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Abstract

∼ Singularly perturbed equations naturally occur in many areas of

engineering, physical and biological sciences.

∼ Due to different time scales involved in the equations, the sys-

tem can have internal layer solutions that exhibit fast and slow

behaviors.

∼ Fundamental problems are the construction, asymptotic expan-

sion and stability of the layered solutions.

∼ Lin: Construction and asymptotic stability of structurally stable

internal layer solutions, Trans. AMS 2001

∼ Hale & Lin: Multiple internal layer solutions generated by spa-

tially oscillatory perturbations, JDE 1999
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Introduction Systems of parabolic equations in fast-slow form,

ut = ε2uxx + f(u, v), u ∈ R
m, v ∈ R

n,

vt = vxx + g(u, v), 0 < x < 1,

Boundary conditions at x = 0, 1.

(1)

Example 1 The x-dependent scalar equation

ut = ε2uxx + (1 − u2)(u− a(x)), 0 < x < 1,

ux = 0, x = 0,1,

a(x) ∈ C∞[0,1] with a(xi) = 0, a′(xi) 6= 0 at points 0 < x1 < x2 <

· · · < xr < 1.

P. Fife 1974, Hale & Sakamoto 1988. Angenent, Mallet-Paret &

Peletier 1987.

Look for stationary solution, ut = 0. Near x = xi, a(x) ≈ 0, the

solution has internal layers connecting u = 0 and u = 1. Let

x = xi + εξ, u′ = du/dξ:

0 = u′′ + (1 − u2)u, u′ = εux.
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Angenent, Mallet-Paret & Peletier:

Total number of internal layer solutions: 2r

Number of stable internal layer solutions:

The rth Fibonacci number.

u(x)

u=1
u

x

u=a(x)

x x x i+1i−1 i

By letting v = x which satisfies

vt = vxx, v(0) = 0, v(1) = 1.

The equation can be converted into (1) with g(u, v) = 0.

4



Example 2 The activator-inhibitor model.

ut = ε2uxx + u− u3 − v,

vt = vxx + a0u− a1v.
(2)

The stationary internal layer solutions satisfy

0 = ε2uxx + f(u, v),

0 = vxx + g(u, v), 0 < x < 1.
(3)

A1. f(u, v) = 0 has three solutions u = h±(v), u = h0(v) at I±, I0.

A2. J(v) =
∫ h+(y)

h−(y)
f(s, y)ds has an isolated zero ỹ:

J(ỹ) = 0, dJ(ỹ)/dy < 0.

A3 fu < 0 on I− and I+.

A4 g < 0 on I− and g > 0 on I+. d
dyg(h±(y), y) < 0.

A5 gy ≤ 0 on I±.

There exist one mono layer solution and many Multi layer solutions.

The stability of both mono and multi-layered solutions was first

proved by Nishiura and Fujii 1987.
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Describe the internal layer solutions for the two models:

∼ f(u, v) = 0 has three branches of solutions u = h±(v), h0(v).

The branches u = h±(v) is stable for the reaction equation,

ut = f(u, v), where v is a parameter.

The branch u = h0(v) is unstable for the reaction equation.

∼ An internal layer solution (u(x), v(x)) stays near the two slow

manifolds u = h±(v) for most of the points x. These x form the

regular layers.

∼ Near a finite sequence {xi}r1, where the solution jumps between

the two slow manifolds. These points form the internal layers.

They are also the places where ε2uxx is no longer negligible.

A regular layer is an interval where the solutions u(x, ε) converge

uniformly to a limit as ε→ 0.

A singular layer is an interval where the solutions do not converge

uniformly to a limit as ε→ 0.

8



In the singular layer near xi, the stretched variable ξ = (x−xi)/ε is

introduced. With the new variable u(ξ, ε) converges uniformly to

a limit u(ξ,0).

If ε = 0, the u-equation becomes

uξξ + f(u, v̄) = 0. (4)

The condition on the parameter v̄ = v(xi) is that (4) must have a

heteroclinic solution connecting the two slow manifolds u = h±(v̄).

In the regular layers, when ε = 0, v satisfies

vxx + g(h(v), v) = 0, h(v) = h±(v), (5)

with boundary conditions at x = 0,1.

Let x0 = 0 and xr+1 = 1. Then v ∈ C1[0,1] and v ∈ C2(xi, xi+1).

vxx has a jump at xi because h(v) switches between h−(v) and

h+(v).
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Bifurcation of Mono-layer solutions

∼ In the activator-inhibitor model, there is only one mono-layer

solution which jumps from near u = h−(v) to near u = h+(v).

∼ In the x-dependent model, there can be r mono-layer solutions.

∼ Internal layer solutions in both models are structurally stable

– solutions persist under small perturbations of f and g.

∼ Bifurcation of structurally unstable internal layer solutions,

Hale & Lin, 1999:

0 = ε2uxx + f(u, αy+ βa(x)),

0 = yxx + g(u, y).

g(u, y) = a0u− a1y

f(u, y) = (1 − u2)(u− y) or u− u3 − y.

(6)

By setting v = (y, x), it has two slow variables.

α and β are parameters, 0 ≤ α ≤ 1, β = 1 − α.

When α = 1, unique mono-layered solution.

When α = 0, can have multiple mono-layered solution.

The number of solutions changes through saddle-node bifurca-

tions.
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Notations and basic lemmas

uRi(x, ε) = u(x, ε), for x ∈ Ri

uSi(ξ, ε) = u(εξ+ xi0, ε), for x ∈ Si,

uRi(x, ε) =
∞
∑

j=0

εjuRij (x),

uSi(ξ, ε) =
∞
∑

j=0

εjuSij (x)

Let Cmbu(I) = {u|u, u′, . . . u(m) ∈ Cbu(I)} with the norm

‖u‖Cmbu =
m
∑

i=0

‖u(i)‖Cbu.
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We consider functions satisfying |u(ξ)| ≤ C(1 + |ξ|j)e−γξ.
We use the weight function

w(ξ) = (1 + |ξ|j)e−γξ, γ ≥ 0, j ≥ 0. (7)

Define the Banach spaces of functions with the weight w(ξ):

ER(w) = {u : R → Rn|u(·)/w(·) ∈ Cbu(R,R
n)}.

‖u‖E(w) = sup{|u(ξ)/w(ξ)|, ξ ∈ R}.
Em

R
(w) = {u|u, . . . , u(m) ∈ E(w)}.

‖u‖Em(w) =
∑m
j=0 ‖u(j)‖E(w).

Similarly, Em
R+(w) and Em

R−(w) are defined on R+ and R−.
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Equation (8) is equivalent to system (9).

uξξ + f(u) = 0, u ∈ R
n. (8)

uξ = v, vξ = −f(u), u, v ∈ R
n. (9)

The phase space for (8) is (u, uξ) ∈ R2n.

We say

(1) p is a hyperbolic equilibrium for (8) if (p,0) is a hyperbolic

equilibrium for (9);

(2) u(ξ) is a heteroclinic solution of (8) if (u(ξ), uξ(ξ)) is a hete-

roclinic solution for (9).

We say equation

uξξ +A(ξ)u = 0 (10)

has an exponential dichotomy on an interval I ⊂ R if the system

uξ = v vξ = −A(ξ)u (11)

has an exponential dichotomy on I. Here A(·) : I → Rn×n is

a continuous matrix valued function. The stable and unstable

subspaces and the projections associated to such spaces of (10)

are the ones associated to that of (11).
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Lemma 1 If

f(p) = 0, Re{σDf(p)} < −σ0 < 0, (12)

Then

uξξ +Df(p)u = 0 (13)

has an exponential dichotomy on R,

has n–dimensional stable and unstable spaces.

Then the exponential decay rate of solutions on the stable (or

unstable) subspace is
√
σ.

Example: u′′ − k2u = 0, u1 = ekt, u2 = e−kt.

14



Let W s and Wu denote the stable and unstable subspaces of

uξξ +Df(p)u = 0.

W s and Wu are transversal to the Neumann boundary condition:

(u, v) ∈W s ∩ {v = 0} ⇒ u = 0,
(u, v) ∈Wu ∩ {v = 0} ⇒ u = 0.

Let q(ξ) be a heteroclinic solution connecting saddle to saddle.

Then

uξξ +Df(q(ξ))u = 0 (14)

has exponential dichotomies on R− or R+ respectively with

n-dimensional stable and unstable subspaces.

(q̇(0), q̈(0)) ∈ RPu(0−) ∩RPs(0+).
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Lemma 2 (Linear system in R±)

Assume that

(1) q(ξ) approaches a hyperbolic saddle as ξ → ±∞.

(2) u = 0 is the only solution to the B.V.P:

uξξ +Df(q)u = 0, uξ(0) = 0.

(3) Let X be Em
R+(w) or Em

R−(w), and g ∈ X.

Then there exists a unique solution u ∈ Em+2
R+ (w) or Em+2

R− (w) to

the Neumann boundary value problem:

uξξ +Df(q)u = g, ξ ≥ 0

uξ(0) = φ,

Moreover,

‖u‖Em+2(w) ≤ C(‖g‖Em(w) + ‖φ‖Rn).
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Let q(ξ) be a heteroclinic solution to (8) connecting two saddles

p1 and p2. Let X = Em
R

(w).

Define Lq : X → X with D(Lq) = Em+2
R

(w) by

Lqu = uξξ +Df(q(ξ))u. (15)

Lemma 3 (Linear systems in R)

Lq is a Fredholm operator with Fredholm index zero. Assume that

dimKer(Lq) = 1, then Ker(Lq) = span{q̇} and

Range(Lq) = {ψ}⊥. Here ψ is the unique nontrivial bounded solu-

tion for the adjoint equation, up to a scalar multiple,

L∗
qψ

def
= ψξξ +Dfτ(q(ξ))ψ = 0.

{ψ}⊥ def
= {u ∈ X|

∫ ∞

−∞
ψτ(ξ)u(ξ)dξ = 0}.

uξξ +Df(q(ξ))u = g, g ∈ Em
R

(w)

has a solution |u| ≤ C((1 + |ξ|j)e−γξ) if and only if
∫ ∞

−∞
ψτ(ξ)g(ξ)dξ = 0.
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Lemma 4 (Fredholm property in finite intervals)

Assume the same conditions of Lemma 3. Let Ψ = (−ψ̇, ψ)τ

where ψ as in Lemma 3. Let ξ1 < 0 < ξ2, g ∈ [ξ1, ξ2], and φs ∈
RPs(ξ1), φu ∈ RPu(ξ2) be two given vectors. Consider

uξξ +Df(q(ξ))u = g, Ps(ξ1)

(

u
v

)

= φs, Pu(ξ2)

(

u
v

)

= φu.

The boundary value problem has a solution in [ξ1, ξ2] if and only if

Ψτ(ξ1)φs(ξ1) − Ψτ(ξ2)φ2(ξ2) +

∫ ξ2

ξ1
ψτ(ξ)g(ξ)dξ = 0.

