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Abstract

We study existence and uniqueness of solutions of the equations for the free
surface motion of an incompressible, irrotational fluid in a rectangular basin
subject to vertical oscillation. After adding artificial damping, which leaves the
flow irrotational but correctly represents the physical rate of energy loss at high
wave numbers, we prove global existence and uniqueness results in the appro-
priate Sobolev spaces, provided that the initial data and forcing amplitudes have
sufficiently small norms. Convergence of spatially discretized (finite-dimensional)
projections is also discussed.

§ 1. Introduction

Free surface waves of inviscid, incompressibie, irrotational fluids have at-
tracted great attention among applied scientists, engineers and mathematicians
in recent years. By introducing a potential function for the velocity field, one can
rewrite the Euler equation with fewer unknown functions. Moreover, the resulting
equations possess a (canonical) Hamiltonian structure and also admit both
Lagrangian and Eulerian formulations. These “gravity wave” equations will be
given below: see WHiTHAM [1974, § 13] for a derivation.

Existence theorems for solutions in special classes of analytic functions have
been proved for both Lagrangian and Eulerian formulations: See NALIMOV
[1969], OvsiannNikov [1971, 1974], SHNBROT [1976], Kano & NisHIDA [1979].
Possibly due to technical difficulties with the Eulerian formulation, existence theo-
rems in Sobolev spaces have only been obtained for the Lagrangian formulation:
See NaLMoOv [1974] and YosHIHARA [1982]. Moreover, all the existence results
up to now are for short time; no global results are available in the literature.

Nevertheless, the Eulerian formulation has the advantage of simplicity and
clarity, and the majority of work by physicists and engineers is based on this
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formulation. In particular, the finite-dimensional Hamiltonian systems obtained
after (Galerkin) projection have been studied extensively, ¢f. MILES [1984-1985],
and much information about gravity waves has been obtained in this way.
When such truncations are studied, they are generally justified by noting that,
in the presence of viscosity, modes with high spatial frequency decay rapidly
and so do not play a very important role in the long term behavior. In fact, authors
such as MiLEs [1967, 1976] have added ‘““phenomenological” damping terms after
truncation of the Hamiltonian system at some (possibly large) number of modes.
Discussion of the nature of damping and the effect of damping on different
wave numbers can be found in LIGHTHILL [1978], MILES [1967] and the references
therein.

Interesting results concerning the stability and bifurcations of steady and time-
periodic branches of solutions have been obtained for these finite-dimensional
problems. See the series of papers by MiLes for examples. Recently, HOLMES
[1986] has shown that finite-dimensional truncations of arbitrarily large order,
after the addition of suitable (weak) damping, exhibit chaotic motions. His argu-
ment uses the method of Melnikov, in which smooth homoclinic manifolds of
an unperturbed (averaged) system are shown to split and to intersect transversely
due to the perturbation of periodic forcing terms. Similar phenomena have also
been studied by Gu & SETENA [1986], GU, SETENA & NARAIN [1986] and VIRr-
NING, BERMAN & SETHNA [1986]. In this analysis the Hamiltonian structure and
the existence of (approximate) integrals of motion is crucial. It is therefore of con-
siderable interest to establish rigorous existence results for the Hamiltonian
system perturbed by the addition of weak damping.

The purpose of this paper is twofold: to prove a global existence theorem
for gravity waves with weak damping in the Eulerian formulation, and to justify
the truncation methods used earlier in studies of such waves. Ultimately, I hope
that rigorous results on the undamped system may be obtained by taking the limit
of zero damping.

The addition of some form of dissipation is essential for the results of this
paper, but rather than include the true dissipation due to kinematic viscosity,
I have chosen to add an artificial damping term to the Eulerian equations which
exhibits the correct damping rate of the total energy. According to STOKES [1851]
or LiGHTHILL [1978], the modes with high wave number, which are the major
source of trouble, decay at a rate proportional to 8¥A? X (total kinetic energy),
where ¥ is the kinematic viscosity and 2 is the wave number. The energy for the
linearized gravity wave is g |v[5+ 3y |Vols + (F(0) u, u), where v describes
the surface of the fluid and u is the potential of the velocity field at that surface.
The first two terms are the potential energy due to gravity and surface tension,
and (F(0) u, u) is the kinetic energy. Let ¢ be a damping coefficient. By adding
the term —u V2u to the usual system for gravity waves, we obtain a linearly
correct damping rate. For a justification, see the energy estimate in § 6.

The complete system is presented in (2.1)—(2.5) below. Apart from the damping
term, this system has been derived by many authors from the Euler equations
(BENJAMIN & URSELL [1954]) and also from Hamilton’s Principle (MILEs [1977]).

In much of the work up-to now, the free surface contact with the container
wall is assumed to be orthogonal, based on the assumption that the frictional
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resistance and the capillary forces between the solid wall and the fluid are negli-
gible. For a more accurate discussion of the contact angle of the equilibrinm
surface, based on the concept of wetting energy and the principle of virtual work,
see Finn [1986]. Unfortunately, at present there is controversy concerning the
validity of dynamic contact angle measurements. Despite its doubtful physical
basis, the assumption that the fluid surface is orthogonal to the wall has been
studied mathematically. BenyamiN & URSELL [1954] proved that for the linear
equation, if the fluid surface is initially orthogonal to the wall, it stays that way.
Whether this is the case also for the nonlinear equations is still an open problem.
Our existence theorems provide a partial answer to this question.

The method we use is classical. First the linearized system (5.1)-(5.3) is studied.
The estimate of the solution (x, v) in terms of the initial data (u,, v,) is obtained
in two steps, as the sum of an instantaneous solution (%, v) that satisfies the initial

data at =0 and a long-time solution (x, 5) that satisfies (5.1)-(5.3) with zero

initial data. To derive estimates for (L:l, v), the Laplace transform with respect
to the time variable is employed. If the total forcing energy is finite and small
(Theorem 2.1), the nonlinear problem is solved by a simple argument involving
the Implicit Function Theorem. If the density of the forcing energy is finite and
small (Theorem 2.2), an energy inequality is derived to ensure the global existence
of solutions. The estimates for the linear problem are also used to prove the con-
vergence of the discretization method.

In § 2, we give a precise description of the problem and state our main results.
In § 4, we study the elliptic free boundary value problem which links the velocity
potential ¢ to the canonical variables (u, v). In § 5, we establish the basic isomor-
phism concerning the inhomogeneous linear system. The final results for the non-
linear system are proved in § 6. The convergence of the semi-discretization method
is also proved in §6.

The method we employ is parallel to the method of BeALE [1984], who estab-
lished the long-time existence and regularity of solutions of the initial value
problem for the Navier-Stokes equation with a free surface. For other works on
this topic, see ALLAIN [1985] and Funra [1985]. The estimates we obtain for the
linear problem are close to those for the Navier-Stokes equations, which provides
further evidence that the artificial damping we introduce gives the correct rate of
energy attenuation.

We conclude this introduction by pointing out that the linear system (5.1)—
(5.3) generates an analytic semigroup in the appropriate function space. However,
the smoothing effect is not sufficiently strong to make the classical methods work
(cf. FrRIEDMAN [1976], HEnRY [1981] and Pazy [1983]).

§ 2. Statement of the problem and the main results

The fluid we consider is contained in a 3-dimensional rectangular basin in
(%1, x5, y)-space, with a cross section D ={0<<x; <I,,0<x,<<l}. The
fluid is bounded below by a flat bottom Sz = {y = —d} and above by a free
surface  Sp={y = v(x;, x,, 1)}. Let

Q, ={(x1, X2, ) | (x4, x2) € D and —d < y < v(xy, X5, 1)}
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If the motion of the fluid is irrotational, the potential of the velocity field,
denoted by ¢(x;, x,, y, 1), satisfies the following elliptic boundary value problem:

V2¢=0in Q,,
(I)‘SF = “(xla X2 t)a

o¢
ay

:’ ( )
Se

o9

o = 0.

0D X (—d,v)

It is clear that ¢ is completely determined by (u, v). After solving (2.1), we

ef O
let w dzf—i . Thus wis a function of (u, v), and is denoted by F(v) u. Suppose

SF
the rectangular basin is subject to a vertical oscillation y"(t) = «(t). The motion
of the fluid can be determined from the solution of the following Cauchy problem

in terms of (u, v):

4y — p Vo —y Vo + go = Pla(t) v — 3 [Vau? + 3wl + [V02)), 22)

v, =w+w|Vwl?—Vu-Vw, (2.3)
u(0) = uy, v(0) = v, 2.4

where
w=F@®)u, 2.5

g is the acceleration of gravity, y is the surface tension, and u is the damping
coefficient. P is the projection operator defined by Pf=f— (I, f fdx.
D

Because of the term w = F(v) u, (2.2)—(2.4) is not a standard system of partial
differential equations. If g, y, and the right-hand side of (2.2) were zero, equations
(2.2) and (2.3) would be Bernoulli’s equation and the kinematic boundary condi-
tion, respectively, rewritten so that everything is in terms of «, v, w and their x-
derivatives. See MiLEs [1977].

