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Abstract. Collapsing waves were observed numerically before
and were used to explain the ring formations in dynamic flows
involving phase transitions with metastability. In this paper, nec-
essary and sufficient conditions for collapsing type of waves to exist
are given. The conditions are that the wave speed of the collaps-
ing wave is not less than a number and is supersonic on both sides
of the wave. Existence and non-existence conditions for the ex-
plosion waves are also found. The stability of these waves are
studied numerically. Although there are infinitely many collapsing
(or explosion) waves for a fixed downstream state, the collapsing
(or explosion) wave appeared in the solution of Riemann problem
is numerically verified to be the one with the slowest speed. Al-
though a Riemann problem in the zero viscosity limit may have
two solutions, one with, the other without, a collapsing (or ex-
plosion) wave, from the vanishing viscosity point of view, the one
with a collapsing (or explosion) wave is numerically verified to be
admissible.

1. Introduction

Dynamic flows involving liquid/vapor phase transition is an impor-
tant phenomenon occurring in many engineering processes. For retro-
grade fluids, i.e. fluids with high specific heat capacities, such flows
can be approximated by assuming the temperature is a constant. The
one-dimensional case of the system describing such flows in Lagrangian
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coordinates is

(1.1)

vt − ux = 0,

ut + p(λ, v)x = εuxx,

λt =
1

γ
w(λ, v) + βλxx,

where v is the specific volume, u the velocity of the fluid, λ the weight
portion of vapor in the liquid/vapor mixture, ε the viscosity, β the
diffusion coefficient and γ > 0 the typical reaction time. The pressure
function in (1.1), p(λ, v), satisfies

(1.2a) pv < 0 < pλ.

In this paper, we further assume

(1.2b) pvv > 0.

Figure 1.1 shows the graph of a typical pressure function, where pe

is the equilibrium pressure at which liquid and vapor can coexist and
m, M are the Maxwell points. In this paper, we use the following
scaling

(1.2c) γ = ε/a, β = bε.

m M

λ = 0

p

v

pe

λ = 1

Figure 1.1. The pressure function p = p(λ, v) for some
fixed λ.

The function w(λ, v) represents the rate of vapor initiation and growth.
To study the traveling waves of (1.1) and the related issues, we take

(1.3) w(v, λ) = (p(λ, v) − pe)λ(λ − 1),

where pe is the equilibrium pressure. System (1.1-3) not only exhibits
all major one-dimensional wave patterns observed in actual experi-
ments on retrograde fluids [4], but also explains the puzzling ring for-
mations observed experiments [7].
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The comparison of experimental observations and the behavior of
(1.1-3) done in [4, 7] are through the study of the system’s traveling
waves and Riemann problems. A traveling wave of (1.1) is a solution
of (1.1-3) of the form (u, v, λ)(x−ct

ε
), where c is the speed of the wave.

Plugging the form of the solution into (1.1), we see that it is a solution
of

(1.4)

− cv′ − u′ = 0,

− cu′ + p′ = u′′,

− cλ′ = aw(λ, v) + bλ′′,

(u, v, λ)(±∞) = (u±, v±, λ±),

where a = ε/γ, b = β/ε. Because λ is the weight portion of the vapor
in the liquid/vapor mixture, we only admit solutions with 0 ≤ λ ≤ 1.
The Rankine-Hugoniot condition

(1.5)
− c(v+ − v−) − (u+ − u−) = 0,

− c(u+ − u−) + p(v+, λ+) − p(λ−, v−) = 0

is necessary for (1.4) to have a solution. For collapsing and explosion
waves it will be shown in Lemma 2.1 that the wave speed c is positive.
Therefore, from (1.5)

(1.6) c =

√

−p(λ+, v+) − p(λ−, v−)

v+ − v−

holds. Besides (1.6), equilibrium points (v±, λ±) must also satisfy one
of these three equations λ = 0 or λ = 1 or p(λ, v) = pe.

Definition 1.1. A liquefaction wave is a solution of (1.4) with

λ− = 0, 0 < λ+ ≤ 1,

p(λ±, v±) ≥ pe, c2 + pv(λ±, v±) < 0,

while an evaporation wave is that with

λ− = 1, 0 ≤ λ+ < 1,

p(λ±, v±) ≤ pe, c2 + pv(λ±, v±) < 0.

In [4, 6], Fan proved that liquefaction and evaporation waves exist

if the wave speed c > 0 satisfies c ≥ 2
√

ab|p(λ−, v−) − pe|. On the

other hand, if the speeds satisfy c ≤ 2
√

ab|p(λ+, v+) − pe|, then there
is no liquefaction and evaporation waves. Since the system (1.1-3)
consists of conservation laws and a reaction-diffusion equation, Fan [5],
investigated the the stability of traveling waves of (1.1-3) by studying
a simplified prototype system consists of one conservation law and a



4 HAITAO FAN AND XIAO-BIAO LIN

KPP equation. The results on the simplified system suggest that the
stability of its traveling waves is decided by the KPP equation in the
system. Another simpler prototype system in [5] modeling the effect
of nucleation rate term on the speed of liquefaction traveling waves
showed that the nucleation rate term will speed up the liquefaction
wave. Fan and Corli [3] showed the existence and uniqueness of the
solution of Riemann problem for (1.1) with ε = γ = β = 0. Amadori
and Corli established the existence of global solutions inviscid case of
(1.1-3) with a = b = 0 for a class of initial data of large total variations,
[1]. Trivisa proved the existence of variational solutions of the non-
isothermal multi-dimensional case of (1.1) under various assumptions
[9].

Definition 1.2. Collapsing waves are traveling waves of (1.1) with

(1.7)
λ+ = 1, p(λ+, v+) > pe,

0 ≤ λ− ≤ 1, p(λ−, v−) = pe, or λ− = 0, p(λ−, v−) > pe.

Explosion waves of (1.1) are traveling waves with

(1.8)
λ+ = 0, p(λ+, v+) < pe,

0 ≤ λ− ≤ 1, p(λ−, v−) = pe, or λ− = 1, p(λ−, v−) < pe.

We require 0 ≤ λ ≤ 1 for both waves.

The locations of (v±, λ±) for both waves are depicted in Figure 1.1.

m M

e

λ = 1

+

+v

v

v
v−

−

p

p

v

λ = 0

Figure 1.2. The points (v±, λ±) of collapsing wave
(p+ > p−) or explosion wave (p+ < p−) for the case
p− = pe. The arrows point to the fronts of the waves.

For the existence of a collapsing wave, the supersonic condition

c2 ≥ −pv(λ+, v+),
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must hold (cf. Theorem 2.8). There are up to two v+ that satisfy (1.6)
and (1.7) for a given pair of v− and c. Only the unique v+ that satisfies
the supersonic condition is shown in the Figure 1.2.

For explosion waves, the inequality

c2 ≥ −pv(λ+, v+)

is a consequence of the assumption (1.2).
The collapsing wave is used to explain the formation of cloudy rings

in closed end shock tube experiments [7]. In fact, the outer front of
the cloudy ring is a collapsing wave. However, in [7], the existence of
collapsing and explosion waves was verified only numerically.

One of the goals of this paper is to find the conditions for the ex-
istence and non-existence of collapsing and explosion waves solutions
satisfying 0 ≤ λ(ξ) ≤ 1 for all ξ.

In Section 2, we shall prove that the necessary and sufficient condi-
tions for the existence of collapsing waves are

(H1) c2 ≥ 4ab|p(λ+, v+) − pe|, c2 + pv(λ±, v±) ≥ 0.

For the existence of explosion waves, we show that the following
conditions are sufficient:

(H2) c2 ≥ 4ab|p(λ+, v+) − pe|, c2 + pv(λ−, v−) ≥ 0.

We also find a set of necessary conditions for the existence of explosion
waves:

(H3) c2 ≥ 4ab|p(λ+, v+) − pe|, c2 + pv(λ+, v+) > 0.

These collapsing and explosion waves shown to exist are monotone.
A real liquid/vapor phase transition model may involve some very

small or large parameters. In section 3, we study the dynamics of
the collapsing/explosion waves as b → 0 (or ∞). This corresponds
to systems with the ratio of diffusion coefficient to viscosity being very
small (or large). We find that if b is small, the traveling waves must fast
jump from λ = λe to near λ = λ+ while v remains almost unchanged;
then v(ξ) moves slowly from v− to v+ along λ = λ+. When b is large,
the solution of the traveling wave cannot have any fast jump. Starting
from the equi-presure line, the traveling wave solution stays on a two
dimensional slow manifold that is normally stable. The traveling wave
from (λ−, p−, v−) to (λ+, p+, v+) restricted to the slow manifold is of
fisher type – a saddle to attractor connection.

