, v)) E y'(R+). Denoting 
the left-hand side of (6.1) by Q(u, v, uo, vo, o0, which is, in each variable, a Coo- 

function into t / '  - i /~,-  u2 • y,,  we have that Q(0, 0, 0, 0, 0) = 0 and D,,~Q(O, O, O, 
0, 0) == ~ ,  which is an isomorphism as mentioned before. Therefore, the Implicit 
Function Theorem asserts that all the solutions of (6.1), in a neighborhood of 
zero, have the form 

(u, v) = ~(Uo, Vo, o~) 
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which is defined for I"o I,-, + 1~o Ir-112 -t- I~1<.-=)/= < a. ~( .o,  ~o, ~) is a C ~176 
func t ion  in the indicated spaces. ~(0, 0, 0) = 0 and D~(0 ,  0, 0) = 0. Hence, 
the estimate for (u, v) in Theorem 2.1 follows. 

To study the dependence of the solutions on 0:, #, g)E (p~+)3, we write 
;v = 70 -+- ~'1, /z = #o -t-/z~ and g =-: go + g~, where 0'o,/Zo, go) E (1%+)3 is 
fixed and (~,/z~, g~) is a small perturbation in R 3. We leave all terms involving 
(Yo,/%, go) on the left-hand side of (2.2) and move all terms involving (~ ,  #x, ga) 
to the right-hand side of (2.2) and proceed in the obvious way. Details are omitted. 
This completes the proof of Theorem 2.1. 

Remark 6.1. In his work, BEALE [1984] proved that solutions of the free-surface 
Navier-Stokes equations become arbitrarily smooth after any specified time inter- 
val. A similar result for damped gravity waves is also valid provided that o~ is 
smoother than assumed in Theorem 2.1. The solution (u, v) will reach the regularity 
determined by o~ after any specified time interval. Moreover, even without further 
regularity assumptions on o~, the solution still becomes arbitrarily smooth with 
respect to the spatial variables after any specified time interval. To show this, 
we observe that or E H(r-2)/2( R+, R) ~ g(r, 2), and the term involving o0 is o0v E 
K(r, 2) since v E K(r, 0). Given any t~ > 0, arguing as in BEALE [1984], we can 

find (U(to), V(to)) E ~,-1/2• to E (0, q). We can prove that (u, v)/uo,+~ ) E 
K ( r  1 1 1 1 -b~-,-~-)xK(r + ~-), with vt]qo,+oo)EK(r-- I 3 ~-, ~-, ~), by rewriting all the linear 
estimates in w 5 and the elliptic free boundary problem in w 4. The regularity 
can be increased by repeating the whole procedure in (h,  2h), etc. Details are 
omitted. That (u, v) is smoother than asserted in Theorem2.1 is useful in 
proving Theorem 2.3(ii). 

Before proving Theorem 2.2, we observe that under the hypotheses of Theo- 
rem 2.2, for any T~ > 0, the solution (u,v) EX'(0, T0 exists provided 
lUo It--1-~-[UO Ir--1/2-~-II~[1 < O(Ta), where O(Ta)is a constant depending on T~. 
To see this, let ~0(t) be a C~-function such that ~0(t) = 1 for t ~ T~ and ~0(t) = 0 
for t ~ T~ -? 1. Consider ~(t) = o~(t) y(t). Clearly, I~ ](,-2)/2 ~ C II0~II, where 
the constant C depends on Tj. We can apply Theorem 2.1 tothe system (2.2)-(2.4) 
with ; ( t )  in place of 0~(t), and the solvability of the system for t E (0, Tt) follows. 
If  we can show that at t = Ta, ]u(TO [~-1 q- Iv(TO ],-~/z is still small, then we can 
repeat the argument and thus prove Theorem 2.2 by induction. To this end, we 
need an energy estimate for the linear homogeneous system (5.1)-(5.3). 