The second term in (2.2) is the artificial damping. The third term in (2.2) is
the linearized surface tension [BENFAMIN & URSELL, 1954]. We can, in fact, handle
the more precise, nonlinear, form of surface tension by adding higher order terms
to the right-hand side of (2.2), without changing much of the analysis. We shall
only look for solutions in the range of the projection P, i.e., solutions satisfying
f p udx = 0, which may be obtained by normalization, and f p vdx =0, which
expresses the incompressibility of the fluid. It can be proved that the right-hand
side of (2.3) is in the range of P (see § 6). Therefore, the presence of P in equation
(2.2) makes the range of P invariant under the nonlinear system.

The appropriate boundary conditions for (v, v) at 9D are not clear physically.
Also the corners of @D will cause technical complications. To simplify matters,
we shall restrict our study to a special class of solutions. Assume that the traces
of odd order of u and » vanish at 9D to the highest order. We extend # and v
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as even functions in the domain {—/; < x; < [;, =, < x, < I,}. We then fur-
ther extend u and v as periodic functions of period 2/, in x, and 2/, in x,. The
extended (u, v) still satisfies (2.2)—(2.4). Accordingly, ¢ is also extended to {(x,, x,)
€R2, —d < y < v(xy, X5, t), t€ R} as an even function in (x4, x,) and with
period (21, 21,) in (x,, x,). A classical theorem asserts that ¢ satisfies (2.1) after
extension; see COURANT & HILBERT [1962]. Hereafter, we assume that u, and v,
are extendable to even periodic functions with period (21, 2/,) and we study (2.1)—
(2.5) in the above class of periodic functions. If (&, v) is such a solution in a certain
function space, then a uniqueness theorem implies that  and v are even functions
in (x4, x,). Hence, the restriction of (u,v) to D ={0<x, <I,0<x, <I}
will be a desired solution of problem (2.1)—(2.5), which is unique in a certain class
of functions.

It is well known that periodic distributions are temperate and may be studied
by the Fourier transform. Since ¢ is periodic only in (x,, x,), it is convenient to
avoid Fourijer series expansions and use only Fourier transformations. Let R?
be the torus obtained by identifying the opposite edges of (—I;, I})) X {(—1, L,).
Let H'(R?),rcR+, be the Sobolev space of L:-functions with L2-derivatives
of order r in R?. We assume that the functions in H'(R2) have been lifted to
(21, 21,)-periodic functions in RZ2. Define R?* =R2xR. For r> 1, H(R?
is continuously embedded in the Banach space B(R?) of bounded continuous
functions defined on R. Let d> 0 be given Then for each ve€ H’(R2) with
|v|, small, we have |vlpg. <<d. Let Q, = {(x, X2, ) | Gx1, x2) eR2, —d <
¥ < v(xq, X3)} €, is thus an open subset of R3. Let H’(R3) and H’(.QU) be the
Sobolev spaces in R3 and .Q and assume that each function in H’(R3) and
H'(2)) has been lifted to a (211, 21,)-periodic function in (x,, x,). Of course the
lifted function is not L2-integrable. This difficulty can be circumvented by introduc-
ing a special measure in z = (x;, X5, ) (or x = (x,, x,)). Define a measure
du(z) = duy(xs, %5) ® dua(y) (or du(x) = dyuy(xy, X)) on B* (or B?), where
du, is the measure with compact support in (—/,, /) x(—1,, ;) and uniform
density #*/(l;, I,), and du, is the usual Lebesgue measure on R. For the dual
variable = (&,,&,,7), we define the measure dv({) = dvy(£,, &) ® dva(n),
(or [ = (&, &), (&) = dvy(&4, £5)), where dv, is the sum of the Dirac measures
with unit mass at each lattice point k€ ((=/l,) Z, (%/l,) Z), and dv, is the usual
Lebesgue measure in R. For f¢ LZ(R3) the Fourier transform g = f= Ff
and the inverse transform f= g = Fg are defined as

8(0) = R3f e f(2) du(2),
f(z) = Qn)~2 . / e g(0) dn(0).

Clearly, % :L*(R3, du)— L*(B3, dv) is an isomorphism and f is in H®3) if
and only if

e={ [+ e ORs) <o,



272 X1A0-Biao LiIN

In the same manner we can define H(R?) and its norm'in terms of a Fourier
transformation.

Let }NI‘(]}.?%Z) = {f{fE H(R2), f fdu = 0}, §=0. Clearly, the mapping
R2
Pf=f— (2n)2 f fdu is continuous and surjective from Hs(]ﬁz) to H'(R?)
R3

s=0.

Let K(]I%3 xR; r, 5) = H'(R, H'R*)N HC R, HR3)), r=5=0. We
shall use the abbreviated notation K(r, s) if no confusion can arise. The norm of
S€ K(r, s) is equivalent to the L*-norm of

/@], + [ | f@) ],

where f(r) is the Fourier transform of f(t) and 7 is the dual variable of 7. Other

spaces similar to K(]R xR; r,s) can be defined with R* replaced by R2 or f)b.,
with the time 7€ R replaced by 1€ R+ or 7€ (fy, f,). We next define the space
X'(ty, 1,) to which the solution of the system (2.2)-(2.5) will belong:

X'(t1, 1) = {(u, v) | (u, v) € K(R2X (13, 15); 1, O) X K(R2X (25, 25); 7, 0).,

v, €K(r—1,1), fudu = [vdu =0 for all te(t;, 1,)},
Yr(t15 t2) = {(flsz) |f1 € K(R2X(t19 t2); r— 25 0)9f2 € K(]ﬁ’zx(tls t2)§ r— 13 1)’

[fidu = [f,du=0 for all 1€ (t, 1)},

F=2,t > 1.
We define the norms as
M, V) lIxr = l#t|go,00 + |0k + [0t |xe—1,19
“(fl’fZ)”Y’ = 'fJK(r—z,O) + lfz |K(r~1,1)-
Our main results are the following:
Theorem 2.1. Suppose r > 3 is given. There is a 8, > 0 such that if 0 < 6 < d,,
o € H'Y(R?), vo € H V¥ (R?), and xc H" D2 (R+;R) with
ltolr—1 + [volr—12 + | |e 22 < 6,

then there exists a unique (u, v) € X'(R"Y), satisfying (2.2)—(2.5) with both sides of
(2.2) in K(r — 2, 0) and both sides of (2.3) in K(r — 1, 1). Moreover, u¢ Q(II—%JF;
H Y (R?), ve B(R+; H12(R2)), and (2.4) is satisfied. The mapping (o, vo, )
— (u, v) is in C™ with respect to the indicated norms. The solution satisfies the
estimate

”(U, U)“XY(R+) = C{|uo 1;-—1 + IUO‘r—IIZ + Cl(‘s) [“I(r—2)/2}’

where C does not depend on 8 and C(8)— 0 as 6 = 0. Moreover (u, v) is also
a C™-function of (y, u, g) € (RH)3.
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The hypotheses on «(¢) in Theorem 2.1 are not valid if «(¢) is a periodic func-
tion. This important case will be covered by Theorem 2.2, in which it is assumed
that the “energy density” rather than the total energy of «(¢) is small.

Theorem 2.2. Suppose r >3 and T > 0 are given. There is a 6, > 0 with the
following property: If 0< 8 <8, uy€ H Y(R?), vo€ H Y R?), and o«c
HC™22((t,t + T);R) for each t =0, with

Iuo‘rﬁ1 + [Uo [r—1/2 + el < 0

where ||l = sup |& |22 1ymy then there exists a unique global solu-
TeR*

tion (u, v) of (2.2)~(2.5). The solution (u, v) belongs to X' ’(t PE T), and for each
£=0, it satisfies (2.2) in K(]R2 (t t - T) r—2,0) and @. 3) in K(]R2
(t,t+T);r—1,1). Moreover, (u,v)€ QZ(]RW, H'™ 1(]Iw‘nz)) x%(RJr, H~ 1/Z(RZ)),
(2.4) is satisfied, and

sup ”(u’ U)”X"(t +T) = = C‘S

feR™
Furthermore, (u, 0)|;;iqry) € X ’(t—; t+T) has a C™-dependence on (uy,v,)€
H ' H™'? and «|g;my€ H P2 (0, t + T);R) with respect to the topo-
logy induced by the indicated norms.