Given (v+, λ+) satisfying (1.7) or (1.8), there are infinity many (v−, λ−)
satisfying (1.7) and (H1) (or (1.8) and (H2)), and hence infinity many
traveling waves connecting to the given (v+, λ+) with different speeds.
A natural question is which one of them will actually appear in the
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solution of (1.1) for large t. We consider the perturbed Riemann initial
value

(1.9) (u, v, λ)(x, 0) = (U0, V0, Λ0)(x) +

{

(u+, v+, λ+), x > 0

(u−, v−, λ−), x < 0

where 0 ≤ λ(x) ≤ 1. The last equation in (1.1) is similar to the KPP
equation

(1.10)

λt = λ(λ − 1) + λxx,

λ(x, 0) = Λ0(x) +

{

1, x > 0

0, x < 0.

The traveling wave occurring in the solution of initial value problem
of (1.10) for large t is the one with decay rate similar to that of Λ0(x)
as x → ∞. See [2]. When Λ0(x) ≡ 0 for x > 0, the traveling wave
with the slowest speed appears in the solution. We expect that similar
phenomenon occurs for collapsing and explosion waves of (1.1). Our
numerical computation, shown in section §4, supports this conjecture.

To study the behavior of (1.1-3) when ε > 0 is small, under the
scaling γ = ε/a and β = bε, we assume the strong limit limε→0+ of
the solution exist, and study the behavior of the limit. Such limit will
satisfy the limiting equation of (1.1-3),

(1.11)

vt − ux = 0,

ut + px = 0,

(p − pe)λ(λ − 1) = 0.

The Riemann problem of (1.11) is (1.11) with the initial data

(u, v, λ)(x, 0) =

{

(u+, v+, λ+), x > 0

(u−, v−, λ−), x < 0

which is (1.9) with (U0, V0, Λ0)(x) ≡ 0. Then the behavior of travel-
ing waves of (1.10) cited in the last paragraph suggested that when
there are multiple liquefaction waves available for constructing solu-
tions of (1.11), resulting in nonuniqueness, the one with the slowest
speed should be chosen, at least for the time period not too far from
t = 0 so that the nucleation effect is negligible. The nucleation process
will initiate droplets of the other phase, making Λ0 6= 0 at some point
(x, t), and hence speeding up the motion of phase boundaries. The
same restriction should be imposed on evaporation, collapsing, and
explosion waves.
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In [3], by excluding collapsing and explosion waves, existence and
uniqueness of the solution of the Riemann problem for (1.11) is es-
tablished under kinetic relations mimicking the behavior of the slowest
liquefaction and evaporation waves and excluding collapsing and explo-
sion waves. The exclusion of collapsing and explosion waves is artificial
and should be removed. However, admitting liquefaction (evaporation)
waves and collapsing (explosion) waves simultaneously results in two
solutions for the same Riemann initial data. To resolve this nonunique-
ness, we have to find a criterion on when to use liquefaction (evapo-
ration) waves and when to use collapsing (explosion) waves. In §5,
we show that when a pure phase is in contact with mixture or the
other pure phase, then collapsing and explosion waves of the slowest
speed are preferred if they exist. Whether this criterion will settle the
uniqueness of the Riemann problem is left for future research.

2. Existence of collapsing and explosion waves

In this section we present the proof of the existence of collapsing and
explosion waves for the case p(λ−, v−) = pe. The same proof applies to
the case λ− = 0, 1, p(λ−, v−) 6= pe with some minor change which will
not be given in this paper.

The system (1.1) can be written as

vt − ux = 0,

ut + p(λ, v)x = εuxx,

λt =
a

ε
w(λ, v) + bελxx.

We do not assume ε to be small in this section. Recall that the pressure
p(λ, v) satisfies

pv < 0 < pλ,

and the growth rate w is

w(λ, v) = (p − pe)λ(λ − 1).

Since pλ > 0, the function p = p(λ, v) can be solved for λ = λ∗(v, p).
For each v = v0, with vm < v0 < vM , w = w(λ, v0) has three zeros:
λ = 0, λe = λ∗(v0, pe), λ = 1, depicted in Figure 2.1.

Consider the difference quotients:

Q1(λ, v0) := (w(λ, v0) − w(0, v0))/(λ − 0)

= (p(λ, v0) − pe)(λ − 1), 0 < λ < λe.

Q2(λ, v0) := (w(λ, v0) − w(1, v0))/(λ − 1)

= (p(λ, v0) − pe)λ, λe < λ < 1.
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w

Figure 2.1. The graphs of w and W =
∫

wdλ.

It is easy to check that

∂λQ1(λ, v0) = (λ − 1)pλ + p(λ, v0) − pe < 0, for 0 < λ < λe,

∂λQ2(λ, v0) = λpλ + p(λ, v0) − pe > 0, for λe < λ < 1.

Thus, Q1 (or Q2) is a decreasing (or increasing) function of λ on its
domain. In particular, we have

Q1(λ, v0) <
∂w(λ = 0, v0)

∂λ
, 0 < λ < λe,(2.1)

Q2(λ, v0) <
∂w(λ = 1, v0)

∂λ
, λe < λ < 1.(2.2)

These properties are reflected in Figure 2.1 as concavity of the func-
tion w(λ, v0) for λ < λe and λ > λe respectively.

The system can be recast into

vtt + pxx = εvtxx,

ελt = aw(λ, v) + bε2λxx.

We look for explosion waves connecting the equilibrium pressure line
p(λ, v) = pe to the pure liquid state λ = 0 and collapsing waves con-
necting p(λ, v) = pe to pure vapor state λ = 1.

Let c be the wave speed of traveling solutions, so that v = v(x −
ct), λ = λ(x − ct). Let ẏ denote dy

ds
where s = x − ct. The traveling

wave equation for v is:

c2v̈ + p̈ = −cε
d3v

ds3
.
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If we integrate the above twice from −∞ to s, we obtain the following
system for traveling waves:

−εcv̇ = c2(v − v−) + (p − p−),

−εcλ̇ = aw + bε2λ̈.

If we rescale the time s = εbξ, and use y′ to denote dy/dξ, we have
obtained the the traveling waves system that will be considered in this
section:

(2.3)
λ′′ + cλ′ + abw(λ, v) = 0,

cv′ + bc2(v − v−) + b(p(λ, v) − p−) = 0.

The above can be rewritten as a first order system of three variables
(λ, µ, v):

(2.4)

λ′ = µ,

µ′ = −cµ − abw(λ, v),

v′ = −bc(v − v−) − b

c
(p(λ, v) − p−).

We look for a heteroclinic solution of (2.4) connecting the equilibrium
points E± := {(λ±, µ±, v±)}.

Equilibrium states are the zeros of the right hand side of (2.4).

µ = 0,

w(λ, v) = 0,

c2(v − v−) + p(λ, v) − p− = 0.(2.5)

The solutions of w = 0 form three branches: λ = 0, 1 and p(λ, v) = pe.
The graph of (2.5) with a given c is a straight line in Figure 1.2. The
equilibrium points in (v, p) coordinates corresponding to the 0 < λ− <
1 case of collapsing and explosion waves, E± := {(v±, p±)}, are plotted
in Figure 1.2. Since we look for a traveling wave solution from the
equi-pressure line p = pe to λ = 0 or 1, we need p− = pe, λ+ = 0, 1.

For any v− that satisfies vm < v− < vM , equation p(λ−, v−) = pe has
a unique solution

λ− = λe = λ∗(v−, pe).

The equilibrium E− is parameterized by v−:

(2.6) E− := {(λ−, µ−, v−) = (λ∗(v−, pe), 0, v−)}.
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The equilibrium E+ is on the line λ = 0 (explosion wave) or 1 (col-
lapsing wave) and is parameterized by v+:

(2.7) E+ := {(λ+, µ+, v+)|λ+ = 0 or 1, µ+ = 0,

v+ > v− for explosion waves , v+ < v− for collapsing waves}.