If also < q̇, u > + < q̈, v >= 0, then the solution is unique and

satisfies

|u| ≤ C(|φs| + |φu| + |g|),
where C does not depend on ξ1 or ξ2.
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Constructing multi-layered solutions

ut = ε2uxx + f(u, v), 0 < x < 1

vt = vxx + g(u, v), u ∈ R
m, v ∈ R

n

ux(0) = ux(1) = 0,

Ajvx(j) +Bjv(j) = βj, j = 0, 1.

(16)

The Robin type boundary conditions on v: Aj and Bj are n × n

diagonal matrices satisfying A0B0 ≤ 0, A1B1 ≥ 0 and A2
j +B2

j = I.

Stationary internal layer layer solutions:

0 = ε2uxx + f(u, v), 0 < x < 1,
ux(0) = ux(1) = 0,
0 = vxx + g(u, v),
Ajvx(j) +Bjv(j) = βj, j = 0, 1.

(17)
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Preview how the solution looks like:

Flaherty & O’Malley, loss of boundary conditions in singular per-

turbation problems
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Assumptions and existence of solutions

In regular layers, the ε2uxx term in (17) drops. The u-equation

simplifies to f(u, v) = 0.

(H1) (The hyperbolic slow manifolds)

f(u, v) = 0 has several solution manifolds u = hi(v), 0 ≤ i ≤ r, on

which we have

Re{σfu(hi(v), v)} < 0, 0 ≤ i ≤ r.

Piecewise smooth solutions for the boundary value problem for v:

vxx + g(h(v), v) = 0, 0 < x < 1,

Ajvx(j) +Bjv(j) = βj, j = 0, 1,
(18)

where h(v) = hi(v), 0 ≤ i ≤ r.

The flow on the r+ 1 slow manifolds, each is related to one hi:

vx = w,

wx = −g(hi(v), v), u ∈ R
m, v ∈ R

n.
(19)

21



∼ There is a sequence {xi0}ri=1 where switching from the (i− 1)th

slow manifold to the ith can happen.

Using ξ = (x− xi0)/ε, rewrite

ε2uxx + f(u, v) = 0,

uξ = û, ûξ = −f(u, v).
From (H1), the system has hyperbolic equilibria u = hi(v).

Assume that there is a smooth (n − 1)-dimensional surface Σi in

Rn such that

W s(hi−1(v) ∩Wu(hi(v)) 6= ∅
iff v ∈ Σi and the connection breaks transversely if v moves away

from Σi.
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(H2) (The codimension one take-off surfaces):

(i) For any v̄i ∈ Σi, the following equation

uξξ + f(u, v̄i) = 0,

has a heteroclinic solution qi(ξ), 1 ≤ i ≤ r connecting hi−1(v̄i) to

hi(v̄i).

(ii) There exists γ0 > 0 such that, in the region Reλ > −γ0, the

only eigenvalue of the linear operator on U

Uξξ + fu(q
i(ξ), v̄i)U, U ∈ L2(R)

is the simple eigenvalue λ = 0, corresponding to the eigen function

q̇(ξ).
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(H2) implies that the eigenspace is spanned by q̇i(ξ), and there is

a unique bounded solution ψi, 1 ≤ i ≤ r to the adjoin equation,

ψξξ + fτu(q
i(ξ), v̄i)ψ = 0,

< ψi, q̇i >= 1.

The function ψi can be used to measure the gap between the un-

stable fibers of u = hi−1(v) and the stable fibers of u = hi(v):

(H3) (Melnikov’s method) The following vector

n
i =

∫ ∞

−∞
fτv (q

i(ξ), v̄i)ψi(ξ)dξ 6= 0. (20)

Using Melnikov’s method, if Gi(v) is the gap function between the

unstable manifold at 0− and the stable manifold at 0+, then

n
i = ∇Gi(ξ).
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Constructing the solutions geometrically

vxx + g(h(v), v) = 0, 0 < x < 1,

Ajvx(j) +Bjv(j) = βj, j = 0, 1,

(vR0 , w
R
0 , x) satisfies a first order system:

dv

dt
= w,

dw

dt
= −g(hi(v), v), 0 ≤ i ≤ r,

dx

dt
= 1.

(21)

Γi = {(v, w, x) ∈ R
n × R

n × R, v ∈ Σi}, 1 ≤ i ≤ r,

Γ0 = {(v, w, x) : x = 0},
Γr+1 = {(v, w, x) : x = 1},
S0 = {(v,w, x) : A0w+B0v = β0, x = 0},
S1 = {(v,w, x) : A1w+B1v = β1, x = 1}.

A solution (v,w, x) must start at S0 and end at S1 and switch from

u = hi−1(v) to hi(v) at each switching point ℘i
def
= (vR0 (xi0), w

R
0 (xi0), x

i
0)

on Γi.
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Finding the switching points:

∼ Method 1: Assumed that the slow flow is transverse to each Γi.

Then a Poincare mapping Pi : Γi → Γi+1, 0 ≤ i ≤ r can be defined.

A shooting method can be used to find the switching points.

Γ

1
0 S

S

0

3

2

1 Γ

Γ

Γ

Problem: There are some structurally stable internal layer solutions

that cannot be found by the shooting method.
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∼ Method 2: Define pseudo Poincare mappings without assuming

the transversality of the slow flow to Γi:

Γ

Γ

S

S

S

S

-

-

-

0

1

M -

M -
1

Γ

2

0
1

0

1

2
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Let the solution of in the ith slow manifold be Φi(x). Let S0− = S0.

M0
−

def
=

⋃

{Φ0(x) · S0
−, x ≥ 0}

is an (n + 1)-dimensional smooth manifold. Assume that M0
−

intersects Γ1 transversely. S1−
def
= M0− t Γ1 is an n-dimensional

submanifold of Γ1. The procedure of associate the sets S0− → S1−,

denoted by P0, is a mapping between two sets. The mapping P0

will be called a pseudo-Poincare mapping.

We now proceed inductively. Assume that an n-dimensional sub-

manifold Si− ⊂ Γi has been defined. Assume that:

(H4) The flow Φi(·) is transverse to Si−, 1 ≤ i ≤ r.

From (H4), Mi−
def
=

⋃{Φi(x) · Si−, x ≥ 0} is a smooth (n+ 1) di-

mensional manifold. Assume that:

(H5) Mi− t Γi+1.
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Assumption (H5) implies that

Si+1
−

def
= Mi

− ∩ Γi+1.

is an n-dimensional smooth submanifold of Γi+1.

With (H4) and (H5), the pseudo-Poincare mapping

Pi : Si− → Si+1
−

is locally uniquely defined. We assume that:

(H6) The image of S0− under the composite mapping:

Pr · · · P1 · P0

intersects transversely and nonemptily with S1 in Γr+1.

(vR0 (1), wR0 (1)) = S1 ∩ Pr · · · P1 · P0S0
−.

The switching points ℘i ∈ Γi can be obtained by applying the

inverse mappings of Pr, · · · ,P0 to Sr+1
− ∩ S1 successively.

The solution (vR0 , w
R
0 , x) of (21) can be computed by using Φi(x)

between these switching points.
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We have found a sequence of points

x00 = 0 < x10 < x20 < · · · < xr0 < 1 = xr+1
0

and a solution vR0 ∈ C1([0,1]) of (18). vR0 ∈ C∞(xi0, x
i+1
0 ).

vRxx may have a jump across xi0.

The union of the regular and singular solutions,

uR0 = hi(vR0 (x)), vR0 = vR0 (x), for xi0 ≤ x ≤ xi+1
0 , 0 ≤ i ≤ r,

uSi0 = qi(ξ), vSi0 = v̄i,















for ξ ∈ R, 1 ≤ i ≤ r,

for ξ ∈ R+, i = 0,

for ξ ∈ R−, i = r+ 1,

forms a singular internal layer solution. It is the 0th order expansion

for a multiple internal layer solution.

From (H1)-(H6) we can show for ε > 0 but small, there exist a

true internal layered solution near the singular limit.
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∼ Method 3: Consider mono-layer solutoins of the system:

ut = ε2uxx + F(u, y+
k

ω
sin(ωx+ b)), 0 < x < 1,

yt = yxx + σG(u, y), u, y ∈ R, (22)

ux = yx = 0, x = 0, 1.

Let v = (y, x). The stationary solutions of (22) satisfies

0 = ε2uxx + f(u, v),
0 = vxx + g(u, v),
ux = yx = 0, x = 0, 1,
x(0) = 0, x(1) = 1,

where

f(u, v) = F(u, y+ k
ω sin(ωx+ b)),

g(u, v) =

(

σG(u, y)
0

)

.
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dy/dx = z,

dz/dx = −σG(h(y + k
ω sin(ωx+ b)), y),

dx/dx = 1,

(23)

where k = 0, h = h− if x < x0, h = h+ if x > x0. Obviously,

(yR0 , z
R
0 , x) where zR0 = yR0x is a solution of (23). Let

Γ̄0 = {(y, z, x)|x = 0},
Γ̄1 = {(y, z, x)|y = ỹ},
Γ̄2 = {(y, z, x)|x = 1},
S̄0 = {(y, z, x)|x = 0, z = 0},
S̄1 = {(y, z, x)|x = 1, z = 0},
Π̄ = {(y, z, x)|x = x0}.

(24)

Denote Φ− the solution map of (23) with h = h− for all 0 ≤ x ≤ 1.

Denote Φ+ the solution map of (23) with h = h+ for all 0 ≤ x ≤ 1.
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Let

M− = ∪{Φ−(x,0)S̄0|0 ≤ x ≤ 1},
M+ = ∪{Φ+(x,1)S̄1|0 ≤ x ≤ 1}.

Let µ0 = M− ∩ Π̄, µ1 = M− ∩ Π̄. Note that the matching point

℘ = (yR0 (x0), z
R
0 (x0), x0) ∈ µ0 ∩ µ1.

yy

z z

Γ1 Γ2

Π

−

−

−

µ
µ 0

1

x=0 x=1 x

The transversal intersection of µ0 and µ1
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Poincare mappings induced by the slow flow

It is difficult to find the sub-manifolds S− and S+.
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The switching point is determined by the intersection of a

slow-switching curve and a fast jumping surface.
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Determine the switching point for small k 6= 0

The slow manifolds are graphs of

u = h±(y+
k

ω
sin(ωx+ b)).

k 6= 0 and h = h− if x < x†, or h+ if x > x†, where x† is part

of the unknowns. The switching points are determined by the

intersection of a fast jump surface and a slow switching curve.

∼ The fast jump surface for k 6= 0 is

Γ̄1 = {(y, z, x)|y+
k

ω
sin(ωx+ b) = ỹ}.