Let {g;}i2, be the orthonormal basis in LZ(JR") induced by the Fourier har-
monic modes. Let Py:L2(R%) — L?(R?) be the projection to the subspace

spanned by {p; )Y hie . (We set g, = constant in R?). Obviously Py is a continuous
map from HS(RZ) to H‘(Rz) s = 0. We use the following notation:

Sfilo, u, v) = Plow — 5 |V |> + 2wl 4 |V, 0D}, 2.6)

L v)=w—FOu-+w|V|>—Vu-Vo, 2.7

where w is given by (2.5). We state our semi-discretization problem using the
projection Py. Find (47, v™):R+—> PyL*(R?) satisfying

up — u VN —y VRN 4+ g = Pyfi(s, u¥, oY), (2.8)
— F(0) u" = Py fo(u, o), (2.9)
w¥(0) = Pyuo,  0™V(0) = Pyv,. (2.10)

We can state existence theorems for system (2.8)-(2.10), which are completely
analogous to Theorems 2.1 and 2.2 and which have the same proofs. Moreover,
we shall prove the following approximation theorem.

Theorem 2.3. (i) Suppose that all the hypotheses of Theorem 2.1 are valid. There
isa 6,>0 suchthat if |ug|,—1 + |Volr—12 + |®|¢—2p2 < 01, then the global
solution (u, v) € X"(R*) for (2.2)~(2.4) exists, and the global solution (u", v™)c
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X'(BRY) for (2.8)—~(2.10) exists for all N> 0. Moreover (u",v™)— (u,v) in

X'(B*) as N— + oo,

(ii) Suppose that all the hypotheses of Theorem 2.2 are valid. There isa 6, >0

such that if |uglr—y + |Vo|r—12 + ll| << 2, then the global solutions (u, v) for

Q2)-24) and ", ") for (28)~(2.10) exist, (4, V)|¢iiq) € X'(t, t + T),

", M) ¢in€X @ t+T), and sup 1@ — u, o — V)i y—>0  as
ekt

N— 4 oco.

§ 3. Basic Lemmas

In this section we collect several basic results concerning nonlinear operations
on functions iri Sobolev spaces, namely, multiplication, composition and change of
coordinates. They will be useful in estimating the right hand sides of (2.2) and (2.3)
especially in estimating the nonlinear functional w = F(v) u. For general refer-
ences sce the paper of BOURGUIGNON & BREzis [1974] and the book of
MizoHATA [1973].

It is well known that Wy(R") is an-algebra for s> n/p. A more general
result has been proved by ZoLgsio [1977], which in particular yields

n
Lemma 3.1. Let r > 5 n=23. Letr,rybesuchthat 0 <r, Zr0=r,<r

and ry +r,=r. If K€ H’f(ﬁu"), i= 1,2, then hy- M€ H““z_’(RT”) with
1h1 : h2 ‘rl—l—rzfr é C ‘hl irl . \hz 1r2-

We shall need similar estimates for the products of functions in K(R” xR r, 5).
For a special case of the following lemma, see BEALE [1984].

n—+2
Lemma 3.2. (i) Let r>—_2|_——, n=23 s=0 and r—s> 1. Let ryr,

besuchthar s <ri=rs<r,<randr,+r,=r+s. IngK(ﬁ”XR;rl,s)
and he KR"xXR;r,,5), then ghc K(r, + ry — 1, 5) with

\gk \K(r1+r,—r,s) =C {glK(rl,s) lk‘x(rz,s)-

(ii) With the same r,s as in (i), let 0= 0=ys. If g€ K(r,s) and hc K(r — 9,
s —0), then ghe K(r — 6 s — 0) with

|gh \K(r—d,sfﬁ) =C iglK(r,s) \h‘K(r—a,s~a)-
Proof. Let X be a Hilbert space. For a measurable function f:R — X the Fou-
rier transformation f (@) = [ e ™ f(t)dt can be definedif fcL*R, X). We

say that f¢ H'(R, X) if (1 + \rls)f(r) € L¥(R, X). We have the following results,
which are similar to those for real-valued functions.
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(@) If 0<<s< %, then H'(R, X) C L”(R, X) with continuous embedding for
1
I =% —5 If s>1, then H'R, X) C #[R, X) with continuous embedding.
(b) Let Y be a dense subspace in X with continuous injection. If fe€ L*(R, ¥)
NH (R, X), s> 4%, then f€BR,[Y, X)), where [¥,X]y, 001 is
the interpolation space between the spaces Y and X (see LiONS & MAGENES
[1972)).

Proof of (i): Let r; +r, —r=9. We have ¢ = s, and
L[S+ 072 + 121)
< {1+ TR+ |22 Q + |2}
S L [ o L e N Y
+ Ol [eIR L~ P} 4 Clle — 7 [©72 [

TI

It follows from the identity (g-h)" = g % A that
lgh ‘K(g,s) _—<_—_ C IW(C, T, o, S)é * };‘Ll + C‘é’ >* W(C, T, 0, S) i:l‘Lz
+ Clle]@ 22 & % (1 + |2 Al
+ ClA + [EE * |v[@ 2 k|

where w({, 7,0,5) =1 + [{]2 -+ ]ri(g‘f’/zgl +|CP). Let gq= W, 7,058,
then g, € K(ry —0,0), ;W(C, 7,0, 5) & % h|L2 =C |g1h !LL

CaseI: r, —s>1. We have h¢ B[R, H="') and g, € L*([R, H* 9. Since
r—1 >%, it follows from Lemma 3.1 that [g,(¢) A(t)|p2im = C 81(1) s — o), -1
for (ry—9)+(@,— 1) —(r—1)=0 and H° = L2 Hence

ﬁf g1(t) A(t) [Fa@m dt = C _f |&:1(0) F—g 1h(D)]7,—1 dt

oo
= Clhagm-n [ |&OF— at
—50
= Chzean 181 Fei—00)
= Clglkenn [ hlkean-

Fa

11 _
Casell: r,~s<1. Then KEL'(R:H) with — = — ¥ Also

2
1 1 1—
2. I H(l—r2+s)/2 (R, Hr—s—l) ( Lq(R, Hr—s—~1) with ;_ _ 7 . r; -+ s .
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1
Note that — +
i

I 1g:(t) h(t) Bagimy dt

— o0

=C f ﬂgl(t)[, s—1 |h(t)}§dt (for r —s—~14+s=r—1)

<cf (sl [wopal

=C sgﬁ((r,s) lhlgf(rz,s)'

Case IIl: r, — s = 1. Byreducing r, and r slightly, Case 11I is reduced to Case I1.

Similarly, we obtain the estimate for |g x w((, 7,0, s) h |z2. To estimate
[z[e™2 g % (1 + |£[) k|, we observe that g, = (T2 € K(ry —o
Ls,8) and hy = (1 + |{[)A) € K(r, — s, 0). There are two cases to be consi-
dered: first; 7, — s> 1, for which A,€ Z(R; H=*"') and g, € L*(R, H* ¢,
and second, r, — s = 1. The latter case can be reduced to r, — s << 1 to obtain

cL?R; H% and LYR; H) with 1 1 r=s 1 rn-s

s g2 p - 2 2 s q - 2

and f=r — 1. The estimate for |g,4,;» can then be obtained by the same
method as for |g;h|z.

Proof of (ii): The proof is similar to that of (i) and is omitted.

Lemma3.3. () Let gy, ..., 8n € H'(RY, r> =, n=2,3. Then H g € H'(RY).

2
If &« is @ multi-index with (x| < r, then
plle= X €., Tl DYigie H7(RY, 3.1
i= m i=1
s
which is Leibniz’s rule.
n+ 2

(i1) Let gl,...,ngK(f%XR”;r,s), r>— n=213 520 r—s>1

2

Then H g:€ K(r, 8). If « is a multi-index and if § is a non-negative integer with
Jox| —{— 2[)’ <r—s, then

DiD; IIl 8 = L CEh ey [Il DliDYig € K(r — || — 28, 9),
= Jj=

Z Ghp==x
=’

Z By=8 (3.2)

where Cy, .
multi-indices only
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Proof. (3.1) and (3.2) are valid for smooth functions gy, ..., g,. In the general
case, we use mollifiers and pass to the limit. Note that to estimate the right-
hand sides of (3.1) and (3.2), we need Lemmas 3.1 and 3.2.

We denote by CI(U) or U the closure of a subset U in a topological space.
We denote by Fog the composition of a function F with g.

Lemma 3.4. Let Fc C™(U), where U is an open subset of R containing 0, and
F0)=0. Then:

~ n
(i) g— Fog is a C™-mapping from V to H'(R") for r>—, n=2,3, where

V={g|ge H'(R), Cl(Range g) C U} is an open set in H'(R"). Moreover, the
usual chain rule is valid when computing D*(Fo g)€ H™"(R"), |x| <r.
n+2

(i) g—> Fog is a C™-mapping from V, to K(]ﬁ-"xR;r, §) for r> —

§=0, r—s>1, where V, ={g | g€ K(r, 5), Cl (Range g) C U} is an open set
in K(r, s). Moreover, the usual chain rule is valid when computing DP!D(F- g) €
K(r—|o| —28,5), |x|+28<r—s.