System (5.1)-(5.3) with f~ = f2 = 0 has a natural total energy E = �89 g Iv 1~ 
+ �89 7 IVY Ig + �89 (F(0) u, u), which is conserved when /z = 0. We define a modi- 
fied energy 

E~( t ) = �89 g l l D I k viE -t- �89 ): liD! ~ V v lg § �89 (f(0) ID] ~ u, I D [ k u) 

+ ~(IDI ~+~:~ u, IDI ~+':2 ~), 

3 k = r -- ~ and e > 0 is a small constant to be determined. We easily 

2 2 = = u l , - ,  + i v ! , - , / 2 ) .  (6.2)  Co(lulL,  + lv!~-,s2) < E~(t) < C,(I 2 

where 
find that there is e ~ > 0  such that if 0 < e < e ~ ,  then 
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Assuming that Uo, vo , f l  and f2 are sufficiently smooth, and hence that (u, v) is 
sufficiently smooth (the smoothness assumptions can be removed easily), we have 

dE,(t) 
dt -- (vt, g 1O 12k V) -- (Vt, 7 ] D [2k V2v) § (ut, F(0) Io ! 2k u) 

+ e(ut, [D] 2k+' v) + e(vt, ]D[ 2~+1 u) 

= --/~(r(o)]O[ k Vu, ]D] k Vu) - -  8),']]Dlk+l/2Uv[ 2 

- eg ]l D I ~§ vie - e/z(]D ]~+,/2 Vu, I D 1 ~§ Vv) 

Ik+!]2 U) @ e(F(O) IO? ..  IO, 

§ (fl,  F(0) ]Dr  k u + ~ [D [2~+~ v) 

§ (f2, g [D [2k V -- 7 ]D kl2k V2V + e ]D 12~+1 u). 

dE 
Notice that if f~ = f 2  = 0 and k = e = 0, then--~- = --#(F(0) Vu, Vu). I fu  

dE 
is an eigenfunction such that V2u § 22u = 0, then - ~  =/z22(F(0) ~, ~). 

We have proved that for a normal mode with wave number 2, the energy is lost 
at a rate /z22• (total kinetic energy); see w 1. Thus, the artificial damping term 
represents the physical energy attenuation at high wave numbers. In the general 
situation, in which f~, f2, e, k ~ 0, we employ the following inequalities: 

--/~(F(0) ID I k Vu, ] D lkUu) ~ --c/z 2 lu[ § 

!ID !  § Vv ---- < Iv 
Ce3/2/z 

--e~t(lD k+l/2l Vu, [D]k+I/2VV) < Cr tU12+3/2 @ ]V 2 --  2 - - T -  ]~+3/2, 

e(F(0) [D]k+'/2 u, ]o]k+l/2 u) <~ Ce ]Ulk2+,, 

(fj ,  F(0) IDf  ~ u + ~ [DI =k+' v) < c{!A I~-,/a lul~+3,~ + ~ ]f~ Ig-,/2 1v1~+312} 

= ]k+3/z + C~(e)If* 2 k--l/2, 

(A, g [D [2~v - - r  ID Y' v~v + e !D ] 2k+' u) 

< C{IA]k+,/21,~1~+3/2 + ~ ]fz]k+,/2 lulk+,/2} 

where C~(e), C2(e) depend on e. Hence, there is an e2, 0 < e2 <= el such that if 
0 < e < e 2 ,  then 

dEe(t) < --fl(8) ge(t) § Cfe) {If112-112 @ IA 1~+,2}, 
dt ~- 

where fl(e), C(Q are positive constants depending on e. By the Gronwall inequality, 
t 

E,(t)  _= < E~ (0) e -~(Ot -k C(e) f {!f~ [2-5 + IA l~-,} ds, t > o. (6.3) 
0 
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We are now ready to prove Theorem 3.2. Fix 0 < e < 8 2 and then choose 

t >  0 such that e -~(~ ~ �89 From Theorem 2.1, we know that there is a ~i > 0 
such that if E,(0) < ~ and It~lI < ~1, then the solution (u, v) of (2.2)-(2.4) exists 

in (0, t'), by virtue of (6.2). Moreover, 

[l(u, V)Hxr(0,5 ~ C ~ .  (6.4) 

From (6.4), we have ]l(f1(or u ,v) , f2(u,  v))]lrr(o,7 ) : :  o(~1). We can choose 

So small that C(e) f {If1 2 Ir--1} ds < ~- .  1,-2 -k If2 ~2 Inequality (6.3) implies that 
0 

E~(t') < ~ .  It is now clear that the proof of Theorem 2.2 can be completed by 
induction. 