Due to the fact J(ỹ) = 0, if y+ k
ω sin(ωx+ b) = ỹ then equation

uξξ + F(u, y+
k

ω
sin(ωx+ b)) = 0,

has a heteroclinic solution q.

∼ The slow switching curve C def
= M−∩M+. The slow flow has to

switch from u = h0(v) to h1(v) at some ℘ ∈ C in order to satisfy

boundary conditions at x = 0,1.
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Express C as C1 functions

C = ∪{(y, z, x)|z = z∗(y, b), x = x∗(y, b), ỹ − T < y < ỹ+ T}.
Since Γ̄1 is flat in the z direction, prot it in (x, y) plane.

Several possible intersections of C and Γ̄1 are depicted in the fig-

ure. It follows from Lemma 14 that if k/ω is sufficiently large, then
∂
∂yx

∗(y, b) < 0 for all y ∈ (ỹ − T, ỹ + T). The non transverse inter-

section of Γ1 and C can occur at the part of Γ1 that is decreasing.
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φ2

φ1

φ4

3φ

ω

x

y
 -ky = y -     sin(   x+b)~
ω

x=x (y,b)*

φ

φ

φ

5

6

7

ω

x

y
 -ky = y -     sin(   x+b)~
ω

flow

x=x (y,b)

x=x (y,b)*

*

flow

(H4)-(H6) are not satisfied at the tangential intersections corre-

sponding to φ1, φ2 but are satisfied at φ3, φ4 where the flow is

tangent to Γ1. The internal layer solution is stable at φ5, φ7 but

unstable at φ6.
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∼ First assume that k is sufficiently small so that

| ∂
∂y
x∗(y, b)| < 1

k
,

for all ỹ−T < y < ỹ+T . Since the maximum of the slope of ΠΓ1 is

k, ΠC intersects ΠΓ1 transversely at a unique point ℘ = (y†, z†, x†)
for any b ∈ R.

∼ Next, assume that k is sufficiently large so that

| ∂
∂y
x∗(y, b)| > 1

k
,

for all ỹ − T < y < ỹ + T . ΠC can intersect with ΠΓ1 at multiple

points.

The intersections of C and Γ̄1 correspond to solutions of the equa-

tion
k

ω
sin(ωx∗(y, b) + b) + y = ỹ.

Let φ = ωx∗(y, b) + b. With Φ as a parameter on ΠΓ1, the inter-

sections correspond to zeros of the function

E(φ, b)
def
= ωx∗(ỹ − k

ω
sinφ, b) + b− φ = 0.
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For each φ ∈ R, there exists a unique b = b∗(φ) such that E = 0.

Moreover, b∗ is a C1 function of φ with

∂b∗

∂φ
= (1 + ω

∂x∗

∂b
)−1(1 + k

∂x∗

∂y
cosφ). (25)

Condition C t Γ̄1 becomes ∂b∗/∂φ 6= 0, or equivalently,

1 + k
∂x∗

∂y
cosφ 6= 0. (26)

Consider one period φ ∈ [−3π/2, π/2] for the time being. For

φ ∈ [−3π/2,−π/2), cosφ ≤ 0, (26) is valid. The left hand side of

(26) is positive if φ = −π/2, but is negative if φ = 0. Therefore,

it is easy to see that there exist φ1 ∈ (−π/2,0), φ2 ∈ (0, π/2) such

that

1 + k
∂x∗

∂y
cosφj = 0, j = 1,2. (27)

Using the fact that ∂x∗
∂y is almost a constant, it is easy to verify

that φ1, φ2 are the only points in [−3π/2, π/2] that do not satisfy

(26).
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The eigenvalue is λ(ε) = εjλj with λ0 = 0.

λ1 = ‖q̇‖−2J ′(ỹ)(Y c(x) − zR0 (x) +Xk cos(ωx+ b) − k cos(ωx+ b))

= ‖q̇‖−2J ′(ỹ)(Y c(x) − zR0 (x) − k cosφ).

∼ When k is sufficiently small, then λ1 < 0. Our result agrees with

that of Nishiura & Fujii 1987 where k = 0.

∼ When k is sufficiently large, the stability depends on the parame-

ter φ. If φ1 +2νπ < φ < φ2 +2νπ, ν ∈ Z, the internal layer solution

solution is unstable (λ1 > 0); If φ2 + 2νπ < φ < φ1 + 2(ν + 1)π,

then the solution is stable (λ1 < 0).

Theorem 5 λ1 = n1 · ∆v where n1 is the normal of the surface

Σ1 as in §3 and (∆v,∆w,−1) is a tangent vector of M− ∩M+ at

(vR0 (x0), w
R
0 (x0), x0). Let N = (n1,0,0) be a normal of Γ1. The

result can also be expressed as

λ1 = t · N.
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(i) When b = b∗(φj)+2πν, j = 1,2, the intersection of C and Γ̄1 is

nontransversal, and saddle-node type bifurcations may occur.

∼ Analysis of bifurcations caused by moving b through critical val-

ues is completed in Hale & Lin 1997.

(ii) If C is oriented with the positive direction pointing to the de-

creasing of x, then λ1 < 0 if C passes through Γ̄1 from below;

λ1 > 0 if C passes through Γ̄1 from above. This interpretation

agrees with Theorem 10.

(iii) From Figure ??, we see that at the intersections correspond-

ing to φ = φ3, φ4, the flow of (23) is tangent to Γ̄1, however, the

internal layer solution is structurally stable due to C t Γ̄1. These

solutions will be missed if one insists that the flow must be trans-

verse to Γ̄1.
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Critical eigenvalue and eigenfunctions

SLEP method, Nishiura and Fujii 1987:

Stability is determined by r critical eigenvalues λ(ε) = ελ1+O(ε2),

where r is the number of internal layers,

λ1 is an eigenvalue of the so called SLEP matrix.

Eigenvalue problem of the internal layer solution:

λU = ε2Uxx + fuU + fvV, (28)

λV = Vxx + guU + gvV, (29)

Lemma A (Nishiura and Fujii): The critical eigenvalues of the

operator

ε2Dxx + fu, µ =
∑

εjµj, µ0 = 0,

is not equal to the critical eigenvalues of (28), (29).

More precisely, λ1 6= µ1.
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By Lemma A, U can be solved from (28) and substituted into

(29). This yields the reduced eigenvalue problem

λV = Vxx + gu(λ− ε2Dxx − fu)
−1fvV + gvV. (30)

The SLEP matrix is derived from the above. λ1 < 0 is proved by

studying the eigenvalues of the inverse of the SLEP matrix.

Problem: There are examples where µ1 = λ1.

∼ Asymptotic method can be used to compute the critical eigen-

values without using the Lemma A. Our approach can be used on

some systems not covered by the SLEP method due to Nishiura

and Fujii 1987, Nishiura 1994, Sakamoto 1990.
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The critical eigenvalue and eigenfunctions are determined by three

factors:

(1) A system of differential equations;

(2) boundary conditions in boundary layers;

(3) and the matching conditions.

(1) In regular layers,

λ(ε)U(ε) = ε2U(ε)xx + fuU(ε) + fvV (ε), (31)

λ(ε)V (ε) = V (ε)xx + guU(ε) + gvV (ε). (32)

In singular layers, using the stretched variable ξ = (x− xi(ε))/ε,

λ(ε)U(ε) = U(ε)ξξ + fuU(ε) + fvV (ε), (33)

ε2λ(ε)V (ε) = V (ε)ξξ + ε2(guU(ε) + gvV (ε)).

Let W = Vx. Convert the V equation into a first order system:

Vξ(ε) = εW (ε), (34)

Wξ(ε) = −εguU(ε) − εgvV (ε) + ελ(ε)V (ε). (35)
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Denote the expansions in both regular and singular layers by

U(ε) =
∞
∑

j=0

εjUj, V (ε) =
∞
∑

j=0

εjVj,

WS(ξ, ε) = V Sξ /ε =
∞
∑

j=0

εjWS
j (ξ).

We can prove V S0 (ξ) = 0, thus no ε−1 term in the expansion of

(2) The boundary conditions in the boundary layers are

Ux(x, ε) = 0, for x = 0,1,

AjW (j, ε) +BjV (j, ε) = 0, j = 0,1,

where W = Vx. Expanding in the powers of ε, we find for all j ≥ 0:

USijξ (0) = 0, i = 0, r+ 1,

A0W
S0
j (0) +B0V

S0
j (0) = 0,

A1W
S,r+1
j (0) +B1V

S,r+1
j (0) = 0,

(36)

Using WS(ξ, ε) = V Sξ (ξ, ε)/ε, we have WS
j = V Sj+1,ξ in the above.
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(3) Exponential matching principles

Inner expansion of outer layers

Let UR be the outer solution in one of the regular layers adjacent

to xi0. The inner expansion of UR is denoted by ŨR.

∞
∑

0

εjŨRj (ξ) = UR(
∞
∑

0

εjxij + εξ, ε),

∞
∑

0

εjṼ Rj (ξ) = V R(
∞
∑

0

εjxij + εξ, ε).

The exponential matching principle

|ŨRj (ξ) − USj (ξ)| + |ŨRjξ(ξ) − USjξ(ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|, (37)

|Ṽ Rj (ξ) − V Sj (ξ)| + |Ṽ Rjξ(ξ) − V Sjξ(ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|. (38)

Let
∑

εjW̃R
j (ξ) denote the inner expansion of WR. (38) is equiva-

lent to

|Ṽ Rj (ξ) − V Sj (ξ)| + |W̃R
j (ξ) −WS

j (ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|. (39)

47



(1) The ε0-th order expansion: Since λ(ε) is critical, λ0 = 0.

In regular layers, from (31), (32),

fuU0 + fvV0 = 0,

V0xx + guU0 + gvV0 = 0.

Therefore, U0 = −f−1
u fvV0,

V0xx − (guf
−1
u fv − gv)V0 = 0.

In singular layers, from (34), (35)

U0ξξ + fuU0 + fvV0 = 0, (40)

V0ξ = 0,

W0ξ = 0.

The last two equations imply that V S0 and WS
0 are constants in

singular layers. Form the matching principle,

[V R0 ](xi0) = [WR
0 ](xi0) = 0, 1 ≤ i ≤ r.
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The boundary conditions for V R0 are

AjVx(j) +BjV (j) = 0, j = 0,1. (41)

We need the following hypothesis,

(H7) If V ∈ C1([0,1]) ∩ C2((xi0, x
i+1
0 ),0 ≤ i ≤ r, then V = 0 is the

only solution for the following boundary value problem:

Vxx − (guf−1
u fv − gv)V = 0,

AjVx(j) +BjV (j) = 0, j = 0,1.
(42)

We comment the if (H7) is not satisfied, then the regular eigen-

values, which solve the reduced eigenvalue problem (71), will have

λ = 0 as a root. In this case, asymptotic expansions of critical

eigenvalues are quite different and will not be touched in this pa-

per. In §7, a stronger assumption (H9), which implies (H7), will

be imposed to ensure that the regular eigenvalues are in the region

Reλ ≤ −γ < 0.
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From (H7), we can prove the following lemma:

Lemma 6 Assume that V satisfies

Vxx − (guf
−1
u fv − gv)V = E1,

[V ](xi0) = E2,

[Vx](x
i
0) = E3,

AjVx(j) +BjV (j) = E4j, j = 0,1.