Proof. We only give the proof of (i), since the proof of (ii) is similar. If r is an
integer, the proof that Fo g¢ H'(R") can be found in Mi1zoHATA [1973]. Let us
5 H(@)
C #(R"). Without loss of generality, Cl(Rangegs,) C U for all 8 < 0,. It is
easy toshow that Fo gs;— Fo g in L>(R")as 6 — 0. Also, D*(Fo g;) — D*(Fog).
in 2'(R"), where |«|<r. Let r=[r] + r;, and write

use a mollifier g; =g ¥ @5, gs— g in H’(R") as 6 = 0. Since r>

!
Da(FO gd) = ISZH Cocl ..... ol (gé(x)) I—Il D(xjgd(x)a t‘x’l g_ [I"] (31)
Llo j=
s hagi<ial

By Lemma 3.1, the right-hand side of (3.1) approaches

!
Z Coci ..... «l (g(X)> Il D“jg(x)

I<]a]
Shieg1<lal

in H"(IR"). Therefore, D*(F-g;)— D*(Fog) in H"(R"), where |x|=<r. We
conclude that Fogy,— Fo g in H’(]ﬁu"). Letting 6 — 0 in (3.1), we find that g,
can be replaced by g. Thus the chain rule has been verified.

To show that g— Fog is a C*-mapping we observe that (DL(Fe g)) (hy, ..., k)
= ((D'F)° g) (hy, ..., b)), which approaches (DLF)o g) (hy, ..., ) as g— g
in H'(R" uniformly with respect to /€ H'(R™, bl =1, i=1,...,1L

Corollary 3.5. (i) Let V, = {g| g€ H'(R"), Cl (Rangeg) > —1}, r> 1, n=23.
Then g—(g+ 1) — 1 is a C®-mapping from V, to H’(]ﬁu").
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.. ~ n—+2
(i) Let V,=1{g|gec KBR"xR;r,s), Cl(Range g) > —1}, r>-—, s=0,

r—s>1. Then g—(g+ D' — 1 is a C™®-mapping from V, to K(, s).
(iii) Similar results are true for the mapping g— (g +~ D' — 1.

Lemma 3.6. Let 0 be a C'-diffeomorphism fromR? to R3. Suppose that the Jacobian
matrix d satisfies df — I€ (H™'\(R®)°, r> 3, with inf{det (d0)} = &> 0.
For each g€ H‘(ITF), s =< r, the functions go 0 and go 01 are in Hs(]ﬁ3) with
lgo 8, = Clgls and |go 67|, = Clg|,. Moreover, d(6=) and (df)~* satisfy
dO) — Ie (H'(R3)® and d(6-Y) — Ic (H"'(R?))°.

Proof. That g- 6 and go 6! arein HS(IlNW) has been proved by many authors
(see BEALE [1984]). Observe that each entry ((d6)~');;, 1 =14, j= 3, can be
obtained by adding the products of the entries of df and then dividing by

det (d6). From Lemma 3.1 and Corollary 3.5, (d9)~ — I'¢ (H’*l(fm3))9. Hence
O — I=(d)yto 0 — Ic (H (R

In proving Lemmas 3.1-3.6, we have used the Fourier transform for functions
defined onR” (or R” xR). Itis known thateach g€ H ’(520) admits a continuous
extension g€ H ’(]ﬁtﬂ and that each g¢ K(f&" X (t,15); r, ) admits a continuous
extension g€ K(]R" xR; r, s). Therefore Lemmas 3.1-3.6 are valid with R re-
placed by (¢4, t,) CR or R3 replaced by Qo. Later we shall show that under
certain conditions on v, H s(f)u) admits a continuous extension to Hs(]f&f’). Thus, we

can replace R3 by SN.?,, in Lemmas 3.1-3.6. Our final remark is that in Lemma 3.6
we did not discuss the case in which 0, g € K(r, s). We shall see in § 4 that only a

change of variable for functions in H’(]ﬁﬁ), not in K(r, 5), is needed.

§ 4. An Elliptic Problem with a ¥ree Boundary

The potential ¢ of the velocity field is determined by (v, v) via the elliptic
boundary value problem

V=0 in Q,

d)!SF = u(xla X2 t): (41)
o¢
6753 = 0.
o

If v=0 and ue H(R?), s=3, then ¢ H*Y(Q,). Thus, w— ks
7

€H “1(1[3&2). Explicit formulas for ¢ and w can be found when » =0. Let
u = (2m)~> [g. €% itdy, where dv is atomic as defined in § 2. Then

& = Qu)y> [e* {cosh &(y + d)/cosh & d} i(&) dv,
RZ

w= (2n)2 f e** [ tanh & d] (&) dv.
RZ
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It follows that w(£) = (& tanh & d) (&) and that the mapping w = F(0) u ex-
tends to all u€ H'(R?), s =0, with |w|,_; = C|u|,. Suppose [r:u(x)du =0.
Then [p,édu=0 and [z:wdu=0. Therefore #(£)=w(f) =0 almost
everywhere for {|&| << a/l;} N {|&,;| << w/l,} with respect to the measure db.
Thus, we have a bounded inverse u = (F(0))™'w, |ul, < C|w|;_1. Also

CFO) u, uyy, = [(E tanh & d) (@) 2 dv = C |l

for all ue H¥*(R?) with C being independent of u. Therefore, u—> F(0)u is a
self-adjoint positive-definite operator in H'?(R2).

The purpose of the rest of this section is to determine the dependence of w
on (u, v) in suitable Sobolev spaces. Assume that v¢ H'(R?)C CY(R?), r>2,
|v], << 6. When & is small, sup |v(x)| < d and the domain £, is well defined.

However, the upper surface of .(N?l, is not smooth enough to apply the classical
theory of elliptic boundary value problems. We shall use a change of variable

0:Q,— £, where ¢ is a diffcomorphism and ¢-> ¢y = ¢ 8 maps H‘(!jv)
to H(£2,). The function ¢, will satisfy an elliptic boundary problem with its
coefficients depending on 6, and hence on v. Since ¢, is defined on a smooth

domain Qo, the classical theory applies. Hereafter we use x to denote (x,, x»).
Consider an auxiliary Dirichlet problem:

V23(x, 3, 1) =0 in Q,,
v(x,0,t) = v(x, t), 4.2)
o(x, —d, t) = 0.

Here we introduce ¢ as an independent variable for future use. For the time being
et ¢ be fixed. For v¢€ H'(R?), (4.2) has a unique solution (-, #)€ H 1200,
and ol 41 = C|v|, =< C8. We can extend v to R3 so that | gre12@y =< Cy 8.
Let §:R3 +R3? be defined as

X = Xo,
- def (43)
Yy =DJYo —l_ U(xO! Yo, t): V(XO’ Yo t)‘

When ¢ is small, one can prove that ¢ is a C*'-diffecomorphism on R?® and maps
Qo onto Qu' Note that |d0 - I]r~1/2 g C ]DE],_IQ § C ‘U}r+1/2 :<__ Cé. ThuS, when
d is small, all the hypotheses in Lemma 3.6 are satisfied and the map g+ go 0

defines a change of variable in H'(R?), for 0 << s<r-+ 1 and r> 2. After a
close look at the proof of Lemma 3.6, ¢f. BEALE [1984], one finds that the same

proof yields that the mappings g-— g 6 from HS(!NQU) to Hs(!jo) and g—>go 01
from HS(.QO) to HS(Q)) are both linear and bounded, for 0 < s < r + % and
r > 2. The proof does require a continuation of functions in H*(Q2,) to Hs(]i?ﬁ),
but does not need a continuation of functions in HS(QD) to H'(R3).
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Lemma 4.1. If ve H'(R?), r> 2, |v), << 8, & is sufficiently small, and if 0 =
s=r+ 1, then there exists a linear bounded operator E: HS(!}U)—> HS(R3)
such that REg =g forall g¢ Hs([:?l,), where R is the restriction of functions in
HR?) 10 9, '

Proof. Using 6 defined by (4.3), we set g = E(g 0) o 0-1. Then g—> g is the
desired mapping. By Lemma 3.6, |2 |gsis = C|E(g° 0)|gs@s = Clg° 0] HE (B
= Clg|ys@,- Notice that we have employed the extension E: H(Qy) — H'(R?).

More general results concerning the extension operator E: H({2) — H*(R"),
s> 0, can be found in GRISVARD [1985, Theorem 1.4.3.1], where £ is bounded
and open with a Lipschitz boundary. As a consequence of Lemma 4.1, all the

basic lemmas in § 3, which have been proved for functions defined in R-” are valid
with R3 replaced by Q,.