Let p+ = p(λ+, v+) where λ+ = 0 or 1. The wave speed c and v± are
now related by:

(2.8) c2(v+ − v−) + (p+ − p−) = 0.

This also confirms that for each pair of (E−, E+), the wave speed c
satisfies (1.6).

It will be proved in Lemma 2.1 that if c < 0, then E+ is an unstable
equilibrium to (2.4). A traveling wave from E− to E+ cannot exist if
c < 0. In this paper we always assume that c > 0.

For each triple (E−, E+, c) we will assume conditions (H1) (or (H2))
to construct collapsing waves (or explosion waves).

From (2.8), for the collapsing wave p+ > p−, we must have v+ < v−;
while for the explosion wave p+ < p−, we must have v+ > v−.

2.1. Eigenvalues and eigenvectors at equilibrium points. In this
subsection, we first show that if c > 0, then the equilibrium E− is a sad-
dle with exactly one positive real eigenvalue; while E+ is an attractor
with all eigenvalues real and negative. The traveling wave solution we
look for is a heteroclinic solution connecting the saddle to the attrac-
tor. Moreover, as ξ → ±∞, the orbit of the traveling wave is tangent
to the linear space spanned by the eigenvectors corresponding to real
eigenvalues, thus non-oscillatory. In the next subsection, we will prove
the existence of traveling wave solutions and obtain more precise infor-
mation about the traveling wave solutions, e.g., the (λ, v) components
of the traveling wave solutions are monotone.

The linear variational system for the traveling wave equations (2.4)
is




Λ
M
V





′

= A(b)





Λ
M
V



 , where A(b) =





0 1 0
−abwλ −c −abwv

− b
c
pλ 0 −bc − b

c
pv



 .

Eigenvalues r are determined by

det(rI − A(b)) =

∣

∣

∣

∣

∣

∣

r −1 0
abwλ r + c abwv
b
c
pλ 0 r + b

c
(pv + c2)

∣

∣

∣

∣

∣

∣

= 0.
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We first study eigenvalues at the equilibrium E+. Observe at λ+ = 0,
or 1,

wλ(λ+, v+) = |p − pe| > 0, wv(λ+, v+) = 0,

det(rI − A(b)) = (r2 + cr + wλ)(r +
b

c
(pv + c2)).

Eigenvalues at E+ are

r1 = −c/2 −
√

(c/2)2 − ab|p(λ+, v+) − pe|,
r2 = −c/2 +

√

(c/2)2 − ab|p(λ+, v+) − pe|,

r3 = −b

c
(pv(λ+, v+) + c2).

Lemma 2.1. (1) If c2 ≥ 4ab|p(λ+, v+) − pe| and c2 + pv(λ+, v+) ≥ 0
are satisfied and c > 0, then the equilibrium E+ has three real negative
eigenvalues.

(2) If c2 ≥ 4ab|p(λ+, v+) − pe| and c2 + pv(λ+, v+) ≥ 0 are satisfied
and c < 0, then E+ has three real positive eigenvalues.

The proof of the lemma is straightforward and shall be omitted.
We next study the eigenvalues at the equilibrium E− where p = pe.

Observe that

det(−A(b)) =
ab2

c

∣

∣

∣

∣

wλ wv

pλ pv + c2

∣

∣

∣

∣

,

tr(−A(b)) = c +
b

c
(pv(λ−, v−) + c2).

Lemma 2.2. If c > 0 and c2+pv(λ−, v−) ≥ 0 are satisfied, then E− has
two stable eigenvalues rj , j = 1, 2, real or complex, with Rerj < 0, and
one real, unstable eigenvalue r3 > 0. The eigenvector corresponding to
r3 is

(Λ, M, V ) = (1, r3,−
bpλ/c

r3 + b(pv + c2)/c
),

with Λ > 0, M > 0 and V < 0. The system has an one-dimensional
unstable manifold passing through E−.

Proof. First, we prove the lemma for the case of p− 6= pe in the Defin-
ition 1.2. In this case, we have

det(rI − A(b)) =

∣

∣

∣

∣

∣

∣

r −1 0
−ab|p− − pe| r + c 0

b
c
pλ 0 r + b

c
(pv + c2)

∣

∣

∣

∣

∣

∣

= 0.
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One of the eigenvalue of A(b),

r =
1

2

(

−c +
√

c2 + 4ab|p− − pe|
)

,

is positive with an eigenvector

(Λ, M, V ) = (1, r3,−
bpλ/c

r3 + b(pv + c2)/c
).

Now, we prove the lemma for the case of Definition 1.2 where p− =
pe. From the conditions of this lemma,

(2.9) r1 + r2 + r3 = −tr(−A(b)) < 0.

Observe that at E−, p = pe,

wλ = pλλ(λ − 1) < 0,

wv = pvλ(λ − 1) > 0.

Then we have at E−,

(2.10) r1r2r3 = − det(−A(b)) = −ab2

c
c2pλλ−(λ− − 1) > 0.

Now, we can have two cases:
(1) The system has a pair of complex-conjugate eigenvalues, denoted
r1, r2 = r̄1, and one real eigenvalue r3. Since r1 · r2 > 0, from (2.10),
r3 > 0. Moreover, from (2.9), the real parts of r1, r2 are negative.
The system has one unstable eigenvalue that corresponds to an one-
dimensional unstable manifold at E−.
(2) The system has three real eigenvalues. From (2.9), at least one
of which is negative. From (2.10), exactly two of which are negative,
denoted by r1, r2. The third eigenvalue r3 must be positive. Again,
the system has exactly one unstable real eigenvalue.

The eigenvector (Λ, M, V ) for r3 can be solved directly from the

matrix rI − A(b). Finally, from V = − bpλ/c
r3+b(pv+c2)/c

, r3 > 0, c > 0 and

c2 + pv(λ−, v−) ≥ 0, we have V < 0. �

Information about the eigenvector corresponding to the eigenvalue
r3 will be useful in the future.

Lemma 2.3. (i) Assume that λ′(ξ) > 0 for ξ ∈ [0, T ] and v′(0) ≤ 0.
Then v′(ξ) < 0 for ξ ∈ (0, T ].

(ii) Assume that λ′(ξ) < 0 for ξ ∈ [0, T ] and v′(0) ≥ 0. Then
v′(ξ) > 0 for ξ ∈ [0, T ].
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Proof. (i) The proof follows from the linear variational equation for v′.
Let a(ξ) = − b

c
(pv + c2), g(ξ) = b

c
pλ(λ, v) and V (ξ) = v′(ξ). Then

V ′ = a(ξ)V − g(ξ)λ′(ξ),

V (ξ) = e
R ξ

0
a(t)dtV (0) −

∫ ξ

0

e
R ξ

τ
a(t)dtg(τ)λ′(τ) dτ < 0.

(ii) The proof of part is similar to that of part (i) and will be skipped.
�

2.2. Existence of collapsing waves for any b > 0. We consider
the collapsing wave connecting p− = pe to λ+ = 1. The explosion
wave that connects p− = pe to λ+ = 0 will be constructed in the next
subsection. As from Lemma 2.1, we assume that c > 0.

Consider the first two equations of the traveling wave system (2.4)

λ′ = µ, µ′ = −cµ − abw(λ, v),

with v as a parameter satisfying v+ ≤ v ≤ v+. From (H1), at λ+ = 1
the system has two real eigenvalues r1(v) < r2(v) < 0.

r1(v) = −c/2 −
√

(c/2)2 − ab(p(1, v) − pe),

r2(v) = −c/2 +
√

(c/2)2 − ab(p(1, v) − pe).

Let the smaller of the eigenvalue in norm, r2(v), be denoted k(v) for
simplicity. The eigenvector associated to r2(v) is (λ, µ) = (1, k(v)).
From pv < 0, it can be verified that dk(v)/dv > 0. Note that k(v) < 0,
this means that as v decreases, |k(v)| increases and the eigenvector
becomes more vertical.

Consider a prism shaped solid W in (λ, µ, v) space bounded by the
surfaces (cf. Figure 2.2):

Left side F` := {λ = λe, µ ≥ 0};
Bottom side Fb := {µ = 0, λe ≤ λ ≤ 1, v+ ≤ v ≤ v−};

Back side Fk := {v = v−, λe ≤ λ ≤ 1, µ ≥ 0};
Front side Ff := {v = v+, λe ≤ λ ≤ 1, µ ≥ 0};
Slant side Fs := {k(v)(λ − 1) − µ = 0, λe ≤ λ ≤ 1, v+ ≤ v ≤ v−}.