Here E2, E3, E4j ∈ Rn, E1 ∈ C((xi0, x
i+1)), 0 ≤ i ≤ r and has one-

sided limits at the boundary points. Then there exists a unique

piecewise C2 solution V ∈ C1([0,1]) ∩ C2((xi0, x
i+1
0 )), 0 ≤ i ≤ r.

(H7) ⇒ V R0 = 0 on [0,1], ⇒ V S0 = 0 in all the singular layers.

V S0 = 0 ⇒ US0 = ci0q̇
i in the ith singular layer.

When i = 0 or r + 1, USi0 = q̇i = 0, which satisfies the Neumann

boundary conditions.
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To summarize,

λ0 = 0, critical eigenvalue,

V R0 = 0, UR0 = 0, in regular layers,

V S0 = 0, US0 = ci0q̇
i, in the ith singular layers.

Set c00 = cr+1
0 = 1, but {ci0}r1 remain to be determined.
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(2) The ε1-th order expansion:

In the regular layers, since λ0U
R
1 + λ1U

R
0 = 0 = λ0V

R
1 + λ1V

R
0 . We

have,

fuU
R
1 + fvV

R
1 = 0,

V R1xx + guU
R
1 + gvV

R
1 = 0.

Therefore, UR1 = −f−1
u fvV

R
1 ,

V R1xx − (guf
−1
u fv − gv)V

R
1 = 0.

In the ith singular layer, the equations for (US1 , V
S
1 ,W

S
1 ) become

λ1c
i
0q̇
i = US1ξξ + fuU

S
1 + fvV

S
1 + ci0(fuuq̇

iuS1 + fuvq̇
ivS1), (43)

V S1ξ = WS
0 = 0, (44)

WS
1ξ = −guUS0 − gvV

S
0 = −guci0q̇i. (45)

From (44), (45),

V S1 = constant = V R1 (xi0),

WS
1 (∞) −WS

1 (−∞) = −ci0
∫ ∞

−∞
guq̇

i(ξ) dξ, 1 ≤ i ≤ r.
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Let Mi = g(qi(−∞), v̄i) − g(qi(∞), v̄i). By the matching principle,

[V R1 ](xi0) = 0,

[V R1x](x
i
0) = ci0Mi.

(46)

In the boundary layers, q̇i = 0, i = 0, r + 1. Thus (V S1 , W
S
1 ) are

constants solutions in the boundary layers. V R1 satifies AjVx(j) +

BjV (j) = 0, j = 0,1.

Motivation: The V R1 is driven by the jump of Vx at xi0.

Define V ic , 1 ≤ i ≤ r to be the solution of (42) that satisfies

[V ](xν0) = 0, for all ν,

[Vx](x
`
0) = 0, for all ` 6= i, (47)

[Vx](x
i
0) = Mi.

V R1 =
r
∑

1

ci0V
i
c . (48)

by the superposition principle.
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To find a solution US1 = O(1 + |ξ|) for (43),

λ1c
i
0q̇
i = US1ξξ + fuU

S
1 + fvV

S
1 + ci0(fuuq̇

iuS1 + fuvq̇
ivS1),

the nonhomogeneous terms must be in the range of a Fredholm

operator.

Define Lqu = uξξ +Df(q(ξ))u.

Lq is a Fredholm operator with Fredholm index zero. Assume that

dimKer(Lq) = 1, then Ker(Lq) = span{q̇} and Range(Lq) = {ψ}⊥.

Here ψ is the unique nontrivial bounded solution for the adjoint

equation, up to a scalar multiple,

L∗
qψ

def
= ψξξ +Dfτ(q(ξ))ψ = 0.

{ψ}⊥ def
= {u ∈ X|

∫ ∞

−∞
ψτ(ξ)u(ξ)dξ = 0}.

λ1c
i
0 < ψi, q̇i >=< ψi, fvV

S
1 + ci0(fuuq̇

iuS1 + fuvq̇
ivS1) > .
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The above can be simplified using integration by parts as follows:

fuuq̇
iuS1 + fuvq̇

ivS1
=∂ξ(fuu

S
1 + fvv

S
1) − fuu

S
1ξ − fvv

S
1ξ

=∂ξ(−uS1ξξ) − fuu
S
1ξ − fvv

S
1ξ

= − {(uS1ξ)ξξ + fu(u
S
1ξ)} − fvv

S
1ξ.

The term in the {} is in the range of a Fredholm operator, thus

< ψi, {(uS1ξ)ξξ + fu(u
S
1ξ)} >= 0.

Therefore,

< ψi, (fuuq̇
iuS1 + fuvq̇

ivS1) >= − < ψi, fvv
S
1ξ > . (49)

ci0λ1 < ψi, q̇i >=< ψi, fv(V
S
1 − ci0v

S
1ξ) > .

Recall that < ψi, q̇i >= 1, ni =< ψi, fv > and V S1 and vS1ξ are

constants, we have ci0λ1 = ni · (V S1 − ci0v
S
1ξ). Using vS1ξ = wS0 =

wR0 (xi0) = vR0x(x
i
0), V

Si
1 = V R1 (xi0), we have

ci0λ1 = n
i · (V R1 (xi0) − ci0v

R
0x(x

i
0)). (50)
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From V R1 =
∑r

1 c
i
0V

i
c , equation (50) becomes:

λ1c
i
0 = n

i · (
r
∑

`=1

c`0V
`
c (x

i
0) − ci0w

R
0 (xi0)).

i = 1,2, · · · , r.
Define the coupling matrix A = (ai`)r×r by

ai` = n
i · (V `c (xi0) − δi`v

R
0x(x

i
0)). (51)

A is precisely the SLEP matrix by Nishiura & Fujii derived using

the SLEP method.

We see that λ1 is an eigenvalue while (c10, c
2
0, · · · , cr0)τ is an eigen-

vector for A.

λ1







c10...
cr0





 = A







c10...
cr0





 .
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To construct higher order expansions, we may use any of the r

eigenvalues and the corresponding eigenvector of A. With such λ1

and (c10, c
2
0, · · · , cr0), (43) has a solution |U | ≤ C(1 + |ξ|) which can

be written as

US1 = ZS1 + ci1q̇
i.

Here < q̇i, Zi1 >= 0, and the parameters {ci1}r1 remain to be deter-

mined.

Finally, in the boundary layers, (43) becomes

U1ξξ + fuU1 + fvV1 = 0.

With V S1 already obtained, there exists a unique solution US1 =

O(1 + |ξ|) in the boundary layers. See Lemma 2.

Quiz: If Uj(ξ) = O(1 + |ξ|j) → ∞ as |ξ| → ∞, then how can

∞
∑

j=0

εjUj

be an asymptotic series?
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We summarize our result in the following theorem:

Theorem 7 Assume that (H1)–(H7) are satisfied, than the as-

ymptotic expansion of critical eigenvalues λ and eigenfunctions

(U, V ) can be obtained up to ε1. λ1 is an eigenvalue for the cou-

pling matrix A. The associated eigenvector {ci0}n1 provides infor-

mations about the eigenfunction (U, V ), which satisfies UR0 = 0,

V R0 = 0 and V R1 =
∑

ci0V
i
c in regular layers; and USi0 (ξ) = ci0q̇

i(ξ)

and V S0 = 0 in the singular layer at xi0.

Assume that (H8) is also satisfied:

(H8) λ1 is a simple eigenvalue for the matrix λI−A. (The Jordan

blocks of λI −A corresponding to λ1 are of order 1.)

Then the higher order expansion of critical eigenvalues and the

corresponding eigenfunctions can be obtained by a recursive pro-

cedure to any power of ε.
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(3) The εj-th order expansions, j ≥ 2:

Assume that we have computed

λ0, λ1, · · · , λj−1.

We have obtained in regular layers:

U0, U1, · · · , Uj−1,

V0, V1, · · · , Vj−1,

W0,W1, · · · ,Wj−1.

In singular layers, we have computed all the above except for USj−1

which, in the ith internal layer, has the form

USij−1 = cij−1q̇
i + Zij−1, < q̇i, Zij−1 >= 0.

Assume that Zij−1 has been determined but cij−1 is still a free para-

meter. In the εj-th expansion, we will determine λj, {cij−1}r1, Vj, Wj

and URj . We will determine USj up to cij q̇
i.
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Definition An eigenfunction (U(ε), V (ε)) is called a normalized

eigenfunction if the corresponding parameters {cij}r1 satisfy

r
∑

i=1

(ci0)
2 = 1,

(c1` , c
2
` , · · · , cr`) ⊥ (c10, c

2
0, · · · , cr0), ` ≥ 1.

It is not hard to verify that if (U(ε), V (ε)) is a normalized eigenfunc-

tion, and if α(ε) =
∑

εjαj is a scalar series, then (α(ε)U(ε), α(ε)V (ε))

is the general form of all the eigenfunctions. In the sequel, we will

assume that the eigenfunctions are normalized.
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In the regular layer, since λ0 = 0 and UR0 = V R0 = 0,

λjU
R
0 + · · · + λ0U

R
j = ` · o · t,

λjV
R
0 + · · · + λ0V

R
j = ` · o · t.

Therefore,

fuU
R
j + fvV

R
j = ` · o · t,

V Rjxx + guU
R
j + gvV

R
j = ` · o · t,

URj = −f−1
u fvV

R
j + ` · o · t,

V Rjxx − (guf
−1
u fv − gv)V

R
j = ` · o · t. (52)

From (H7), V Rj can be uniquely solved for if the boundary condi-

tions at x = 0, 1 and the jumps across {xi0}ri=1 can be found. The

jumps can be found by matching the internal and regular layers.
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In the ith internal layer, since USj−1 = cij−1q̇
i + Zij−1 and V S0 = 0,

λ1U
S
j−1 + · · · + λjU

S
0 = cij−1λ1q̇

i + ci0λj q̇
i + ` · o · t,

λ0V
S
j + · · ·λjV S0 = ` · o · t.

cij−1λ1q̇
i + ci0λj q̇

i

= USjξξ + fuUSj + fvV Sj + fuucij−1q̇
iu1 + fuvcij−1q̇

iv1 + ` · o · t.
(53)

V Sjξ = WS
j−1, (54)

WS
jξ = −guUSj−1 − gvV

S
j−1 + ` · o · t,

= −cij−1guq̇
i + ` · o · t, (55)

V Sj (ξ) = V Sj (0) +
∫ ξ

0
` · o · t, (56)

WS
j (ξ) = WS

j (0) +
∫ ξ

0
(−cij−1guq̇

i) + ` · o · t, (57)
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Notice that (V Sj ,W
S
j ) behaves like a polynomial of degree j as

|ξ| → ∞. The matching of higher powers of ξ can be proved by

induction, see Lemma ??. We only have to match the constant

terms. Integrating from ξ = −∞ to ∞, and applying the matching

principles, similar to (??) and (??), we conclude that for 1 ≤ i ≤ r,

[V Rj ](xi0) = ` · o · t,
[WR

j ](xi0) = cij−1Mi + ` · o · t.
In the boundary layers, since q̇i = 0, i = 0, r+ 1, from (56), (57),

and the matching of outer and inner layers, we have

V Rj (0+) = V S0
j (0) + ` · o · t,

WR
j (0+) = WS0

j (0) + ` · o · t.
Therefore the boundary condition at x = 0 can be obtained,

A0W
R
j (0) +B0V

R
j (0) = ` · o · t.