If ve C°°(R2) and ¢¢ C°°(!~2,,), then the traces 1= {yq, Y1, ..., Y,+} are
defined for ¢ in the sense that y;¢ = &'¢/on’ .350’ where 7 is the outward unit

normal vector, 0 =< ;= r* and r* is the largest integer such that r* <<r — 1%
and r> 1. We have

; Vit lar-i=12@n = C (8],

Thus, I extends to H'(2,) — o H'7"Y%(R2) as a bounded operator.
The operator I”is surjective and has a bounded right inverse G. For v€ H'(R?),
r>2, |v], <6 small, we can prove a similar result for H*(£,).

Lemma 4.2. Suppose v and r are as above, % << s = r + %, and s* is the largest
integer such that s*<<s—%. Then I ={yo,...,pu} is well defined from
HR,) to IT" o H*~YXR2) and is linear, bounded, and surjective. This operator
has a bounded right inverse G.

Proof. Let ¢ € C™(£2,). Let 6 be defined by (4.3). Obviously, yo¢ = (yo(¢d- 0))
o 0=, Moreover |yo®s_12 = C |7o(@° 0)]s_12 < C|¢o 0], = C|¢];, by virtue
of Lemma 3.6 and the fact that the upper surface of Q, is modelled by R2, ie.,
Yod(x1, X2) = d(xy, X2, v(xy, X,)). Similarly, we have }yO(D’d))]s —ip=C |cb\s,
j=<s*. Now the normal of Spis n = (1 + v + v2) "2 (—v,, — vy, 1)€
H"~'(R?), by virtue of Lemma 3.1 and Corollary 3.5. Therefore 7,6 = {yo(D’$)}-
(n,...,n)e H*7"R2) for ¢c H(R,) and |pdly ;_1p < Clol, 0=j=s*

jfold

We now derive the boundary value problem satisfied by ¢, = & ¢ o 0. Assume
that the constant é is small. From V = yo + 0(Xg, Yo, £), [Upy12 = C 9, r> 2,
we see that V'€ C! and (8v/0y,) — 1 is small. The Implicit Function Theorem
implies that there exists a C!-function ¥~'(x,, y, ) such that

V(xo, V='(x0, ¥, 1), 1) = . (4.4)
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Moreover 6~ has the form
Xo = X,
Yo = V_l(xa Y, t)'

For the time being, assume that ¥V and V! are C*-functions, and that V(x,, yo, t)
—yo and V=1(x, y,7) — y both have compact support in the y-direction. It
is easy to obtain from (4.4) that:

oy 1 oy !
— — 1= —) o1 — 1, 4.5
dy (3yo *3)
oy -1 avy [ov\~1
—_— == — ] — —_— o —1 4.6
ox () o) o (4.6)
oy o2V [oV\ 3
—V — — (—2—) (-—-——-) [} 6‘1 N (4.7)
ay* 9y5/ \0yo
82yt { (82V (6V)_1 5 o2V (6V) 8V)_2
axr | “8—;) o¥o + Bxo Ove \0xo (8y0
oV\2 (02V\ [V 3
EEAE e e
0xo 0ys 0yo

Since ¢ = $o 0, wehave ¢ = ¢yc 07, ie., ¢(x,y, 1) = do(x, V(x, 3, 1), 1).
Assuming that ¢, € C*(£,), we casily deduce

s SR AR 49
‘Z;;) B (iﬁz ’ 6_1) '%_1’ (4.10)

on ) G ) ) B e
Z;_f B (%2)%00 0-1) ' (%—I)ZJr (gfj 6"1) (8@15_1) : (4.12)

Since V2¢ = 0, it follows that ¢, satisfies the following equation

oy !
2 o -1
@400 04 + | (5

oy 1
+2(—é—3€

82 V——l
e

2 @0_1 2 82¢0 »
Jola ) -G

PV-1 (8
T ) (m f

0¢o
) (@xo Yo

o)
1):0.
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Applying - 0 to both sides, we see that ¢, satisfies the following boundary value
problem:

%, o .=
—V2¢ = A(v) 5 2° + B() P 0-|- ()——— in Q, (4.13)
d’O(xOy 03 t) = u(x07 t)s (4'14)
ad)o (x07 d’ t) = 0’ (4'15)

2
where
BV N2 (oVT? oV !
A(U):[(EXT )—l-(—@-; )—1]06, B(U):Z'gyg 09,

(4.16)
82 V—l 32 V—l
) = (G + ) -
We have formally obtained the boundary value problem satisfied by ¢,.
Our next goal is to put all these formal computations in suitable function spaces
and solve (4.13)—(4.15) by the Implicit Function Theorem. The following is the

main result of this section:

Theorem 4.3. Let u,v€ K(]f%2 xBF; r,0), >3, |vlkeo <<, where 6 is
small. Then ¢o€ K(2oxRt;r+4,2) and w= F@v) uc KR>xR+;r—1,9).
Movreover, ¢, and w are C™-functions of (u, v) in the indicated spaces.

Proof. Assume that |v|,_; is small for any fixed t€R*. Since r—1>2 we
can define v, ¥, V-1 and 6 as we did for the smooth functions. Using mollifiers,

we can prove that (4.5) and (4.6) are satisfied in H"~3%({2,) and that (4.7) and (4.8)
are satisfied in H"~5%(8,). Also by the use of mollifiers, we can prove that for
be H12(Q)) and for each ¢, we have that ¢, € H'~VX(@2,), that (4.9) and (4.10)
are satisfied in H"~%%(Q,), and that (4.11) and (4.12) are satisfied in H5%(3).
Finally, looking for a solution ¢¢ H™~Y%(,) of (4.1) is equivalent to looking
for a solution ¢ € H™ " 13(Q2y) of (4.13)=(4.15), for any fixed . Observe that
A@) € H3%(Q,), B@)e H¥Qy) and C@) € H¥*(;), and that they are
small in the indicated spaces if |v|,_; is small. Also they are C*-functions of
ve H"'(R2), for any fixed 7. Since —V?: H™Y2(Q0) — H"~5%(£) is an iso-
morphism with the boundary conditions (4.14) and (4.15), we use the Implicit
Function Theorem to conclude that the problem (4.13)—(4.15) has a unique solu-

tion ¢,€ H ~YX(Dy) and that &, is a C*-function of (4, v) if |v|,_; is small, for
any fixed f€R*

Now according to the hypotheses of the lemma, [v|gxp.0)<< ¢ is small, r> 3.
We have [0z pmr—1Gn < C9, r— 1>2, by virtue of the trace theorem, cf.

LioNs & MAGENES [1972]. Therefore, if 6 is small, then for each teRH, (4.13)-
(4.15) is solvable and has a unique solution ¢, € AR+, H'~ 1/2(!20)) with C*-

dependence on u, v€ K(r,0). (In fact ¢€ B(R+, H'"Y%(Q,)) and has C*-de-
pendence on u, v € K(r, 0); however, we shall not need this result.)
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More regularity can be obtained for the solution ¢, of (4.13)-(4.15). Observe
that the inequalities |v|ge.0)<< 6 and r>3 imply that |v|ge s << C9d by
(4.2). From our basic lemmas in § 3, 4(v) and B(v) € K(r — 3, 0), C(v) € K(r — 3,0),
and they are C*-functions of v € K(r, 0) and are small in the indicated spaces if
¢ is small. Notice that the o § operator in (4.16) cancels - 0~ in (4.5)—(4.8). We
now look for a solution ¢, € K(r + %, 2) for (4.13)-(4.15). Here A(v) and B(v)
are good multipliers by Lemma 3.1(i), and by the fact that r — >> (3 + 2)/2.
Since C(v) € K(r — 2, 0) and 8de/dy, € K(r — +, 1), by Lemma 3.1(ii), we have
that C(v) (89o/0y0) € K(r — 3, 0). As both sides of (4.13) are functions in
K(r—2,0) by virtue of the fact —V2:K(r+ +,2)— K(r — 3,0) is an iso-
morphism with the boundary conditions (4.14) and (4.15), we can use the Implicit
Function Theorem to conclude that (4.13)-(4.15) possesses a unique solution
$o € K(r + 1,2), which has C™-dependence on (u, v) € K(r, 0) x K(r, 0). Since
K(r + 1, 2) C B(R+, HY%(Q,)) with continuous embedding, by the uniqueness
of the solution in #(R+, H"~Y%(£2,)), our previous solution ¢, defined by ¢o =
$o0 isin K(r + %, 2).

From the continuity of the trace y, and from (4.10), we obtain

8¢) [8(150 ov—! ]

w=vyo|—) = —o o EveK(r —3, DCK(r—1,%);

Yo (By 7o 9ye By voK( 3 1D CK( 3

w is a C™-function of (u, v)€ K(r, 0)x K(r,0). Here we have employed the

fact that 8¢o/dy, € K(R2xR*, r — 4, 1) is a good multiplier since r — 3> 332
-1

ov
and r—1—1>1. Also—ay o0 has the foom 1 +Kir—1,00C 1+

K(r — %, 1). That y, commutes with o § (or o 8~') is easy to verify. The proof of
Theorem 4.3 has been completed.