Let t := (Λ, M, V ) be the eigenvector associated with r3 as in Lemma 2.2.
Then Λ > 0, M > 0 and V < 0. A theorem on invariant manifolds as-
serts that {αt : α ∈ R} is the one-dimensional tangent space of the
local one-dimensional unstable manifold W u

loc(E−) at E− = (λ−, 0, v−).
For a sufficiently small ᾱ > 0, there is a near identity diffeomorphism
Π : {αt : |α| < ᾱ} → W u

loc(E−) such that the distance from αt to its
image is of O(α2). For a sufficiently small α > 0, αt is in W , and
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λ

µ=       (λ−1) k(v)

 v

 v = v+

v = v−

e

e

λ=λ

λ=λ

µ

λ=1

Figure 2.2. The prism shaped solid W

its distance to the boundary of W is O(α). Therefore a branch of the
one-dimensional local unstable manifold W u

loc(E−) must enter W from
E−. Let P be a point that is on W u

loc(E−) ∩ W and let the solution
passing through P be φ(ξ, P ), ξ ≥ 0.

Next we want to show that the orbit of φ(ξ, P ), ξ ≥ 0 cannot leave
W through all its surfaces. That is φ(ξ, P ) ∈ W for all ξ ≥ 0 and thus
φ(ξ, P ) → E+ as ξ → ∞. Therefore the entire branch of the unstable
manifold is in W and is connected to E+ = (1, 0, v+). Cf. Figure 2.3.

λ

F

GE

µ

Figure 2.3. Front view of the solid W . The flow enters
W from all its surfaces. The curve EG is the front view
the heteroclinic solution.

Since dλ/dξ = µ > 0, the orbit of φ(ξ, P ) can not hit F` from inside
of W .

On the interior of Fb, we have dµ/dξ = −abw(λ, v) > 0 since w < 0
for λe < λ < 1. The orbit of φ(ξ, P ) cannot hit the interior of Fb from
inside of W also.

On Fk, we have v′ = − b
c
(p(v−, λ)−p−). Since pλ > 0 and λ ≥ λe, we

have p(v−, λ) ≥ p(v−, λe) = p−. Thus, v′ ≤ 0 and the equal sign can
only be achieved at λ = λe. The orbit of φ(ξ.P ) cannot hit Fk from
inside of W .
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On Ff , we have v′ = − b
c
(p(v+, λ) − p+). Since pλ > 0 and λ ≤ 1,

we have p(v+, λ) ≤ p(v+, 1) = p+. Thus, v′ ≥ 0 and the equal sign can
only be achieved at λ = 1 which is where the equilibrium E+ is. The
orbit cannot hit Ff except by approaching E+ as ξ → ∞.

Before proving the following lemma, we comment on how we choose
the the surface Fs:

(i) By Lemma 2.3, v′ < 0 for the solution φ(ξ, P ). If we can show
nv < 0 then nv · v′ > 0.

(ii) Consider the (λ, µ) components of the flow on Fs . For each fixed
v, if we choose the slope of Fs to be an eigenvector with negative slope,
then the 2-d restriction of the flow, dµ/dλ, is equal to the slope at
λ = 1. Our formula (2.12) and (2.2) indicate that dµ/dλ is a monotone
increasing function for λe < λ < 1.

From (i) and (ii), we can conclude that φ(ξ, P ) cannot leave W on
the side Fs, where λ < 1. See below for details.

Lemma 2.4. The solution φ(ξ, P ) cannot leave W from the slant side
Fs.

Proof. The normal of the slant side Fs := {k(v)(λ − 1) − µ = 0},
pointing downward and to the interior of W , is

n = (nλ,nµ,nv) = (k(v),−1, k′(v)(λ − 1))

The vector fields are

f = (fλ, fµ, fv) = (µ,−cµ − abw(λ, v), v′).

We want to show that on Fs,

n · f = k(v)µ + cµ + abw(λ, v) + k′(v)(λ − 1)v′ > 0.

For µ > 0, using µ
λ−1

= k(v), we have

(2.11)
n · f
µ

= k(v) + c +
abw(λ, v)

µ
+

k′(v)

k(v)
v′.

We evaluate the slope field dµ
dλ

on Fs,

dµ

dλ
= −c − abw(λ, v)/µ(2.12)

= −c − ab

k(v)

w(λ, v) − w(1, v)

λ − 1
.

This shows that dµ/dλ increases as λ → 1−, cf Figure 2.1 and (2.2).

Letting λ → 1−, we have dµ
dλ

→ k(v) and w(λ,v)−w(1,v)
λ−1

→ ∂w(1,v)
∂λ

. Thus
at λ = 1,

k(v) = −c − ab

k(v)

∂w(1, v)

∂λ
.
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Substituting into (2.11), we have

(2.13) −k(v)

µ
n · f = ab(

∂w(1, v)

∂λ
− w(λ, v)

λ − 1
) − k′(v)v′.

From (2.2),

∂w(1, v)

∂λ
− w(λ, v)

λ − 1
> 0.

From k(v) < 0, k′(v) > 0 and v′ < 0,

−k′(v)v′ > 0.

The desired result follows by substituting the above into (2.13). �

Lemma 2.5. Let (λ, µ, v)(ξ) be a solution of the initial value problem
with

(λ(0), µ(0), v(0)) ∈ W.

Assume that v′(0) < 0, then v′(ξ) < 0 for all ξ > 0 and the orbit stays
in W for all ξ > 0.

Proof. Let t1 > 0 be the first time that the orbit hits the boundary of
W . Then it must hit Fs at ξ = t1.

For 0 ≤ ξ < t1 we have λ′(ξ) = µ(ξ) > 0. From Lemma 2.3,
v′(ξ) < 0 at ξ = t1. Either (λ, v)(t1) ∈ Fs, λ < 1 or it is on the line
λ = 1, µ = 0, v+ ≤ v ≤ v−.

In the first case, this would imply that the vector field enters W
from outside at the point (λ, µ, v)(t1). There exists a time 0 < t2 < t1
such that the orbit is outside W , contradicting to the assumption that
t1 > 0 is the first time that the orbit hits the boundary of W .

In the second case, the orbit must meet the line

L := {(λ, µ, v)|λ = 1, µ = 0, v+ ≤ v < v−},
at ξ = t1. However, there is another solution of (2.4) passing through
the same point. This solution is (v̂(ξ), λ(ξ) ≡ 1, µ ≡ 0), where v̂ is a
solution of

v̂′ = −b

c
(p(1, v̂) − p− + c2(v̂ − v−)),

v̂(t1) = v(t1)

This is impossible by the uniqueness of the initial value problems of
ODEs. �

Lemma 2.6. Let

(2.14) H(λ, v) := c2(v − v−) + p(λ, v) − pe.
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Then we have H(λ±, v±) = 0 and

H(λ, v) := c2(v − v+) + p(λ, v) − p+.

(i) If c2 + pv(λ = 1, v+) ≥ 0, then H(λ = 1, v) > 0 for v > v+.
(ii) If

(2.15) c2 + pv(λ = 1, v+) < 0,

then there exists v0 ∈ (v+, v−) such that

H(v0, λ = 1) = 0,

H(v, λ) < H(λ = 1, v) < 0, for v+ < v < v0, λ < 1.(2.16)

Proof. H(λ−, v−) = 0 comes from the definition (2.14). Subtracting
c2(v+ − v−) + p(λ+, v+) = 0, we have H(λ+, v+) = 0.

(i) Our condition implies that H ′(λ = 1, v+) ≥ 0. Due to the hypoth-
esis pvv > 0, we have H ′′(λ = 1, v) > 0. Therefore, H ′(λ = 1, v) > 0
for v > v+. Using H(λ = 1, v+) = 0, we conclude that H(λ = 1, v) > 0
for v > v+.

(ii) Using pλ > 0, we see that

H(v−, λ+ = 1) > H(v−, λ−) = 0.