Similarly, at x = 1,

A1W
R
j (1) +B1V

R
j (1) = ` · o · t.
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With all the boundary and jump conditions, based on (H7), we can

solve for V Rj from (52). Using the superposition principle and the

basis functions {V ic }, we can express the solution as a function of

{cij−1}r1.

V Rj =
r
∑

i=1

cij−1V
i
c + ` · o · t. (58)

In order to have a solution |USij | ≤ C(1 + |ξ|j),1 ≤ i ≤ r for (53),

the nonhomogeneous terms must be in the range of a Fredholm

operator, see Lemma 3. This leads to

ci0λj + cij−1λ1 =< ψi, fvV
S
j + cij−1(fuuq̇

iu1 + fuvq̇
iv1) > +` · o · t.

Using integration by parts similar to (49),

ci0λj + cij−1λ1 =< ψi, fv(V
S
j − cij−1w

R
0 (xi0)) > +` · o · t. (59)

From (56), we then have,

ci0λj + cij−1λ1 =< ψi, fv(V
S
j (0) − cij−1w

R
0 (xi0)) > +` · o · t. (60)
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By the matching principle and (56),

V Sj (0) = V Rj (xi0+) + ` · o · t.
Thus

ci0λj + cij−1λ1 =< ψi, fv(V
R
j (xi0+) − cij−1w

R
0 (xi0)) > +` · o · t. (61)

Using (58) we have

ci0λj + cij−1λ1 = n
i · (

r
∑

`=1

c`j−1V
`
c (x

i
0) − cij−1w

R
0 (xi0)) + ` · o · t.

In the matrix form,

(λ1I − A)









c1j−1
...

crj−1









= λj







c10...
cr0





+ ` · o · t. (62)

We need the following hypothesis.
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(H8) λ1 is a pole of order one for the matrix λI −A. (The Jordan

blocks of λI −A corresponding to λ1 are of order 1.)

Remark 1 If (H8) is not satisfied, then λ(ε) may not be expanded

as integer powers of ε. A discussion of asymptotic expansions for

eigenvalues of an ε dependent matrix can be found in [?].

Condition (H8) is always satisfied if all the eigenvalues of the cou-

pling matrix are distinct, which is certainly true if mono-internal

layer solutions are considered.

Based on (H8), (c10, · · · , cr0) is not in the range of λ1I − A. (62)

uniquely determines λj and {cij−1}r1, due to the normalization

(c1j−1, · · · , crj−1) ⊥ (c10, · · · , cr0).
It is clear with such λj and {cij−1}r1, we can uniquely find Zij =

O(1 + |ξ|j), < q̇i, Zij >= 0, such that the solution for (53) has the

form in the ith internal layers:

USj = Zij + cij q̇
i,
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V Rj then comes from (58). V Sj comes from (56). After obtaining

V Sj , in the boundary layers, since q̇i = 0, i = 0, r+ 1, the equation

for USj becomes

USjξξ + fuU
S
j = ` · o · t.

Since the right hand side is of O(1 + |ξ|j), the above equation

with Neumann boundary conditions can be uniquely solved for a

solution U = O(1 + |ξ|j) in R+ or R− respectively for i = 0, or

i = r+ 1. See Lemma 2.
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Mono layer solutions and a geometric method

We first introduce a geometric method to determine mono-layer

solutions. We show that the geometric method also determines

λ1, hence, the stability of the mono-layer solution. In the end of

this section, we comment on the relation of our approach with the

geometric singular perturbation theory.

Let Φ− and Φ+ be the solution maps of (21) where h = h0 and

h = h1 respectively for all x. Since Φ− and Φ+ are transverse to

Γ0 and Γ2, the following are (n+ 1)-dimensional manifolds,

M− = ∪{Φ−(x)S0|0 ≤ x ≤ 1},
M+ = ∪{Φ+(x− 1)S1|0 ≤ x ≤ 1}.

Lemma 8 If (H4)-(H6) are satisfied, then M− intersects with M+

transversely. The intersection C is a smooth one-dimensional curve

that satisfies C t Γ1.
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Conversely, if M− t M+ and the intersection C satisfies C t Γ1,

then (H4)-(H6) are satisfied.

proof Denote ℘ = (v†, w†, x†) the intersection of C and Γ1. Since

Γ1 is of codimension one, if T℘M− ∩ T℘M+ is two dimensional,

then there exists a nonzero vector

a ∈ T℘M− ∩ T℘M+ ∩ T℘Γ1.

Therefore, a ∈ T℘S1−. From (H5), the flow at ℘ is transverse to

S1−. The derivative of the Poincare mapping P1 will send a to a

vector in the tangent spaces of both S2− and S1. From (H6), it

must be a zero vector. The contradiction shows that M− t M+.

We now show that C t Γ1. Assume a vector a ∈ T℘C ⊂ T℘Γ1, then

as the above, a ∈ S1− ∩ M+. Thus, as before, a = 0. This shows

that C t Γ1.

The converse of the lemma can be proved by a similarly elementary

argument and will not be given here.



QED

The curve C def
= M− ∩M+ is called a slow switching curve since

the slow flow has to switch from u = h0(v) to h1(v) at some ℘ ∈ C
in order to satisfy boundary conditions at x = 0,1. C is not a

solution curve of (21) if the slow equation has a jump causing by

h0 6= h1.

We have obtained the following theorem.

Theorem 9 Assume that (H1)–(H3) are satisfied and C t Γ1 at

some nonempty point ℘ = (v†, w†, x†). Then there exists a singular

mono-internal layer solution with the internal layer at x = x† and

(v(x†), w(x†)) = (v†, w†). Moreover, the asymptotic expansions

of the mono-internal layer solution to any powers of ε can be

calculated recursively as in §3.



Let (∆v,∆w,∆x) be a nonzero tangent vector of C at ℘. We can

show that ∆x 6= 0. For otherwise using (∆v,∆w) 6= 0 as an initial

condition at x = x0, the linear system

Vx = W,

Wx = (guf
−1
u fv − gv)V,

where h = h0 if x < 0, h = h1 if x > x0, has a nontrivial solution

that is C1 on [0,1]. This is a contradiction to (H7).

After rescaling, assume that t = (∆v,∆w,−1) is a tangent vector

of C at ℘. We have the following simple result.

Theorem 10 λ1 = n1 · ∆v where n1 is the normal of the surface

Σ1 as in §3 and (∆v,∆w,−1) is a tangent vector of M− ∩M+ at

(vR0 (x0), w
R
0 (x0), x0). Let N = (n1,0,0) be a normal of Γ1. The

result can also be expressed as

λ1 = t · N.



proof Since there is only one internal layer, we drop the super-

index i = 1 for the layer. Let (Vc,Wc) be a solution of the system

(42) with

[V ](x0) = 0,

[W ](x0) = g(q(−∞), v̄) − g(q(∞), v̄).

Then

(Vc(x0),Wc(x0−),0) ∈ T℘M−,
(Vc(x0),Wc(x0+),0) ∈ T℘M+.

The following two vectors are equal,

(Vc(x0) − wR0 (x0),Wc(x0−) + g(q(−∞), v̄),−1)

= (Vc(x0) − wR0 (x0),Wc(x0+) + g(q(∞), v̄),−1). (63)

It is clear that

(−wR0 (x0), g(q(−∞), v̄),−1) ∈ T℘M−,
(−wR0 (x0), g(q(∞), v̄),−1) ∈ T℘M+,



since they are flows of Φ− and Φ+ respectively. Therefore the

common vector in (63) is in

T℘C = T℘M− ∩ T℘M+.

Thus, we must have Vc(x0) − wR0 (x0) = ∆v. The desired result

now follows from Theorem 7 where

A = (a11) = n
1 · (Vc(x0) − wR0 (x0)) = n

1 · ∆v.

QED

A similar theorem can be stated for the existence of a singular hete-

roclinic solution which has an internal layer. Let (pi,0) be a hyper-

bolic equilibrium for the reduced system v′ = w, w′ = −g(hi(v), v)
with i = 0,1. Assume that dimWu((p0,0)) − dimWu((p1,0)) = 1

where the stable unstable manifolds of (pi,0) are referred to the

vector fields with h = hi. Assume the nonempty transversal in-

tersection of Wu((p0,0)) and W s((p1,0)) on R2n. Then C def
=

Wu(p0) ∩W s(p1) is a smooth one dimensional curve. Define Γ1



to be the set of points (v,w) ∈ R2n where u′′ + f(u, v) = 0 has a

heteroclinic solution connecting u = h0(v) to h1(v).

We can show if C t Γ1 at a nonempty point, then there exists

a singular internal layer solution connecting (u, v) = (h0(p0), p0)

to (u, v) = (h1(p1), p1). The singular heteroclinic solution has an

internal layer based at C ∩ Γ1. Moreover, asymptotic expansions

of internal layer solutions can be obtained to any order of ε. The

critical eigenvalue can also be determined by the angle of inter-

section of C and Γ1. This is most useful if C and Γ1 has multiple

intersection points, for it shows that generically the stability in-

dex of these mono-layered solutions changes alternatively. See the

example in §6.3.

There is a close relation between our approach to the geometric

singular perturbation theory. According to Fenichel [?], there exist

smooth stable and unstable manifolds in R2m+2n of the normally

hyperbolic slow manifolds u = hi(v), i = 0,1. These manifolds



admit smooth foliations by strongly stable and unstable fibers

respectively. Let M− be the union of unstable fibers passing

through (u,0, v, w) with u = h0(v), (v, w) ∈ Wu((p0,0)) and let

M+ be the union of stable fibers passing through (u,0, v, w) with

u = h1(v), (v, w) ∈ W s((p1,0)). Using the geometric singular per-

turbation theory, if M− intersects transversely with M+ at ε = 0,

then they also do so at small ε. The internal layer solution is

determined by this intersection.