§ 5. Estimates for the Linear Equations

The linear inhomogeneous problem corresponding to (2.2)—(2.4) is

u—uViu—yViv 4+ gv=f, G
b, — FO) u = f, (5.2)
u0) = uy, 0(0) = v,. (5.3

Let r = 2. For each (u,v)€ X"(R*), define the linear operator (i, v) =
(u V2u + y V20 — gv, F(0) u) and the linear operator L(u, v) = (4, v;) — & (u, v).
Obviously, L:X |(R*)— Y'(R+*) is continuous. Also, from the trace theorem,
for such (u,v) we have that (uq, vo) = (You, yor) € H ~'(R?)x H'VX(R?) with
lto |1+ |00 lr—12 = Cll(u, V)[Iyr. Thus, (5.1)—(5.3) define a linear continuous
mapping £ (4, v) — (uo, Vo, f1, f2), in the indicated product spaces. The objective
of this section is to show that % admits a bounded inverse #—!: H'~'(R2)x
H ~"(R?)x Y'(RY) — X"(RY), so that (5.1)~(5.3) has a unique solution.

First we use the Laplace transform to estimate (5.1)—(5.3) with “‘zero initial
data to the highest order™.
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Definition 5.1. Let  X3o(R), Yio(RY), Koo(R2XR*; £, 5) be the subspace of
functions in X"(B4Y), Y'(BY), K(R2xR*; r,5) that extend to functions in
X'(R), Y'(R), KR?>xR; r, s), respectively, and that are 0 for 7<CO0.

Assume that (u, v) € Xgo(R1), (1, f2) € Yeo(RT), and (uo, vo) = 0. In view
of Definition 5.1, we are assuming that (5.1) and (5.2) hold for all z€R. Apply-
ing the Laplace transform to (5.1) and (5.2), we have

A — p V4 (g —y V) b =1, (5.4)
25 — FO) it = f5, (5.5

where A = ¢ - ir. Note that f1 and fz are defined for ¢ = 0 and are analytic
for ¢ > 0. The norm of (fi,f>) € Y5(R) is equivalent to the L?-norm of

D)2 + 171722 @) o + A0 -1 + 710722 | fal@) |-

Lemma 5.2. Let r=2. Suppose that (H(%), /() € H R x H "\R?) for
each A with Rel=0>0. Then (54) and (5.5) have a unique solution

(u2), D(A)) € H'(R?) x H'(R2) satisfying
i) + A7 il + B, + 2]
< CUf oy + A2 flo + | fa ot + ACT22 5], (5.6)

v

v

u

]

The proof of Lemma 5.2 will be postponed to the end of this section. As a
consequence of Lemma 5.2, we can prove the following.

Lemma 5.3. L: X}o(R+) — YZo(R+Y) is an algebraic and topological isomorphism.

Proof. The L>-norm of |fi(c + it)|,_, -+ |47 \f;(g + o + |f;(a + D)1
+ A2 | fy(o + it)|,, for 0=0 fixed, —oo<t< oo, is bounded by
ClI(f1. f2)llyr, where Cis independent of o= 0. From Lemma 5.2, ((3)), (0(4))
can be constructed for ¢ > 0, and is analytic in 1. By the Paley-Wiener Theorem,
u(t) = v(t) =0 for t<C 0. Observe that on the line Rei=o¢ with ¢>0,
(o + ir) and o(c - ir) are the Fourier transforms of e " u(t) and e~ u(2),
as functions of — oo < 7<C +oco. From Lemma 5.2, (e~ u, e~ v) € {Koo(r, 0)}
and ﬁ(e“"’ u, e~ Vigooronz = ClI(f1s fz)lly(r)o. Tt follows from Fatow’s Lemma
and the Lebesgue Convergence Theorem that (u, v) € {Koo(r, 0)}2 and (e u,
e " v) > (4, v) in {Koo(r, 0)}2, whence |(u, v) |k, ronz = C [(f1s fz)HYBO. The
estimate |v;|gep—1,1) = C]l(fl,fz)][),(r)0 follows directly from (5.2).

We now construct £ (uo, vo, f1,./2) — (4, v). First consider the case
r=2. Let (uo, vo)€ H'x H*?. Let G be the right inverse of the trace of (u, v)
at t = 0. Define (i, 7) = (Guo, Gvy). Then (u,v)€ K*(RY) and [|(#, D)y =
C(juo |y -+ |vol32). Let (u,v) = (u, v) + (, 5). We are to solve

LG, 2) =(f1, f2) — LG, ). (5.7)
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The right-hand side is in K(0, 0)x K(1, 1) = Ky0(0, 0) X Koo(1, 1) = Yo (RH).
Lemma 5.2 implies that (5.7) has a unique solution (4, v) € X3, with

1@ D)llxz, = CUi /Dlyz, + ILE Dlyz )}
= C{”(fufz)”ygo + Iuo ]1 + IUO !3/2}-
Therefore we have proved that #—': H'x H*?>x Y2 — X? is bounded.

Suppose that > 2 and r4 {integers} \ {integers + %}. Obviously £~*:
H™ ' H™ 2% y*— X? is bounded. We shall show that the image of £—!
is in X" and that £':H" 'XHxY —>X" is bounded. The method is
similar to that for the case r=2. We write (u, )= (&, 2) + (&, 5), where
(@, 5)6 X2, so that Lemma 5.3 applies to (5.7). However, (#, v) has to satisfy
more compatibility conditions at ¢ = 0. We assert that for each (uy, vo, f1,/2) €
H ' H 125 K(r — 2, 0)x K(r — 1, 1), there exists a unique (&}, {v,2 )€
IT H-Y- YR XIT , H~%(R?) such that if we set # = G({u}iso), v =
G({v}iZo), then

L@, 5) = I(fi, /). (58)

Here r* is the largest integer less than (r — 1)/2, ﬁfl,fz) = (ffl, I;fz) is the

trace operator with "= {yo, 7y, ..., 7,5}, and G is the right inverse of I'=
Y05 -+s Vesps L', v) = (I'u, IT'v). We need the following basic results.

Lemma 5.4.
— r*_l i~ ~
I: Yr(R-f_)_‘} H Hr~2j—3><Hr—2j—2’

j=0

r:x"®H— [] H~%"x (ﬁ'-l/zx 11 fi'—zf)

j=0 j=1

are bounded and surjective and admit bounded right inverses G and G respectively.

Proof. Foreach {n}’,¢c H (R IT:* | H~*(R2), we construct v such that
I'v = {y;}}Z,. The rest of the proof is left to the reader. (Cf. LioNs & MAGENES
[1972]). Let us write v = v + o@. Let o™ ¢ HO(R+, H'(R?) N H'(R+, HY(R?))
be defined as the g-tuple v = G(v,,0,...,0), where g is the largest integer
<r — % and G, is the right inverse of I, : H'(R+, H'(R®)) N H'(R+, HY(R?) —
T, H 7R, Let  o@ € KR2XRF; r+ 1, 1), v = G0, vy, ..., 1),
where G, is the right inverse of I',: K(r + 1, 1) = IT}Z, H Y (115&2). Obviously
v=10vV+ P ecK( 0 and v,€ K(r — 1, 1), with

[o|keo 1 [0]ke—11) = C{’Uo 12 + 21 | ’r—Zj}' Ol
=
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The kernel of I"in X"(R*) ({"in Y"(RF)) will be denoted by Xg(R*) (Y5(RY)).
For r¢ {integers}\/ {integers + 3}, r> 2, we have X{(R)") = X5o(R*), and
Yo(RT) = Ygo(RH). _

We can easily prove our assertion concerning (5.8) now. Observe that I'D, —
1o vt and DI = I'D,, on X". Thus {#}2; and {p;}/2; can easily be
computed from (5.8) provided that (uo, vo) is given. For the same reason,
1@, 0) g < C{Z] 0 {|thlr—2j—1 + Z[Z1 |0f]r—25 + [Dolr—12) = C{|thor—1 + [V0}r—112
AT .

Now since (u, v) = (u, v) — (u, v), we are led to (5.7) again. From (5.8) and
the identity  Y§(R™) = Yg(R*) it follows that the right-hand side of (5.8)
belongs to Y§(BR*). Applying Lemma 5.3 to (5.7), we have a unique solution
(4, v) € X5o = Xi and

1@, wllxy = Cluole—1 + [Boly-112 + 11 ) -

Thus, the construction of £~ for r 4 {integers}\ {integers + 3}, r>2 has
been completed.