We also see that (2.15) implies that H(v, λ+ = 1) < 0 for v > v+

and close to v+. By the Intermediate Value Theorem, there exits a
point v = v0 ∈ (v+, v−) where H(v0, λ = 1) = 0. Assuming that v0 is
the smallest of such points, then (2.16) is satisfied for λ < 1, v+ < v <
v0. �

Theorem 2.7. Let E− and E+ be a pair of equilibrium points as in
(2.6) and (2.7) and let c be calculated from (1.6). Assume that con-
ditions of (H1) are satisfied. Then there exists a collapsing wave con-
necting E− on the equilibrium pressure line p = pe to E+ on λ+ = 1.
Moreover, the (λ, u, v) components of the traveling wave are monotone.

Proof. Due to Lemma 2.5, using the fact φ(ξ, P ) satisfies the condition
v′(0) < 0, we conclude that the orbit of which cannot hit Fs in finite
time and the orbit must stay in W for all ξ > 0. Moreover, since
v′(ξ) < 0 and λ′(ξ) > 0, the solution must approach a limit with λ = 1
and µ = 0. The orbit of φ(ξ, P ) cannot hit L in finite time, so it must
approach an equilibrium point on L. It remains to show that there is
only one equilibrium point on L.

The flow on L is governed by v′ = −(b/c)H(λ = 1, v). Condition
(H1) and part (i) of Lemma 2.6 implies that H(λ = 1, v) > 0 for
v > v+. Hence E+ is the only equilibrium point on L.
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In the proof, we see that (λ, v) of the collapsing wave are monotone.
Since v′ does not change sign, then the equation u′ = −cv′ implies u(ξ)
is also monotone. �

Theorem 2.8. For a collapsing wave to exist, it is necessary and suf-
ficient that conditions of (H1) hold:

(2.17) c ≥ 2
√

ab|p+ − pe|,
and

(2.18) c2 ≥ −pv(λ±, v±)

Proof. The sufficiency part is already proved in Theorem 2.7.
Now, we prove that (2.17) is necessary. Indeed, if c < 2

√

ab|p+ − pe|,
then two of the eigenvalues r2 and r3 are complex and hence the hete-
roclinic solution of (2.4) would be oscillating around λ+ = 1 for large
ξ, forcing the trajectory out of the 0 ≤ λ ≤ 1 range. More precisely,
consider a small δ neighborhood Oδ of E+ with λ = 1. Let ` = λ − 1.
The heteroclinic solution Γ satisfies:

`′ = µ, µ′ = −cµ − ab(p − pe)(` + `2).

Moreover, r2 := `2 + µ2 6= 0, since (`, µ, v) = (0, 0, v) with v > v+

is a point on L which is invariant under the flow and hence has no
intersection with the heteroclinc orbit Γ. Let

k := inf{ab(p(λ, v) − pe)(` + 1) : (λ, v) ∈ Oδ}.
If c < 2

√

ab|p+ − pe|, then we can choose δ sufficiently small such that
c2 < 4k. Using the polar coordinates

` = r sin(θ), µ = r cos(θ),

we have

dθ

dξ
=

µ2 + cµ` + ab(p − pe)(` + 1)`2

µ2 + `2

≥ µ2 + cµ` + k`2

µ2 + `2

= cos2(θ) + c cos(θ) sin(θ) + k sin2(θ).

The condition c2 < 4k implies that dθ
dξ

is positive for 0 ≤ θ ≤ 2π

with a positive minimum. It is also a 2π periodic function. Thus,
θ(ξ) → ∞ as ξ → ∞. Then λ(ξ) = r(ξ) sin(θ) + 1 will be oscillatory
around λ = 1. We recall that only those traveling waves in the range
0 ≤ λ ≤ 1 are admitted. Thus, collapsing (or explosion) wave does not

exist if c < 2
√

ab|p+ − pe|.
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To show that c2 ≥ −pv(λ+, v+) is a necessary condition by an indirect
proof, we assume its contrary (2.15), c2 < −pv(λ+, v+). From part (ii)
of Lemma 2.6, there exist v0 ∈ (v+, v−) where H(v0, λ = 1) = 0 and an
open set Q(E+) := {(λ, v) : v+ < v < v0, λ < 1} where H(λ, v) < 0,
by using pλ > 0. Any heteroclinic orbit connecting E− to E+ with
λ < 1 must enter Q(E+) at some point ξ̄ where v+ < v(ξ̄) = v0 <
v−. However, v′(ξ) = −(b/c)H(λ, v) ≥ 0, preventing the orbit from
entering in Q(E+). This contradicts to v(ξ) → v+ as ξ → ∞.

We note that in the case of collapsing wave, (1.2b) implies c2 ≥
−pv(λ−, v−). This can be proved by contradiction. Assume the con-
trary: c2 < −pv(λ−, v−). Then on Figure 1.1, the curve p = p(λ−, v), v+ <
v < v− will be above the straight line segment v−v+, defined by
p − pe = −c2(v − v−). Hence p(λ = 1, v+) < p(λ−, v+), contradict-
ing to pλ > 0.

More precisely, if pv(λ−, v−) < −c2 then using pvv > 0, we have

pv(λ−, v) = pv(λ−, v−) −
∫ v

−

v

pvvdv < −c2, v < v−,

p(λ−, v+) − pe = −
∫ v

−

v+

pvdv > c2(v− − v+).

Using p(λ = 1, v+) − pe = c2(v− − v+), we have

p(λ−, v+) > p(λ = 1, v+).

This is a contradiction to pλ > 0.
Thus (2.18) is a necessary condition for the existence of a collapsing

wave.
�

2.3. Existence of explosion waves. From Figure 1.2, we see that
for explosion waves, c2 + pv(λ+, v+) 6= 0 holds because pvv > 0.

Theorem 2.9. (i) For an explosion wave to exist, it is necessary that
the following conditions hold:

c ≥ 2
√

ab|p+ − pe|,(2.19)

c2 + pv(λ = 0, v+) > 0.(2.20)

(ii) For the existence of a monotone explosion wave to exist, it is
sufficient that (2.19) and

(2.21) c2 + pλ(λ−, v−) > 0.

hold.
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Proof. (i) The necessity of condition (2.19) can be proved just like that
of (2.17) in Theorem 2.8.

Now suppose that (2.20) is not satisfied. Then c2+pv(λ = 0, v+) ≤ 0.
Combine this with pvv > 0, we have

H(λ = 0, v+) = 0, ∂vH(λ = 0, v+) ≤ 0, ∂2
vH(λ = 0, v) > 0.

Therefore H(λ = 0, v) > 0, hence v′ = − b
c
H(λ, v) < 0 for v < v+. This

is an contradiction to v− < v+.
(ii) The proof of the existence of an explosion wave is similar to that

of Theorem 2.7. The two eigenvalues for a fixed v are

r1(v) = −c/2 −
√

(c/2)2 + ab(p(0, v) − pe),

r2(v) = −c/2 +
√

(c/2)2 + ab(p(0, v) − pe).

Let k(v) = r2(v), then we have k′(v) < 0.
Define the prism shaped region W as in Figure 2.4, bounded by v− ≤

v ≤ v+, 0 ≤ λ ≤ λe, µ ≥ 0 and a slant surface Fs := {µ− k(v)λ = 0}.

 v

eλ=λ

λ

µ λ=k(v)

λ=0

 v = v+

v = v−

µ

Figure 2.4. The prism shaped solid W .

The E− has a one-dimensional unstable manifold that enters W from
E−. Let P ∈ W u(E−)∩W and φ(ξ, P ) be the solution with the initial
data P . Similar to the proof of Theorem 2.7, it is easy to show that on
the four straight sides of W , φ(ξ, P ) cannot leave W . By Lemma 2.3,
for the solution φ(ξ, P ), v′(ξ) > 0 as long as inside W .

The normal of the slant side Fs, pointing upward and to the interior
of W , is

n = (−k(v), 1,−k′(v)λ)
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E

F

G

µ

λ

Figure 2.5. Front view of the solid W . The flow enters
W from all its surfaces. The curve EG is the front view
of the heteroclinic solution.

The vector fields are

f = (λ′, µ′, v′).

Since −k′(v)v′(ξ) > 0, to prove n · f > 0, it suffices to show −k(v)λ′ +
µ′ > 0. Due to λ′ < 0, this is equivalent to dµ/dλ − k(v) < 0. On the
part of Fs where 0 < λ < λe, we have

dµ

dλ
= −c − abw(λ, v)

µ

= −c − abw(λ, v) − w(0, v)

k(v)λ
.