It can be shown that the transverse intersection of M− and M+

is equivalent to the condition C t Γ1. Details are left to the read-

ers. We have found a simple way to check Fenichel’s transversal

condition in R2m+2n by reducing it to a lower dimensional space

R2n.

Suitable changes can also be made for the case of a singular trav-

eling wave solution by included the wave speed as a phase variable.



Let us return to the original boundary value problem with boundary

conditions at x = 0,1. Again, the slow manifolds are normally

hyperbolic. Let M− be the union of strongly unstable fibers passing

through (u,0, v, w, x) with u = h0(v), (v, w, x) ∈ M− and let M+

be the union of strongly stable fibers passing through (u,0, v, w, x)

with u = h1(v), (v, w, x) ∈ M+. We prove that C t Γ1 is equivalent

to the transversal intersection of M− and M+ as follows.

Let us write uξξ+f(u, v) = 0 into a system uξ = û, ûξ+f(u, v) = 0.

At the singular limit ε = 0, we pick a point p = (u, û, v, w, x) ∈ M−∩
M+ where ℘ = (v, w, x) is on M−∩M+ and (u, û) = (q(0), q̇(0)) is

on the heteroclinic solution (q, q̇) connecting h0(v) to h1(v). Let

(∆u,∆û,∆v,∆w,∆x) ∈ TpM
− ∩ TpM+.

Then (∆v,∆w,∆x) ∈ T℘C. On the other hand, since moving along

(∆v,∆w,∆x) does not break the heteroclinic solution, we must

have (∆v,∆w,∆x) ∈ T℘Γ1.

If Γ1 t C, from the above argument, we have (∆v,∆w,∆x) = 0,

and the tangent vector (∆u,∆û,0,0,0) is on T℘Wu ∩ T℘W s. But



the strongly unstable fiber Wu(℘) has an one-dimensional inter-

section with the strongly stable fiber W s(℘). This shows that

(∆u,∆û) = C(q̇(0), q̈(0)) where C is a scalar, and TpM−∩TpM+ is

one-dimensional. Since dimTpM− = dimTpM+ = 2n+ 1 +m and

the intersection occurs in a 2n+ 2m+ 1 dimensional space, thus

M− t M+. The converse is also true.



Examples

A x–dependent system.

When the matrix coupling A is diagonal, then there is no coupling

among the internal layers through the slow field up to O(ε), and

the r eigenvalues, λ1, are determined locally layer by layer. This

happens if the jumps Mi def
= g(qi(−∞), v̄i) − g(qi(∞), v̄i) = 0 for

1 ≤ i ≤ r.

As a special case, consider the following x dependent system

ε2uxx + f(u, x) = 0, u ∈ R
m, 0 < x < 1,

ux = 0, x = 0,1.

Letting v = x, we have (3) with g = 0, whence Mi = 0 for all

i. Therefore, (V ic , W
i
c) = 0 and V R1 = 0. See (??). The coupling

matrix has the simplest form

A = −diag(ni · wR0 (xi0))
r
i=1.
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Using wR0 = vR0x = 1 and (20), we have the r eigenvalues

λ1 = − < ψi, fx(q
i(ξ), xi0) >, 1 ≤ i ≤ r.

The above formula for λ1 is valid when u and f are in Rm,m ≥
1. For scalar equations, observing that the linear equation Uξξ +

fu(q̇i(ξ), xi0)U = 0 is self adjoint in L2(R), we must have ψi =

q̇i/|q̇i|2. See (H2). Therefore,

λ1 = −|q̇i|−2
∫ ∞

−∞
q̇i(ξ)fx(q

i(ξ), xi0)dξ

= −|q̇i|−2 d

dx

∫ qi(∞)

qi(−∞)
f(u, xi0)du.

Following Fife [?], let J i(x) =
∫ hi(x)
hi−1(x)

f(u, x)du. Then

λ1 = −|q̇i|−2 d

dx
J i(xi0), 1 ≤ i ≤ r.

The existence of a heteroclinic solution at xi is equivalent to

J i(xi0) = 0 (equal area rule), while (H3) is equivalent to d
dxJ

i(xi0) 6=
0.



In the original AMP model, f(u, x) = (1 − u2)(u − a(x)). If qi

connects u = −1 to u = 1, then J i(x) = −4
3a(x). Thus J i(xi0) =

0 ⇔ a(xi0) = 0, and λ1 = 4
3|q̇i|−2a′(xi0). It is known that qi(ξ) =

tanh( ξ√
2
) and |q̇i|2

L2 = 2
√

2
3 . Therefore, λ1 =

√
2a′(xi0).

Similarly, for the internal layer jumping from near u = 1 to u = −1,

we can show that λ1 = −
√

2a′(xi0).

We summarize the results in the following

Theorem 11 For the x-dependent system, A is diagonal, with

λ1 = − < ψi, fx(qi(ξ), xi0) >, 1 ≤ i ≤ r. In particular, for the AMP

model λ1 = sign{q̇i}
√

2a′(xi0).

The stability index of the multi-layered solution derived from above

agrees with the result in [?].

Coupled Ginzburg-Landau equations



Consider (1) with f(u, v) = u − u3 − 1
3v, g(u, v) = σ(v − v3) and

ux = vx = 0 at x = 0,1. The stationary solution of this system is

a pair of Duffing oscillators with a unilateral coupling in the fast

equation. We will show that Lemma A in §1 is not satisfied in this

example. This example is highly special since the slow equation

does not contain u. In the end of this subsection, we will give

another example where coupling terms appear in both equations.

As in the examples in §1, f(u, v) = 0 has three branches of solution

manifolds u = h0(v) and u = h±(v). At v̄ = 0, (4) has a hetero-

clinic loop, q(ξ) and q(−ξ), connecting u = h−(0) and u = h+(0).

Write the second equation of (3) as a system

vx = w,

wx = −σ(v − v3).
(64)

For any constant σ > 0, (64) has three equilibria (v, w) = (0,0) and

(±1,0) and has two heteroclinic orbits connecting the hyperbolic

equilibria (±1,0). Notice that the interval [−1,1] is contained in

the domains of h±(v). The region bounded by the heteroclinic



loop is filled up with periodic solutions that surround the center

(0,0). For every point (η,0),0 < η < 1 on the v axis, there passes

a unique periodic orbit whose period will be denoted d(η). Using

an elliptic integral one can show that d′(η) > 0 and there exist

one sided limits d(0+) = 2π√
σ

and d(1) = ∞. For any m ∈ N+,

let σ be sufficiently large so that 2π√
σ
< 2

m. Fix that σ. It is clear

from the above that there exists a unique 0 < η0 < 1 such that

d(η0) = 2/m. Let (v(x), w(x)) be the period 2/m solution that

satisfies v(0) = η0, w(0) = 0. Let (vR0 (x), wR0 (x)) be the restriction

of (v(x), w(x)) to x ∈ [0,1]. vR0 satisfies the following.

vx(`/m) = 0, ` = 0,1, . . . ,m,

v(`/m) = (−1)`η0, ` = 0,1, . . . ,m,

v(
1

2m
+

`

m
) = 0, ` = 0,1, . . . ,m− 1.

(65)

Let {x1 < x2 < · · · < xr} be a subset of { 1
2m+ `

m : ` = 0,1, . . . ,m−1}.
It is clear that vR0 (xi) = 0,1 ≤ i ≤ r. Let x0 = 0 and xr+1 = 1. For

x ∈ (xi−1, xi), define uR0 (x) = h+(vR0 (x)) if i is odd, and uR0 (x) =



h−(vR0 (x)) if i is even. The function (uR0 , v
R
0 ) is the 0th order

expansion of a r-layered solution in regular layers. Let

uSi0 (ξ) =







qi(ξ) ≡ q(−ξ), if i is odd,

qi(ξ) ≡ q(ξ), if i is even.

Let vSi0 (ξ) = 0. The union of (uR0 (x), vR0 (x)) in regular layers

(xi−1, xi), i = 1,2, . . . , r + 1, and (uSi(ξ), vSi0 (ξ)) in singular lay-

ers at xi, i = 1,2, . . . , r is a singular internal layer solution. We can

verify that Hypotheses (H1)-(H7) are satisfied by this solution.

It is trivial to verify (H1)-(H3) since the u-equation is the same as

the activator-inhibitor model in §1. The Transversality Hypoth-

esis in §1 is satisfied since the fast jump surface Γi = {(v, w, x) :

v = 0} is transverse to the flow at each xi, due to vR0x(x
i) 6= 0.

From the transversality hypothesis, (H4) and (H5) are satisfied.

We only need to prove (H6) and (H7). Let S0 = {(v, w, x) : x =

0, w = 0}, S1 = {(v, w, x) : x = 1, w = 0} as in §3.

Let Φ(x)(v0, w0) be the solution map for (64) with Φ(0)(v0, w0) =

(v0, w0). Assume that vR0 (x) consists of m monotonic paths with



m being even. (The case m is odd can be considered similarly.)

Let (vR0 (0), wR0 (0)) = (η0,0). Then (vR0 (1), wR0 (1)) = (η0,0) since

m is even. Let ∆η be a small variation of η0. The periodic solution

with the initial data (η0+∆η,0) has the period d(η0+∆η) = 2(1+

∆x)/m where ∆x is small. This leads to Φ(1+∆x)(η0+∆η,0) =

(η0 + ∆η,0). Since d′(η) > 0, we have

d∆x

d∆η
> 0. (66)

A tangent vector on (Pr . . .P1P0)S0 can be obtained by taking the

limit as ∆η → 0 on the following vector

Φ(1)(η0 + ∆η,0) − Φ(1)(η0,0)

∆η

=
Φ(1)(η0 + ∆η,0) − Φ(1 + ∆x)(η0 + ∆η,0)

∆η

+
Φ(1 + ∆x)(η0 + ∆η,0) − Φ(1)(η0,0)

∆η
.



As ∆η → 0, the first quotient in the right hand side has the

limit d∆x
d∆η(w

R
0 (1),−σ(vR0 (1)−(vR0 (1))3)), due to equation (64), and

the second has the limit (1,0) since Φ(1 + ∆x)(η0 + ∆η,0) =

(η0 + ∆η,0) and Φ(1)(η0,0) = (η0,0). Thus, (1,−d∆x
d∆ησ(v

R
0 (1) −

(vR0 (1))3)) is a tangent vector on (Pr . . .P1P0)S0. By (66) and

−σ(vR0 (1)− (vR0 (1))3) 6= 0, the tangent vector is not on TS1. This

proves both (H6) and (H7).

The results of §3 and §4 can be used on our system since (H1)-

(H7) are valid. We conclude that there is a matched asymptotic

expansion of internal layer solution (
∑

εjuj,
∑

εjvj). Due to the

special form of our system, v = vR0 is independent of ε. There

also exist asymptotic expansions of critical eigenvalues
∑

εjλj and

corresponding eigenfunctions (
∑

εjUj,
∑

εjVj) both in internal and

regular layers.