Finally, the restriction r ¢ {integers}\ {integers + 4} can be removed by
the interpolation method. The interpolation of the spaces H™(£2XxR) can be
found in LioNs & MAGENEs [1972]; see also the notations there. It follows easily
that

[X”, sz]o —_ Xr1(1—9)+r26’
[Y7, Y]y = Y9720 rn>r=2 0<0<I.

We summarize our results in the following theorem.

Theorem 5.5. Let r = 2. Then % :(u, v)—> (Uo, Vo, f1,f2) is an algebraic and
topological isomorphism of X"(R+Y) onto H'~'(R*)x H'~'*(R?)x Y'(R™).

We conclude this section with the proof of Lemma 5.2.

Proof of Lemma 5.2 We decompose the right-hand side of (5.4) and (5.5) into
(f1, 0)" + (0,/2)°, and apply the principle of superposition. First let f, =0.
Substituting » = A~' F(0) # into (5.4), we obtain

Ji+ A + 3t Bit = f,, (5.9
where 4= —uV? and B = (g — yV? - F(0). There exist positive constants

C, and C, such that

(Bii, #) = C, |uf5p.

2
12

Here we have used the facts that the damping # 4= 0 and that f grudu = 0.

It is clear that (5.9) has a unique solution ¢ H™"(R?). Assume that i is suffi-
ciently smooth with respect to the spatial variables. Equation (5.9) implies that

2@, |D I it + (Ait, | D2 &) + 2-'(Bit, | DP* &) = (f, | D),  (5.10)




Existence Theory for Damped Gravity Waves 287

where |D| is the singular integral operator with the symbol |&|. Taking the real
part of (5.10), we have

Wi fer1 = Cfilem 1] k41
since ReAi>0, Rel' > 0. Leiting k =r — 1, we find that

i), < Clfy | o .10
4 to
(5.9), where #; is the Fourier truncation of #, yielding |i|, < ¢ |f;|—,. Letting
/— oo, we have (5.11). This kind of obvious procedure will be omitted in the
sequel.

We now prove that

The smoothness assumption on # can be removed by applying (-, |D

itlo < Cfilo- (5.12)
By letting &k =0 in (5.10) we obtain

([ fafs = c{jaf; 1t + 12] o |filo}-

From
= ClA

azgcwmo FAS

4] il Ifl‘o =5 WZ lulo‘i‘ lfl

we have |2 i< C|f;}, which implies (5.12).
For f, =0, we have proved that e[, + A" Iu]o < Cllfill_s where we
have used the notation ||f;ll,_p = |f; |,_, + |42 [filo- We shall derive the

estimates for v under the same assumption that f2 =0. Letting k=r—1 in
(5.10), we obtain

A7 i lesae = C{|A] a2 sz [t lesaa)-

From )
lifer = Cli lit i3 = /1 k=372
i} < CIA1fy B-sps
ffx lk—32lt levsp = = W ta ‘k+3/2 + M] 'f1 e 32>

we have || i[5, =< C |A||fii—32 whence

A ity < C LA Loa (5.13)
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Since fz =0, we obtain from (5.5) that

Bl < CIA fitfhsr = C |filr—a- (5.14)

We now derive the estimate for [0}, under the same hypothesis that f, =0. By
the convexity of the norm,

a

i < Clafg—or

il (5.15)

Since |it],| < Cllfil,—. and |#lo < C|A[ |filo = C AT Ifil,—2 by(5.12),
we obtain from (5.15) that

iy < C AP f L,

Therefore
A2 plo < C A7 fillr—2- (5.16)

From (5.14) we infer that |v]o < C|[lfy[,_,; thus

-

Aol < C P2 1 fill -2 (5.17)

a

Combining (5.16) and (5.17), we have |};|’/2 Vg = C]If;][,,z. Adding this to

(5.14), we obtain

0, 4+ A2 [Blo < ClUflb—a-

Lemma 5.2 has been proved for the case fz =0.

Next, we set fl =0 and derive the estimates for (#, 0) in terms of f2 From
(5.4) and (5.5), we obtain

it =—@+ A" (@g—y V)0, (5.18)
D+ ATBA+ A D =011. (5.19)
Letting é = (A + A)~' v, we have
16 4 Aé + i1 Be =1 f,. (5.20)
This is completely analogous to (5.9), with A—* £5 in place of #,. Therefore, recalling

that f, € H"~'(R?) by our assumption, from (5.11) we have |é

; ey = CIA ol
From (5.13), [e],42 = C|f2|,-1; thus

e

2} S Clfaloi (5.21)

e

B, < (- 4) @

< cija

r

From (5.12) it follows that |A|? |elo = C [fz lo- Inequality (5.11) yields |1] le|,

< C|fslo- Thus
2 plo = [A]- @A+ A elo =< |27

o ClAle, = Clalo.  (5:22)

e
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Combining (5.21) and (5.22), we obtain
ol + (2172 [plo = C{Aa ks + [ |fa o} (5.23)
From (5.18), and the fact that
NG+ A g2 gy < C

where C is independent of ¢ =0, we have |#|, < Cv|,, and |a]p =C [2]o-
Therefore,
AP e = Cfalr-1 + AP [ f2 o} (5.24)

Lemma 5.2 has been proved also for f; = 0. Therefore the proof of Lemma 5.2
has been completed.

u

§ 6. Nonlinear Problems and Semi-discretizations

The nonlinear problem (2.2)—-(2.4) can be written as
g(ua U) - (uo’ vOafl(“‘, u, U) 3f2(ua U)) = 0. (61)

The operator & is defined in § 5 and (fy(x, u, v), f2(u, v)) is defined in (2.6) and
(2.7). We shall prove Theorem 2.1 by the Implicit Function Theorem. From
Theorem 5.5, % : X'(RY)— H' (R x H "V R?)x Y’"(R*) is an isomorphism
for r=2. To estimate the nonlinear functions we assume that r> 3. Let
[, V) [yr << &;. If &> 0 is sufficiently small, then w = F(v) u€ K(R>xR*;
r —1,1) by Theorem 4.3, and w is a C®function of (u, v) € X"(R*). Clearly
VueKir—1,0, VocKr—1,0), and K(r—1,0CK(r—1,%). From
Lemma 3.2(1), K(r — 1,%) is an algebra since the space dimension is n = 2,
242 ‘ . ~
r—1>——, and r—1— 1> 1. Let us view a€ HC7P2R+R) as an
element in K(]f?ﬁr xR; r,2), constant with respect to the spatial variables.
Then Lemma 3.2(i) also implies that & -v€ K(r — 1; 1). We have just proved
for each (u,v)€ X'(RY) and each x€ H¢ P2+, R), small in their norms,
that fi(x, u, ) C K@ — 1, ) CK(r —2,0) and fo(u,v)€ K(r—1,1), with
1(fi SN = Oflu|* + |v|* + |os| |v[} with respect to the indicated norms. We
know that [g.fi(x, u,v) (f)du =0, for #=0, by virtue of the projection P.
To show that [g2/5(,0) ()du =0 for t=0, one has to evaluate [ra{w( -+

8
V0 |?) — V- V,0} du. But this comes from fs %(z) s = f o V() du =0,
FU v

where ¢ is the solution of (2.1). Therefore, (f1(,u,v), f2(u, v)) € Y'(RT). Denoting
the left-hand side of (6.1) by O(u, v, uo, vo; ), Which is, in each variable, a C*-
functioninto H"~1H"~ 2% ¥", wehave that Q(0,0,0,0,0) =0 and D, ,0(0,0,0,
0, 0) = %, which is an isomorphism as mentioned before. Therefore, the Implicit
Function Theorem asserts that all the solutions of (6.1), in a neighborhood of
zero, have the form

(u’ U) = ’Q(an Vg, 0“)
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which is defined for |uo|,—1 + |00 |r—1/2 + |*|¢—22 < 6. 2(uo, Vg, ) is & C™-
function in the indicated spaces. 2(0,0,0) =0 and D,2(0,0,0) = 0. Hence,
the estimate for (u, v) in Theorem 2.1 follows.

To study the dependence of the solutions on (y, u, g) € (RH)®, we write
Y="%o+ 71, #=po+us and g=:go+ g, Where (yo, o, go) € (B¥)> is
fixed and (y,, u,, g,) is a small perturbation in R3. We leave all terms involving
(%0, Ho, Zo) on the left-hand side of (2.2) and move all terms involving (v, #1, 1)
to the right-hand side of (2.2) and proceed in the obvious way. Details are omitted.
This completes the proof of Theorem 2.1.