Let λ → 0+, we have

k(v) = −c − ab

k(v)

∂w(λ, v)

∂λ
.

From (2.1), dµ/dλ < k(v). Therefore, the solutionφ(ξ, P ) cannot leave
W on from Fs. Cf. Figure 2.5. The solution must approach a limit
where λ = 0, µ = 0, v ≤ v+.

It remains to show that there is no equilibrium point satisfies v− ≤
v < v+, λ = 1, µ = 0. From H(λ−, v−) = 0 we have H(λ = 0, , v−) < 0
due to pλ > 0. If there exists a point v0 ∈ (v−, v+) such H(λ = 0, v0) =
0, then using H(λ = 0, v+) = 0 and H(λ = 0, v−) < 0, a contradiction
to pvv > 0 can be reached. �
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3. Singular limit of the traveling wave solutions as b → 0
or b → ∞

Recall that b = β/ε and a = ε/γ. We consider singular limit of
collapsing or explosion waves with either b → 0, or ∞, meanwhile
(ab) = β/γ remain constant. In the (λ, v) plane, we show that as
b → 0 the singular limit of the solution is the union of two sides λev−
and v−v+ in Figure 3.1. While as b → ∞ the singular limit is a smooth
decreasing curve defined later in (3.12).

3.1. Singular limit as b → 0. In this subsection we assume that b
is a small parameter and we are interested in the singular limit of the
collapsing and explosion waves as b → 0.

In singular perturbation literatures, (2.4) is the so called “fast sys-
tem” where the time scale is ξ and y′ = dy/dξ:

λ′ = µ,(3.1)

µ′ = −cµ − (ab)w(λ, v),(3.2)

v′ = −b

c
(c2(v − v−) + p(λ, v) − pe) = 0.(3.3)

Introducing the slow time τ = bξ, and using ẏ to denote dy/dτ , (2.4)
becomes the so called “slow system”:

bλ̇ = µ,(3.4)

bµ̇ = −cµ − (ab)w(λ, v),(3.5)

v̇ = −c(v − v−) − 1

c
(p(λ, v) − pe),(3.6)

We want to show that as b → 0, the collapsing and explosion waves
approach the so called singular traveling wave solutions that consist of
two layers: a fast initial layer where the solution jumps from λ = λe to
λ = 0 or λ = 1 in a time scale of O(b), while v remains constant; a slow
regular layer where the solution stays on the slow manifold defined by
λ = 0 or 1. See the diagram in Figure 3.1.

The slow manifolds and the flow on the slow manifolds:

In the slow system (3.4) and (3.5), as b → 0, the region where (λ̇, µ̇)
do not blow up and where (λ, µ, v) converges uniformly to a limit is
call the regular layer. Letting b → 0 in (3.4)-(3.6), we find that in the
regular layer, the limiting system becomes,

cv̇ + c2(v − v−) + (p − p−) = 0,

w(λ, v) = 0, µ = 0.
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v

+ep=p

λ=0 λ=1
λ

+v

v

λ=λev− −

v

Figure 3.1. Singular traveling wave solutions in the
(λ, v)-plane

The algebraic equation w(λ, v) = 0 yields three branches of solutions

p(λ, v) = pe, or λ = 0, or λ = 1.

Definition 3.1. The union of the solutions of the algebraic equations

w(λ, v) = 0, µ = 0

in the (λ, µ, v) space is called the slow manifold of the singular limit
system. It consists of three smooth branches, denoted by:

S0 := {λ = 0, µ = 0.},
S1 := {λ = 1, µ = 0.},
Se := {p(λ, v) = pe, µ = 0}

The motion on the slow manifolds is determined by cv̇+c2(v−v−)+
(p − p−) = 0. Using (2.8), it is equivalent to

cv̇ + c2(v − v+) + (p(λ, v) − p+) = 0.

On the slow manifold p(λ, v) = pe = p−, the flow is determined by

cv̇ + c2(v − v−) = 0.

Since c > 0, the equilibrium v = v− is stable. No solution can leave
the equilibrium v = v− along the slow manifold p = pe. If we look for
the traveling wave solution from p = pe to λ = 0 or 1, the singular
traveling wave solution must start with a fast jump from Se to S0 or
S1.
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After the fast jump, the flow on the slow manifold S1 is determined
by the initial value problem

cv̇ + c2(v − v+) + (p(1, v) − p+) = 0,

v(0) = v− > v+.

We see that cv̇ = −H(, λ+, v) where H(λ, v) is defined in the proof of
Theorem 2.7. We have shown that H(λ+, v) > 0 for v > v+. Thus v+

is a stable on S1 with respect to the points v > v+.
In an analogous manner, we can prove that on the slow manifold S0,

the equilibrium solution (λ, v) = (0, v+) is stable and from attracts all
the points v < v+ (v̇ > 0 for all v < v+).

The fast system and heteroclinic solutions connecting the slow

manifolds: The only way a traveling wave leaves E− is to fast jump
along the strong unstable manifold transverse to the slow manifold. We
now study the fast jump.

Let b = 0 in the fast system (3.3), we have

v′ = 0.

Thus in the singular layer v is a constant. Since the jump starts at E−,
v = v−. The rest of the equations (3.1), (3.2) become

λ′ = µ,(3.7)

µ′ = −cµ − (ab)w(λ, v−).(3.8)

Observe that the slow manifolds consist of equilibrium points for
(3.7), (3.8). We will show that Se consists of saddle points and S0,S1

consist of stable equilibrium points.
We then study heteroclinic solutions of (3.7), (3.8), that connects Se

to S1 or S0.
The λ equation for a fixed v = v0 is

(3.9) λ′′ + cλ′ + (ab)w(λ, v−) = 0.

The line v = v− intersects the graph of w = 0 in three points, as seen
in Figure 3.1. These are equilibrium solutions for (3.9). We now deter-
mine the eigenvalues of (3.9) at the equilibria. The linear variational
equation for (3.9) is

(3.10) Λ′′ + cΛ′ + (ab)
∂w

∂λ
Λ = 0.
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∂w

∂λ
=

∂p

∂λ
λ(λ − 1) < 0, if p = pe,

∂w

∂λ
= |p − pe| > 0, if λ = 0, 1.

Therefore, for each fixed v0, the equilibrium point on Se a saddle point,
and the equilibrium point on S0,S1 is an attractor if c > 0 (or a repeller
if c < 0, which is not our case).

We investigate the heteroclinic solution connecting p = pe to λ = 1.
Under the conditions c > 0, the connection is from a saddle to an
attractor, For a fixed v0 = v−, the graph of w = w(v0, λ) is sigmoid,
with three zeros at λ = 0, λe = λ∗(v0, pe), λ = 1. See Figure 2.1 for the
graph of w(λ, v0) and its potential function

W (v0, λ) =

∫ λ

0

w(v0, α)dα.

The system (3.9) has a Fisher, or KPP type nonlinearity. For any
c > 0, it is known to have a traveling wave solution connecting the
saddle point λ = λ e to the attractor λ = 1 or 0 . Moreover, if
(H1) is satisfied, c ≥ 2

√

ab|p(λ+, v) − pe|, then all the eigenvalues at
λ = 0, 1 are real and negative. In this case, the heteroclinic solutions
are monotone in λ and satisfy 0 ≤ λ ≤ 1.

3.2. Singular limit of the traveling waves as b → ∞. Consider
the singularly perturbed system which is derived from (2.4) by letting
d = 1/b to be a small parameter while (ab) remains constant.

(3.11)

λ′ = µ,

µ′ = −cµ − (ab)w(λ, v),

dv′ = −c(v − v−) − 1

c
(p(λ, v) − p−).

Let d = 0. The last equation defines the so called slow manifold

W c(0) = {(λ, µ, v) : µ ∈ R, c2(v − v−) + p(λ, v) − pe = 0.}.
Due to pλ > 0, the slow manifold exists and can be expressed as λ =
λ∗(v). We make the following additional assumption in this subsection:

(H4) c2 + pv(λ, v) > 0,

along the slow manifold W c(0). We can solve the above equation for
v:

(3.12) v = v∗
0(λ),

d

dλ
v∗
0 < 0.
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The graph of (3.12) a smooth decreasing curve connecting λe to v+

in Figure 3.1 (not plotted).
Introducing the fast variable τ = ξ/d, we have the so called fast

system

(3.13)

λτ = dµ,

µτ = −d(cµ + (ab)w(λ, v)),

vτ = −c(v − v−) − 1

c
(p(λ, v) − p−).