From (H7), we see that the eigenvalues for the problem λV =

Vxx + gv(vR0 (x))V is nonzero. Let λ(ε), be a critical eigenvalue



for (28) and (29). Using λ0 = 0, we infer that the eigenfunction

(U, V ) satisfies V ≡ 0. Substitute into (28), the critical eigenvalue

satisfies

λU = ε2Uxx + fuU, Ux(0) = Ux(1) = 0.

From the above, the critical eigenvalue is precisely the eigenvalue

of the operator ε2Dxx + fu in the function space H2
N(I), see [?].

Therefore, the system does not satisfies Lemma A.

However, using the method of §4, we can calculate expansions of λ

to any order of ε. In particular, since V R1 = 0, the coupling matrix

Ar×r is diagonal. From (50), the ith critical eigenvalue satisfies

λ1 = −ni · vR0x(xi), similar to the case in the AMP model.

We now briefly describe another example where both equations

contain coupling terms. The example is adapted from the AMP

model. Consider (1) again with f(u, v) = (1−u2)(u−1
2v), g(u, v) =

σ(v−v3)+γu2v, and ux = vx = 0 at x = 0,1. The roots of f(u, v) =

0 consist of three branches: u = h±(v) and u = h0(v) where



h+(v) = 1, h−(v) = −1 and h0(v) = 1
2v. (4) has a heteroclinic

loop q(ξ) and q(−ξ) connecting the equilibria u = ±1 if v̄ = 0. In

regular layers, inserting u = ±1 into the second equation of (3),

we have a reduced system

vxx + σ(v − v3) + γv, vx(0) = vx(1) = 0.

For any m ∈ N+, as before, we can find σ > 0, γ > 0 so that the

above has an oscillatory solution vR0 (x) that satisfies (65). For

any r ≤ m, a singular r-layered solution can be defined as in the

previous example. One can verify that (H1)-(H7) are satisfied,

so the method of §3 and §4 can be used to obtain asymptotic

expansions for internal layer solutions and critical eigenvalues and

eigenfunctions. Since g(1,0) = g(−1,0), Mi = 0 for all 1 ≤ i ≤
r, cf. (46). Therefore, the eigenfunction (U, V ) for a critical

eigenvalue satisfies V R1 = 0. The coupling matrix is diagonal. The

critical eigenvalues for (28), (29) and for the operator ε2Dxx + fu
in H2

N(I) agree up to ε1.

Multiple existence of mono-layer solutions.



This is the longest example and partially motivates the entire pa-

per. As in the introduction, we consider a homotopy between the

AMP and the NF types system. Assume that a(x) = sin(ωx+ b)

and α ≈ 1, β ≈ 0 so that the system can be treated as a per-

turbation to the NF type system. After rescaling, assume that

α = 1 and 0 ≤ β ≤ β0 where β0 > 0 is independent of ε and is

to be determined in the sequel. Only mono-layer solutions will be

considered. Our goal is to show that by choosing (β, ω, b), the

system may have any prescribed number of mono-layer solutions.

Moreover, some of these solutions can only be found by the new

shooting method using pseudo Poincare mappings.

We will only consider mono-layers that jumps upwards, so the

superscript i = 1 which is used to index internal layers will be

dropped. For the convenience, let β = k
ω where 0 ≤ k ≤ β0ω.

The assumptions on F and G are listed in A1–A5 below. The

nullclines of F and G are plotted in Figure ??. These assumptions



are identical to those used in [?] and are qualitatively similar to

the activator inhibitor model (1), (2).

A1. The nullcline of F is sigmoidal and consists of three curves

R− = {(u, y) : u = h−(y), y ∈ I−},
R0 = {(u, y) : u = h0(y), y ∈ I0},
R+ = {(u, y) : u = h+(y), y ∈ I+},

where

I− = (y−,∞), I0 = (y−, y+), I+ = (−∞, y+).

A2. Define J(y) =
∫ h+(y)

h−(y)
F(s, y)ds. J(y) has an isolated zero

ỹ ∈ (y−, y+):

J(ỹ) = 0, dJ(ỹ)/dy < 0.

A3. Fu < 0 on R− and R+.

A4. G < 0 on R− and G > 0 on R+. d
dyG(h±(y), y) < 0 for y ∈ I±.

The latter is equivalent to −GuF−1
u Fy +Gy < 0.



A5. Gy|R± ≤ 0.

To use the method in our paper, we verify (H1)-(H8). For a

mono-layer solution, (H8) is always satisfied. We first verify that

when k = 0, the singular limit solution actually satisfy (H1)–(H7).

We then use a perturbation method to show that (H1)–(H7) are

satisfied when k/ω is small and when certain conditions are posed

on parameters (k, ω, b).

The unperturbed system: k = 0

Under A1–A5, it is well known that there exist σ0, ε0 > 0 such

that (22) has a unique stationary mono-internal layer solution

(u(x, ε), y(x, ε)) if 0 < σ < σ0 and 0 < ε < ε0 [?, ?, ?, ?]. This

solution jumps upwards from near u = h−(y) to near u = h+(y)

at x ≈ x0. As ε → 0, this solution has a limit (uR0 (x), yR0 (x)) in

two regular layers separated by x0 ∈ (0,1). (uR0 (x), yR0 (x)) has

a jump discontinuity at the internal layer x0. Using a stretched



variable ξ = (x − x0)/ε, there exists the limit in the internal layer

(u(x0 + εξ, ε), y(x0 + εξ, ε)) → (uS0(ξ), y
S
0(ξ)) as ε → 0. The mono-

layer solution (u(x, ε), y(x, ε)) and the limit in regular layers (uR0 , y
R
0 )

are plotted in Figure ??. In particular, the jump point x0 satisfies

yR0 (x0) = ỹ where ỹ as in A2, and yR0 is concave up for x < x0 and

concave down for x > x0; and yR0x > 0, 0 < x < 1.

There is a another mono-layer solution that jumps from near

u = h+(y) to near u = h−(y). But this will not be used in this

section. By mono-layer solution, we always mean the one that

jumps upwards.

While the existence of the mono-internal layer solution is well

known, the existence of matched expansions of this solution, or the

existence of matched expansions of critical eigenvalue and eigen-

functions has not been proved before. To this end, we will verify

(H1)–(H7).



From A1, the slow manifolds are R+ := {u = h+(y)} and R− :=

{u = h−(y)}. From A3, fu < 0 on R+∪R−. Thus (H1) is satisfied.

It is clear that vR0 = (yR0 , x)
τ satisfies (18) with x10 = x0 and h0 =

h−, h1 = h+. At x = x0, v̄ =

(

ỹ
x0

)

, equation

uξξ + f(u, v̄) = uξξ + F(u, ỹ) = 0

has a heteroclinic solution q(ξ) due to the fact J(ỹ) = 0, (the equal

area rule, see A2). Thus the surface in (H2) is Σ = {(y, x)|y =

ỹ, x ∈ R}.

The function q̇ is clearly an eigenfunction corresponding to the

eigenvalue λ = 0. Using the fact

Uξξ + fuU = 0, (67)

has exponential dichotomies on R− and R+, we see that (q(0), q̇(0))

is in the intersection of the unstable subspace at 0− and stable

subspace at 0+, both are one dimensional. Thus, the eigenspace

is spanned by q̇. Equation (67) is self adjoint. Let ψ = q̇/‖q̇‖L2.



Then < ψ, q̇ >= 1 and q̇ is not in the range of the operator

∂ξξ + fu · I. Condition (H2) is satisfied.

The normal of Σ is

n =

∫ ∞

−∞
fτv (q(ξ), v̄), ψ(ξ)dξ

= ‖q̇‖−2
∫ h+(ỹ)

h−(ỹ)
Fv(u, ỹ)du

= ‖q̇‖−2Jv(ỹ)

= ‖q̇‖−2J ′(ỹ)
(

1
0

)

.

since wR0 (x0) =

(

yR0x(x0)
1

)

, we have n ·wR0 (x0) = J ′(ỹ) ·yR0x(x0) 6= 0.

Therefore, (H3) is satisfied. See A2. Also the flow is transverse

to Σ.

The major job is to verify (H4)-(H7). We use a geometric method

similar to that used in Theorem 10. Since the flow of the x variable



is trivial, it is reasonable to consider a reduced system that is

equivalent to (21). (Equation (21) is 5–dimensional.)

Lemma 12 For the unperturbed system, k = 0, (H7) is satisfied.

Also, µ0 t µ1 at ℘ in Π̄. See Figure ??.

proof We first prove (H7). From (H7), it is easy to see that µ0 t µ1

at ℘ in Π̄.

Let (Y −, Z−) be the solution of the linear variational system of the

of (23) around the 0th order expansion, with k = 0,

Yx = Z,

Zx = (guf−1
u fv − gv)Y,

Y (0) = 1,
Z(0) = 0,

If we recall that uR = h(yR) where h = h− if x < x0 and h = h+ if

x > x0, then using guf−1
u fv−gv = σ d

dyG(h(y), y) < 0 for x 6= x0, it is



easy to show that Y −(x0) > 1, Z−(x0) > 0. Similarly, the solution

(Y+, Z+) of the linear variational system

Yx = Z,

Zx = (guf−1
u fv − gv)Y,

Y (1) = 1,
Z(1) = 0,

satisfies Y+(x0) > 1, Z+(x0) < 0.

Assume that (H7) is not satisfied for the mono-layer solution.

Then there exists a nonzero C1 solution V to (42). Without loss

of generality, assume that V (x0) > 0. Then there exist γ1, γ2 > 0

such that V (x0) = γ1Y
−(x0) = γ2Y

+(x0). However, we have a

contradiction Vx(x0) = γ1Z
−(x0) > 0 and Vx(x0) = γ2Z

+(x0) < 0.

QED

Since d
dxy

R
0 (x0) > 0, Γ̄1 is a cross section of Φ− and Φ+, reg-

ular Poincare mapping Pi : Γ̄i → Γ̄i+1, i = 0,1 can be defined.

Hypotheses (H4)-(H5) are clearly satisfied.



Lemma 12 implies that M− intersects M+ transversely. The in-

tersection is an one-dimensional curve C passing through ℘. As

in §5, it is called a slow switching curve since the slow flow has

to switch from u = h−(y) to h+(y) in order to satisfy boundary

conditions for y at x = 0,1.

Let (Y c, Zc) be a solution to the following linear system:

dY/dx = Z,

dZ/dx = −σ d
dyG(h(y), y)Y,

Z(0) = 0, Z(1) = 0,
[Y ](x0) = 0,
[Z](x0) = σ(G(h−(ỹ), ỹ) −G(h+(ỹ), ỹ)).