Remark 6.1. In his work, BEALE [1984] proved that solutions of the free-surface
Navier-Stokes equations become arbitrarily smooth after any specified time inter-
val. A similar result for damped gravity waves is also valid provided that o is
smoother than assumed in Theorem 2.1. The solution (u, v) will reach the regularity
determined by & after any specified time interval. Moreover, even without further
regularity assumptions on «, the solution still becomes arbitrarily smooth with
respect to the spatial variables after any specified time interval. To show this,
we observe that « € H* 2R+, R) C K(r, 2), and the term involving o is ow €
K(r, 2) since v€ K(r, 0). Given any ¢, > 0, arguing as in BEALE [1984], we can
find (u(to), v(te)) € H' Y2 x H', 1,€ (0, ;). We can prove that (i, v)|y, e €
K(r + 5, DX K@ -+ 1,3, with vy, + € K(r — %, 3), by rewriting all the linear
estimates in § 5 and the elliptic free boundary problem in § 4. The regularity
can be increased by repeating the whole procedure in (¢,, 2¢,), efc. Details are
omitted. That (u, v) is smoother than asserted in Theorem 2.1 is useful in
proving Theorem 2.3(ii).

Before proving Theorem 2.2, we observe that under the hypotheses of Theo-
rem 2.2, for any 7;>>0, the solution (u,v)€ X"(0,T,) exists provided
lto |r1 + |volr—12 + vl < 8(Ty), where 6(T;)is a constant depending on 7.
To see this, let () be a C*-function such that ¢(r) =1 for t =T, and (1) =0
for t =T, -+ 1. Consider (1) = () (). Clearly, |&|,_22 = C x|, where
the constant C depends on T,. We can apply Theorem 2.1 tothesystem (2.2)—(2.4)
with x(t) in place of o(¢), and the solvability of the system for ¢ € (0, T;) follows.
If we can show that at ¢ = T, |u(Ty)|,—1 + |o(T1)|s-1/2 is still small, then we can
repeat the argument and thus prove Theorem 2.2 by induction. To this end, we
need an energy estimate for the linear homogeneous system (5.1)—(5.3).

System (5.1)~(5.3) with f; = f, = 0 has a natural total energy E =} g |v|
+ 37 |Vols + % (F(0) u, 1), which is conserved when pu = 0. We define a modi-
fied energy

EM=1g||D[foli+ 17 [|DI*Voli + 3 (FO) |D[ u, |D[* )
4 (| D2y, | DR ),

where k =r — = and &> 0 is a small constant to be determined. We easily
find that there is &; > 0 such that if 0 <& <Ceg, then

Coqul%-l + 1013—1/2) = EE(t) = Cl(]”]?—l -+ |U13_1/2). (6.2)
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Assuming that u,, v, f; and f, are sufficiently smooth, and hence that (u, v) is
sufficiently smooth (the smoothness assumptions can be removed easily), we have
dE(?)

dt

= (v, 8 lD !2k v) — (v, Y ID ‘2k V20) + (w, F(0) |D IZk u)

+ e, | DP*T 1) + e(v, [DPFT )

= —u(F() |DF Vu, |D[F Vi) — ey || D|FF12 Vo 3
— &g | [P of§ — eu(| D1 Vu, | D12 V)
& (F(0) [D[F+12 g, | D 112 )
+ (f1, FO) | D] u 4 ¢ | D[ v)
(g Doy DRV + e (D0

dE
Notice that if f;=/f, =0 and k=¢=0, then—a
. . . -~ — dE -
is an eigenfunction such that VZ2u -+ A%uw =0, then o= uit(F(0) u, u).
We have proved that for a normal mode with wave number 4, the energyis lost
at a rate uA? X (total kinetic energy); see § 1. Thus, the artificial damping term
represents the physical energy attenuation at high wave numbers. In the general
situation, in which fi, f, &, k =0, we employ the following inequalities:

—u(F(O) [D* Vu, |D[*Vu) < —cp |ulf 13,
—ey | [DIFFRVo§ < —eC 021312

. CVep Ce¥u
e 7, D12y = St

= —u(F0) Vu, Vu). If u

e(FO) [P u, D120y < Ce |ul} s,
(f1, F(0) |Di2k ute|DPFlo) < C{lfs le—1i2 [l r32 -+ € [ file—12 [0l a2}
S e luliian + ol + @ i F-1ps
(2,8 [D[** v —y |DI* V20 - & [ D[Py
= C|falksarz [0lkssiz + & [folira [0}
= &E([vfap + (Ul + G 12 li s

where Cy(¢g), C,(¢) depend on ¢. Hence, there is an ¢,, 0 <C &, =< &; such that if
0 <e<<eg,, then

dE,
dt(t) S —BEEM®+ CEO{fili i+ [faliiin)s

where f(¢), C(e) are positive constants depending on &. By the Gronwall inequality,

EQSE©e™ 1 Co) {2t aldds >0,  (63)
[}
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We are now ready to prove Theorem 3.2. Fix 0 < & <&, and then choose
t> 0 such that ¢ #®" < 1. From Theorem 2.1, we know that thereis a 8, >0
such that if E(0)< 8} and [l«|| < 8,, then the solution (u, v) of (2.2)~(2.4) exists
in (0, 1), by virtue of (6.2). Moreover,

1, Dllgrg 5 = C 01 (6.4)

From (6.4), we have ||(fi(x, u, v), f2(u, v)) ”Y’(Ot) = 0(6;). We can choose §
Py 2

. g o7
so small that C(e) [ {|filf 2+ |ol-i}ds< 5 Inequality (6.3) implies that
0

Ee(f) < 8%, It is now clear that the proof of Theorem 2.2 can be completed by
induction.

The existence of the solutions (¢, v™) for (2.8)~(2.10) under the hypotheses
of Theorem 2.3, parts (i) and (ii), is obvious from the proof of Theorem 2.1 and
2.2. We shall now show that the convergence results also follow from the estimates
employed in proving Theorems 2.1 and 2.2.

Let us write (2.2)-(2.4) in an abstract form as

— oAU = F(e, U),
U(O) = UOa

(6.5)

where U = (u, v), F(x, U) = (fi(», u, v), fo(u, v)), and &/ is the operator defined
in §5. F(x, U) is of second order with respect to «, U:

|F(os, U) |yr = C{|at -2 | Ulxr + | Uf3r}
|Flx, Up) — Flov. Up)lyr = Cll{&lo—22 4 [Uslyr + Uz |} [Us — Ul
The discretized system can be written as
UN — o UN = PyF(a, UY),
6.6)
UN©0) =

We assume that UY — U, as N—oo; for example, we can take Uy = PyU,.

Subtracting (6.5) from (6.6), we obtain
(UN — U)t — A(UN — U) = PyF(x, UY) — F(, U), 67
(UY — U)(0) = U — U,. '

First, let us prove Theorem 2.3(1). If |Up|yr + |x|p—2y2 < 6, with ¢ suffi-
ciently small, then |Ulyr < &) and |UM|yr < &(0) are small, uniformly with
respect to N (at least for sufficiently large N’s). Let 1UO — Uplgr—1xpr—12 =
ey, ey—> 0 as N—oco. We also have

|PyF(o UNy — F(x Ulyr)
< | PyF(x, UY) — PyF (%, U)|yr + |PyF(x, U) — Fx, U)|yr
< C(0 + 2¢(8)) |[UY — Ulxr + ew, (6.8)
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where e¢y— 0 as N —oo. From our linear estimates in § 5 and from (6.7) we
obtain

UV = Ul = C{UF — Ugrtr 102 + | PuFlos, UY) — Fl, U)o}
< Cey + Cey + C(8 + 2&(8)) |UN — Ulyr.
If 4 is sufficiently small, then C(4 + 2¢(0)) << 3, and we have
|UY — Ulyr < Cey + Cey—>0  as N—oo. (6.9)

This completes the proof of Theorem 2.3(i).
The proof of Theorem 2.3(ii) uses the energy estimate (6.3), which can be
written as

[(UN — UYt) 2pr—1 12 = C |UY — Up 2r—1y gr—112 €77

+ C(s) ft | PyF(os, UMYy — F(s, U) [3r—2, gr—1 dt.
0

Choosing > 0 sufficiently large so that Ce #®" < 1 and using (6.8) we have
((UY = UYO P 1ggr—12 = 3 |UY — Upfr—1 g mr—112
+ C(e) (0 -+ 26(8)) [UY — Ulgrion + Cle) en.
From (6.9), we have
|(UN — U)(;) Pty gr—12 < 2 |Ug — Uy \hr—1 4 gr—12 + Cen,

provided that ¢ is small and C(g) - C - (0 + 2¢(0)) < %.
Given any 7 > 0, we can choose N, such that |U) — Upldr—1, gr-12 <7

and - Ciey < % for N> Np. Then [(UN — U) 0] %=1 gr—12 < 7. The con-
vergence on (jf, jt + 1), j=1,2,..., can be considered similarly. We observe
here that &f = ||P{F(x, U) — F(x, U)||yrijiiry—>0 as N-—>oo, uniformly
with respect to j, by virtue of the additional regularity of F(x, U) for > ¢ that
was mentioned in Remark 6.1. The proof of Theorem 2.3 is now complete.
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