The existence of the solutions (u n, v N) for (2.8)-(2.10) under the hypotheses 
of Theorem 2.3, parts (i) and (ii), is obvious from the proof of Theorem 2.1 and 
2.2. We shall now show that the convergence results also follow from the estimates 
employed in proving Theorems 2.1 and 2.2. 

Let us write (2.2)-(2.4) in an abstract form as 

Ut - -  s4 U = F(o~, U), 

U(0) : Uo, (6.5) 

where U : (u, v), F(c~, U) ~ (fl(o~, u, v), f2(u, v)), and d is the operator defined 
in w 5. F(~, U) is of second order with respect to o~, U: 

]e(~, U)[rr ~ c{l~ I<r-~/~ I Ulx  r -~- I U[2r} , 

The discretized system can be written as 

U N - -  d U  N :  PNF(~x, uN) ,  

uw(0) : U~. (6.6) 

We assume that U~-+ U0 as N---~oo; for example, we can take U~ ~ ~- PNUo. 
Subtracting (6.5) from (6.6), we obtain 

(U u - -  U) t - -  ~r N --  U) = PNF(~., U N) - -  F(o~, U), 
(6.7) 

( u  ~ -  u ) ( o ) =  Uo N - Uo. 

First, let us prove Theorem2.3(i). If  IUolx~ + 1~[(~_2)/2< ~, with 0 suffi- 
ciently small, then [Ulx~ < e(O) and I UUlx ~ < *(~) are small, uniformly with 
respect to N (at least for sufficiently large N's). Let ] U0 N -- U0]H~-I • ----- 
eN, eN -+ 0 as N-->oo. We also have 

l e~F(~ u N) - F(~ U l~O 

<= IP~F(~., U ~) --P:~F(~, U)[~ + IP~F(~, U)- F(~, U)I~ 

C(8 + 2e(6)) I m W --  U[xr + es, (6.8) 
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where eN-+ 0 as N - + o o .  From our linear estimates in w 5 and f rom (6.7) we 
obtain 

[U N - -  UIxr ~ C{[ U g  - -  Uo[/_/r-I • AV ]PNF(~, U N) - -  F(~,  U)]r~ } 

C8 N -J- Cg N -~ C((~ Mr_ 28(0)) IV y - -  U]x,. 

I f  ~ is sufficiently small, then C(~ + 2e(b)) < �89 and we have 

I U N -  U ] x ~ C ~ N - ] -  CSN--)'O aS N-->oo .  (6.9) 

This completes the proof  of  Theorem 2.3(i). 
The proof  of  Theorem 2.3(ii) uses the energy estimate (6.3), which can be 

written as 

I(U N --  U)(t)]ZHr-I• ~ C ]U N --  U 0 p2 __ iHr l • e -3(e)t 

t 
§ c ( o  f IPwF(~, U N) - -  F(o~, U) I2H,--2• dr. 

0 

Choosing t >  0 sufficiently large so that C e - ~ ( ~  �89 and using (6.8) we have 

[ ( g  N -  U)( t )12r  l• ~ ~ l U g  - -  Uol2r 1 • 

+ C(e) (d ~- 2e(O)) IV N - -  U]xr(0,7 ) -~- C(B) 8 N. 

From (6.9), we have 

2 ]2r_ 1 + C18N ' I ( u N -  v l u g  - Uo 

provided that ~ is small and C(e) �9 C" (8 + 2e(0) < �89 
Given any ~ / >  0, we can choose No such that [U u 12 - -  U 0 iHr--1 xttr--I/2 "~ r] 

~7 
and �9 CleN < T for N >  No. Then ] ( U  u -- U) (6  ]2r--1 • < 9~. The con- 

vergence on (j/, j t  § t), j - -  1, 2 . . . .  , can be considered similarly. We observe 
here that e ~ =  [[P[vF(~, U ) -  F(o~, U)][r,o?0/-+7)-+ 0 as N-->e% uniformly 

with respect to j, by virtue of  the additional regularity of  F(o~, U) for t > t that 
was mentioned in Remark  6.1. The proof  of Theorem 2.3 is now complete. 
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