When d = 0, the fast system has a two-dimensional center manifold
that consists of equilibrium points

W c(0) = {(λ, µ, v)|λ ∈ R, µ ∈ R, v = v∗
0(λ)}.

Linearizing the last equation of (3.13),

Vτ = −(c + pv/c)V,

we find that the manifold is normally stable, due to (H4). Therefore
the center manifold persists for small d, denoted by W c(d).

W c(d) = {(λ, µ, v)|λ ∈ R, µ ∈ R, v = v∗
d(λ, µ)}.

The function v∗
d is O(d) close to v∗

0 in C2 norm. Also W c(d) should
contain the two equilibrium points E± which are independent of d.

Consider the first two equations of (3.11) restricted to W c(d):

(3.14)
λτ = µ,

µτ = −cµ − (ab)w(λ, v∗
d(λ, µ)).

At the equilibrium λ = 0 or 1, we have wv = 0, so dw
dλ

= wλ > 0.
Together with c > 0, we conclude that the equilibrium (λ, µ) = (λ+, 0)
is a hyperbolic attractor. Therefore for small d the equilibrium is still
a hyperbolic attractor.

At the equilibrium λ = λe, if d = 0, we have

wλ < 0, wv > 0,
d

dλ
v∗
0(λ) < 0.

Therefore
dw

dλ
= wλ + wv ·

d

dλ
v∗
0(λ) < 0.

This implies that the equilibrium (λ, µ) = (λe, 0) is a hyperbolic saddle.
For d = 0, the restricted flow on the slow manifold, system (3.14),

has a fisher type traveling wave if c > 0 that is a saddle-attractor
connection. For d > 0 but small, the slow manifold and the traveling
wave connection should persist.
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4. Numerical Results on the Large Time Behavior of
Collapsing and Explosion Waves

From Theorem 2.8, we see that for a given (v+, λ+), there are infin-
itely many collapsing or explosion waves connecting to it with different
speeds. If two of collapsing (or explosion) waves can appear simultane-
ously in Riemann solvers, nonuniqueness of solutions will occur. Thus,
we want to study numerically which traveling wave appears when t > 0
is large enough in the solution of (1.1-3) with Riemann initial data

(4.1) (u, v, λ)(x, 0) =

{

(u+, v+, λ+), x > 1

(u−, v−, λ−), x < 1.

We take

(4.2) p(v, λ) =
(1 + λ)2

4v2
,

with the equilibrium pressure

(4.3) pe = 1.

We fix the parameters of (1.1) as a = ε/γ = 2, b = β/ε = 1 in our
numerical computations. We use WENO3-4 scheme with 3rd order
Runge-Kuta explicit time stepping, [8]. For the purpose of double
checking, we also use Lax-Friedrichs’ central scheme to compute the
same problem.

Example 4.1. Choose (u+, v+, λ+) = (0, 1/
√

2, 1), (u−, v−, λ−) =
(−0.5, 0.75, 0.5) in (4.1). We compute the solution of (1.1, 4.1, 4.2)
using WENO3-4 with ∆x = 0.002, ∆t = 0.0001. The solution at t = 1
is displayed as Figure 4.1. The right most wave at around x = 3.5 is
a collapsing wave. To compute the speed c of the collapsing wave, we
plugging in the values of (v, λ) at the two sides of the wave, x = 3 and
x = 4, into (1.6). Then, we calculate the difference

(4.4)
√

4ab|p(1, v(4, 1))− pe| − c = 2
√

2 − c = 0.0085.

From Theorem 2.8, we know that the slowest speed of a collapsing
wave connecting (v(4, 1), 1) on the right is 2

√
2. Thus the result (4.4)

suggests that the speed of the collapsing wave we see in the solution
should be 2

√
2, the minimum speed for all collapsing waves connecting

(v, λ) = (v(4, 1), 1) on the right side of the wave.
To further test the above numerical result, we take finer ∆x = 0.0002,

∆t = 0.000002. The difference actually increases to

(4.5)
√

4ab|p(1, v(4, 1))− pe| − c = 0.024.
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Figure 4.1. The solution of (1.1, 4.1-3) at t = 1.

Although this still suggests that the collapsing wave in the solution
should be the one with the slowest speed, it is contrary to our expec-
tation that the difference should be smaller than that in (4.4). We
use Lax-Friedrichs’ central scheme to compute the same problem. the
result is similar to (4.5). One factor contributing to this error is the
truncation error in front of the wave. The diffusion term in (1.1)3

pulls λ down from λ+ = 1. This deviation from the unstable equi-
librium λ = 1 repels λ into λ < 1 exponentially fast, and is one of
the major driving force of the wave. However, with ∆t and diffusion
effect so small away from the front, such small deviation from λ = 1
is truncated in computation, resulting in slowing down of the wave.
The shrinking of the diffusion effect can be measured by the change of
the distance from the center of collapsing wave to the first occurrence
of λ = λ+ = 1, where the center of the wave is defined as the place
x where the pressure is at the middle between that at the front and
back of the wave. We observe that at t = 1, the distance is 0.3567 for
∆x = 0.002, ∆t = 0.0001, while with ∆x = 0.0002, ∆t = 0.000002,
the distance is 0.2264.
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5. traveling Wave Admissibility Criterion for Riemann
Problems of (1.12)

In [3], we showed that the Riemann problems for (1.12) has a unique
solution under the following kinetic relation on phase boundaries of
positive speeds.

(i) For each liquid state (v−, λ− = 0) with p(v−, 0) > pe, there is
only one vapor state (v+, λ+ = 1) that can be connected to
(v−, 0) by a liquefaction wave. The speed of the liquefaction
wave s = s(v−) is a decreasing C1 function satisfying s2 +
pv(λ±, v±) ≤ 0.

(ii) For each vapor state (v−, λ− = 1) with p(1, v−) < pe, there is
only one liquid state (v+, λ+ = 0) that can be connected to
(v−, 1) by an evaporation wave. The speed of the liquefaction
wave s = s(v−) is an increasing C1 function satisfying s2 +
pv(λ±, v±) ≤ 0.

The above kinetic relation is motivated by the behavior liquefaction
and evaporation traveling waves. When these waves exist, their slow-
est speed satisfy the kinetic relation (i-ii). In [3], the collapsing and
explosion waves are excluded.

In this section, we shall include the collapsing and explosion waves
in the kinetic relations. In the sequel, when we say the collapsing
(or explosion) wave, we refer to the collapsing (explosion) wave of the
slowest positive speed among all collapsing (explosion) wave connecting
the same (v+, λ+) on the right side.

We know that collapsing, explosion, liquefaction and evaporation
traveling waves does not exist if their speed, c, satisfy c2 < 4ab|p+−pe|.
But, collapsing and explosion waves are supersonic while liquefaction
and evaporation waves are subsonic. Thus, we can be sure that for
any given (v+, λ+ = 0 or 1), only one kind of wave, among collapsing,
explosion waves, liquefaction and evaporation waves can connect to it.
But, this may not exclude the possibility of having two solutions to
the same Riemann problem. We shall show, in the following, that it is
possible to have two Riemann solvers for the same Riemann data, one
has a collapsing wave and the other has a liquefaction or evaporation
wave.

Consider the Riemann initial data of (1.12)

(5.1) (u, v, λ)(x, 0) =

{

(u+, v+, λ+), x > 0,

(u−, v−, λ−), x < 0,
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where λ+ = 1, λ− = 0 and p± = p(λ±, v±) > pe, . Assume that there is
a collapsing wave of slowest speed connecting (v+, λ+) to some (ve, λe).
Typically, this requires p+ − pe > 0 to be away enough from 0. For
simplicity, we assume that

(5.2) pvv > 0.

we can further choose (5.1) so that there is a Riemann solver for (5.1)

(5.3) (u−, v−, λ−) → (u2, v2, 1) → (u+, v+, 1),

with λ− = 0 as depicted in Figure 5.1. The Rankine-Hugoniot condi-

2+ v−v v

λ = 1

ep

p

v

λ = 0

Figure 5.1. The solution (5.3) illustrated on (v, p)-plane

tions for (5.3) are

(5.4)

− s(v2 − v−) = u2 − u−,

−
∫ v+

v2

√

−pv(v, 1)dv = u+ − u2,

v2 > v±.

By the behavior of liquefaction traveling waves, the speed s is positive.
Adding the right hand side of the two equations of (5.4), we get

(5.5) F1(v2) := −s(v2 − v−) −
∫ v+

v2

√

−pv(v, 1)dv.

It is easy to see that the necessary and sufficient condition for (4.3) to
have a solution (v2, u2) is that

(5.6) F1(v2) = u+ − u−, v2 > v±

has a solution
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Now, we shall construct another solution of (1.12) with the same
initial data (5.1) satisfying (5.6), using collapsing waves. Consider
such a solution with the structure

(5.7) (u−, v−, λ− = 0) → (u1, v1, 0) → (ue, ve, e) → (u+, v+, 1),

see Figure 5.2. Similar to (5.4)-(5.6), such a solution exists if and only

vv − e+1 v v

v

λ = 1

e

p

p

λ = 0

Figure 5.2. The solution (5.7) on (v, p)-plane.

if there is a solution v1 for the equation

(5.8)

F2(v1) := − χ(−∞ < v1 < v−)s1(v1 − v−)

+ χ(v− ≤ v1 ≤ m)

∫ v1

v
−

√

−pv(v,0)dv

− s2(ve − v1) − s(v+ − ve) = u+ − u−,

where the s is the speed of collapsing wave connecting (ve, λe) to
(v+, λ+ = 1). Since v1 can vary from −∞ to m, the range of F2(v1) at
least include the interval

(5.9) (F2(−∞), F2(m)] =

(

−∞,

∫ m

v
−

√

−pv(v,0)dv − s(v+ − ve)

]

.

To prove (5.8) also has a solution v1, it suffices to show that the range
of F1(v2) can be included in (5.9), by adding assumptions on p(λ, v) if
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necessary. To this end, we see that
(5.10)

F1(v2) := −s(v2 − v−) −
∫ v+

v2

√

−pv(v, 1)dv

= −
√

(p− − p2)(v2 − v−) +

∫ v2

v+

√

−pv(v, 1)dv

≤ −
√

(p− − p2)(v2 − v−) +

(∫ v2

v+

−pv(v, 1)dv

)1/2 (∫ v2

v+

dv

)1/2

= −
√

(p− − p2)(v2 − v−) +
√

(p+ − p2)(v2 − v+)

If the left hand side of (5.10) is < 0, then the range of F1 is contained
in the interval (−∞, 0] and hence in the range of F2(v1). Thus we have
the following result.

Lemma 5.1. There is also a solution of (1.12), (4.1) that contains a
collapsing wave if

√

(p(1, v+) − p(1, v2))(v2 − v+) ≤
√

(p(0, v−) − p(1, v2))(v2 − v−).

and if the following three conditions hold.
(i) There is a collapsing wave of slowest speed connecting (v+, λ+ = 1)
to some (ve, λe) with p(λe, ve) = pe.
(ii) The data v−, u± are such that there is a solution of the Riemann
problem (1.12), (4.1) consisting of a positive speed liquefaction wave
and a faster moving rarefaction (or a shock) wave.
(iii) There is a liquefaction wave connecting (v−, λ− = 0) to a (v2, λ2 =
1).

Lemma 5.1 points out a way to construct two solutions for a Rie-
mann problem. We shall construct an example later. Now we con-
sider which solution is admissible in the sense that it can serve as the
ε → 0 limit of the solution of (1.1) for the same initial data. When
two solutions depicted in Fig 5.1 and Fig 5.2 exist simultaneously, two
mechanisms are competing at t = 0 around the point x = 0 where
liquid and metastable vapor contact. The first mechanism is to reduce
the pressure first via rarefaction wave, without phase change, followed
by a liquefaction wave. This gives us the solution (5.3). Another
mechanism is to undergo the phase change and reduce the pressure im-
mediately, resulting in the collapsing wave in the second solution (5.7).
The second mechanism is faster, indicated by the supersonic speed of
the collapsing wave versus the sonic and subsonic wave speeds in the
solution (5.3). It is reasonable to expect the second mechanism wins,
resulting a solution of the type (5.7). To confirm this expectation, let
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us do some numerical experiments. We use the same functions as in
(4.2), (4.3), and the same WENO3-4 method as in last section. Our
numerical experiments are divided into the following examples

Example 5.1. A solution of the type (5.3). We choose v− = 1/(2
√

1.5),

0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 5.3. A liquefaction wave is between x = 2 and
x = 3.

λ− = 0. There is a liquefaction wave connecting this (v−, λ−0 = 0).
To generate a liquefaction wave, we computed the numerical solution
of (1.1) with Riemann initial data

(u, v, λ)(x, 0) =

{

(0, 1
2
√

1.4
, 0), x < 0.8

(−0.8, 1/
√

0.8, x > 0.8.

The solution at t = 2.14 is shown in Figure 5.3. The liquefaction is
the jump between 2 < x < 3 in Figure 5.3. The two sides of the
liquefaction wave are read from the numerical solution at x = 2.2 and
x = 3 as (v−, λ− = 0) = (1/(2

√
1.5), 0) and (v2, 1) = (0.9568, 1). The

speed of this wave is

s2 =

√

−p(1, v2) − p(0, v−)

v2 − v−
= 0.8619.
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Now, we construct a Riemann problem containing the liquefaction
wave we found in Figure 5.3. We choose v+ = 1/

√
2. According (5.5),

the solution of type (5.3) can be constructed by choosing

(5.11)

(u− = 0.7709, v− = 1/(2
√

1.5), λ− = 0),

(u+ = 0, v+ = 1/
√

2, λ+ = 1),

u+ − u− = −s(v2 − v−) −
∫ v+

v2

√

−pv(v, 1)dv = −0.7709.
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Figure 5.4. The solution of (1.1) with initial data
(5.11) is of type (5.7).

Example 5.2. For (u±, v±, λ±) chosen in Example 5.1, there is an-
other solution of type (5.7) for the same Riemann problem (5.11). To
this end, we numerically compute the solution of (1.1) with the Rie-
mann initial data. Parameters a, b, ε used are the same as those in
Example 4.1. The solution at time t = 0.5108 is shown in Figure 5.4.
The solution consists, from left to right, a ordinary Lax shock of nega-
tive speed, a liquefaction wave compressing liquid/vapor mixture into
liquid, a collapsing wave. This solution is of type (5.7). This example
not only shows that both type (5.3) solution and type (5.7) solution
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exist for the same Riemann data, but also point out that type (5.7) is
admissible under vanishing viscosity criterion, confirming our expecta-
tion.

References

[1] D. Amadori, A. Corli, On a model of multiphase flow. To appear in SIMA J.
Math. Anal.

[2] Bramson, Convergence of solutions of Kolmogorov equation to travelling waves,
Mem. Amer. Math. Soc., 44 (1983), no. 285.

[3] A. Corli and H. Fan, The Riemann problem for reversible reactive flows with
metastability. SIAM J. Appl. Math., 65 (2005), 426-457.

[4] H. Fan, travelling waves, Riemann problems and computations of a model
of the dynamics of liquid/vapour phase transitions. J. Diff. Eqs. 150 (1998),
385-437

[5] H. Fan, Convergence to travelling waves in two model systems related to the
dynamics of liquid/vapour phase changes. J. Diff. Eqs. 168, 102-128, 2000.

[6] H. Fan, On a model of the dynamics of liquid/vapour phase transitions. SIAM

J. Appl. Math. 60 (2000), 1270-1301
[7] H. Fan, Symmetry breaking, ring formation and other phase boundary struc-

tures in shock tube experiments on retrograde fluids, J. Fluid Mech., 513
(2004), 47-75.

[8] G.-S. Jiang and C.-W. Shu, Efficient Implementation of Weighted ENO
Schemes, J. Comp. Phys., 126, (1996) 202-228.

[9] K. Trivisa, On the Dynamics of Liquid-Vapor Phase Transition. To appear in
SIAM J. Math. Anal.

Department of Mathematics, Georgetown University, Washington,
DC 20057

E-mail address : fan@math.georgetown.edu

Department of Mathematics, North Carolina State University, Raleigh,
NC 27695-8205

E-mail address : xblin@math.ncsu.edu