(68)

From Lemma 12, such solution (Y c, Zc) uniquely exists. Similar to

§5, we can show that the vector

(Y c(x0) − zR0 (x0), Z
c(x0−) + σG(h−(ỹ), ỹ),−1)

=(Y c(x0) − zR0 (x0), Z
c(x0+) + σG(h+(ỹ), ỹ),−1)

is a tangent vector of C at (yR0 (x0), z
R
0 (x0), x0). Nishiura & Fujii

in [?] proved that Y c(x0) − zR0 (x0) > 0. Thus, C intersects Γ̄1



transversely. Suppose that Φ− maps S̄0 onto S− in Γ̄1 and Φ+

maps S̄1 onto S+ in Γ̄1. It is now easy to show that

S− t S+ on Γ̄1.

In fact, since C intersects Γ̄1 transversely, the tangent spaces of

M± have a common subspace T℘C which is not on T℘Γ̄1. If the

tangent spaces of S− and S+ coincide, then T℘M− = T℘M+. This

is contradictory to M− t M+. From here we deduce that (H6) is

satisfied.

Perturbed internal layer solution: k 6= 0

We now show that (H1)-(H7) are still valid if k/ω is small.

We use our geometric method to construct singular limit solutions

of (23) and show that (H2)-(H7) are satisfied for these solutions.

Since (23) is piecewise C∞, it is convenient to find the matching

point ℘ = (y†, z†, x†) first. With ℘ as an initial point at x = x†,



a solution can be obtained by solving (23) in [0, x†] and [x†,1].
Notice that when k = 0, ℘ = (ỹ, zR0 (x0), x0).

As in the case k = 0, let Φ− and Φ+ be respectively solution maps

of (23) with h = h− and h = h+ throughout x ∈ [0,1]. Define M−
and M+ as before.

The intersection of the three manifolds M± and Γ̄1 determines

the matching point ℘. Since it is difficult to study the intersection

of Γ̄1 with M− or M+, we study the intersection of M− and M+

first.

Lemma 13 The distances between M± and the corresponding

ones with k = 0 are O( k
ω2) in C0 metric and are and are O(kω) in

C1 metric. When k 6= 0 but k/ω is small, M− and M+ intersect

transversely. The intersection C = M− ∩ M+ is a C1 curve, and

its distance from the one with k = 0 is O(k/ω2) in C0 metric. and

is O(k/ω) in C1 metric.



proof With the initial data (y, z, x) = (η,0,0), M− can be expressed

as

M− = ∪{(y, z, x)|(y, z, x) = Φ−(x; η,0,0; k), 0 ≤ x ≤ 1, η ∈ R},
where Φ− is the solution map of (23) with h = h−. Also,

∂Φ−
∂k

satisfies the linear variational system

(yk)
′ = zk,

(zk)
′ = −σ d

dy
G(h(y+

k

ω
sin(ωx+ b)), y)yk − σ

∂

∂u
G(h, y)h′

1

ω
sin(ωx+ b),

(xk)
′ = 0.

(69)

The forcing term for (69) is of O(1
ω), thus, in general (yk, zk, xk) =

O(1
ω) only. However, since sin(ωx + b) is fast oscillatory, using a

standard method in the theory of averaging, we have

(yk, zk, xk) = O(
1

ω2
).

This proves that

Φ−(x; η,0,0; k) − Φ−(x; η,0,0; 0) = O(
k

ω2
).



Thus, the distance between M− and the one with k = 0 is of

O(k/ω2) in the C0 metric. Using the same method, one can show

∂

∂η
{Φ−(x; η,0,0; k) − Φ−(x; η,0,0; 0)} = O(

k

ω
).

From the right hand side of system (69), we have

∂2

∂k∂x
Φ−(x; η,0,0; k) = O(1/ω).

Therefore, the distance between M− and the one with k = 0 is of

O(k/ω) in the C1 metric.

The statements about M+ can be proved similarly.

The assertions concerning C can be proved using the implicit func-

tion theorem, or a contraction mapping principle and will not be

given here. QED

When k = 0,

(Y c(x0) − zR0 (x0), Z
c(x0−) + σG(h−(ỹ), ỹ),−1)



is a tangent vector of C at ℘ with the y component being positive.

Therefore, locally the curve C can be expressed as

x = x∗(y, b), z = z∗(y, b), ỹ − T ≤ y ≤ ỹ+ T, (70)

where x∗ and z∗ are C1 functions and T > 0 is a constant.

Lemma 14 ∂x∗
∂y (ỹ, b) = −(Y c(x0) − zR0 (x0))

−1 if k = 0. If k 6= 0

then,

∂

∂b
x∗(y, b) = O(k/ω2),

∂

∂b
(
∂x∗(y, b)

∂y
) = O(k/ω).

proof The assertion for k = 0 is obvious.

To prove the assertion about ∂x∗
∂b , we can use a linear variational

system to show that Φ± is a C1 function of b and
∂Φ±
∂b = O(k/ω2)

in C0 metric and is of O(k/ω) in C1 metric. Similar to the proof of

Lemma 13, the fast oscillatory property of sin(ωx+b) is important

in the proof.



Final remarks and stability of internal layer solutions

1. Our methods of constructing asymptotic series for the internal

layer solutions and the critical eigenvalue-eigenfunctions are actu-

ally related, although one uses the pseudo-Poincare mapping or

the (BVPIC), the other uses the coupling matrix (SLEP matrix).

An intuitive reason is that the unknown shift {∆xi} in the (BVPIC)

can also be formulated by adding multiples of q̇i in the ith internal

layer as in the coupling matrix. The following lemma asserts that

asymptotic expansions for internal layer solutions can be obtained

if the coupling matrix is nonsingular:

Lemma 15 If in addition to (H4)-(H6) as in Lemma ??, condition

(H7) is also valid, then (BVPIC) has a unique solution if and only

if the coupling matrix is nonsingular.

proof Let V ic and Mi be as in (47). Define V̄ :=
∑r

1 V
i
c∆xi which

satisfies the first two equations in (BVPIC) with zero right sides,
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and

[V̄ ](xi0) = 0,

[V̄x](x
i
0) = Mi∆xi = ∆xi[wR0x](x

i
0), 1 ≤ i ≤ r.

Let Ṽ = V + V̄ , V as in the (BVPIC), then

Ṽxx − (guf−1
u fv − gv)Ṽ = E1,

AjṼx(j) +BjṼ (j) = E2j, j = 0,1,

[Ṽ ](xi0) = Ei4,

[Ṽx](xi0) = Ei5.

According to Lemma 6, the above has a unique solution Ṽ . Sub-

stituting V = Ṽ − V̄ into the third equation of (BVPIC), ni ·
(wR0 (xi0)∆xi + V (xi0+)) = Ei3, we have

n
i · (wR0 (xi0)∆xi −

r
∑

`=1

V `c∆x`) = Ei3 − n
iṼ (xi0+).

The linear system for ∆xi has a unique solution if the coefficient

matrix, the negation of the coupling matrix, is nonsingular. QED

2. The name “critical eigenvalue” used in this paper is not pre-

cise. Following Nishiura and Fujii, we have only considered critical



eigenvalues whose eigenfunction (U, V ) has a jump in Vx across

xi0. These eigenvalues will be called “singular” critical eigenval-

ues. There may be “regular” critical eigenvalues that satisfy the

reduced eigenvalue problem (30) with V ∈ C1[0,1]. Calculation

of regular critical eigenvalues is quite different from the procedure

given in this paper. From (H1) there exists γ1 > 0 such that if

Reλ > −γ1 then (fu − λ)−1 exists. To avoid regular critical eigen-

values, we assume that

(H9) There exists γ > 0 such that for Reλ > −γ, the following

equation

Vxx − (λ+ gu(fu − λ)−1fv − gv)V = 0, (71)

with boundary conditions (41) does not have any piecewise smooth,

nonzero solution that is in C1[0,1].

Notice that (71) comes from (30) by setting ε = 0. With (H9), it

is easy to show that there is no regular critical eigenvalue in the

region Reλ > −γ.



For system (22) with k = 0, Nishiura and Fujii showed that (H9) is

satisfied [?]. If k/ω is sufficiently small, (H9) can be verified easily

as a small perturbation to the one with k = 0.

3. To use the expansions of critical eigenvalues in the stability

analysis, we need to prove that, in the region Reλ ≥ −β0 > −γ, all

the eigenvalues are the singular critical eigenvalues obtained in §4.

Consider an asymptotic series µ(ε) =
∑

j ε
jµj with µ0 > −β0,

Assume that µ(ε) is not equal to any of the critical eigenval-

ues obtained in this paper. That is, for any critical eigenvalue

λi(ε),1 ≤ i ≤ r, there exists an integer ji0 such that µj = λij, j < ji0
but µj0 6= λij0. Let

j0 = max{ji0,1 ≤ i ≤ r}.
We want to show that µ(ε) is a regular value. Note that if the

corresponding eigenfunction of µ(ε) has an asymptotic expansion

in ε, then we know that µ(ε) is not an singular critical eigenvalue



due to results of the previous sections. However, since we can not

assume that the corresponding eigenfunction has an asymptotic

expansion in ε, the result needs to be proved separately.

Assume that h(x, ε) = (hu(x, ε), hv(x, ε)) is C∞ and admits asymp-

totic expansions in the same regular and singular layers defined by

the internal layer solution (u(x, ε), v(x, ε)). Consider the resolvent

problem

µU = ε2Uxx + fuU + fvV + hu,

µV = Vxx + guU + gvV + hv,

with suitable boundary conditions at x = 0,1. We look for a

matched formal series solution (U(ε), V (ε)). Denote the above as

µΞ − A(ε)Ξ = h(ε), Ξ = (U, V ), h = (hu, hv). (72)

We show formally that the inverse of µ−A exists, with (µ−A)−1 =

O(ε−j0).

Theorem 16 Assume that µ(ε) =
∑

j ε
jµj, µ0 > −β0 = min{γ0, γ},

is an asymptotic series that is not equal to any of the critical



eigenvalues obtained in this paper. Let j0 be the largest of the

powers as above. Then for any h(ε) =
∑

j ε
jhj with hj = 0 for

j < j0 and hj0 6= 0, the eigenvalue problem (72) has a unique

matched formal series solution Ξ =
∑∞
j=0 ε

jΞj.

proof Case 1. j0 = 0, i.e. µ0 6= 0.

Consider the ε0th expansion:

In Regular layers,

µ0U
R
0 = fuU

R
0 + fvV

R
0 + hu0,

UR0 = (µ0 − fu)
−1(fvV

R
0 + hu0),

µ0V
R
0 = V R0xx + [gu(µ0 − fu)

−1fv + gv]V
R
0 + gu(µ0 − fu)

−1hu0 + hv0.

From (H1) and (H9), if we know the jumps (V R0 , V
R
0x) at xi0, we

can solve for (UR0 , V
R
0 ).

In the ith internal layer,

V S0ξ = 0, WS
0ξ = 0, V S0 = constant, WS

0 = constant.



It means that there is no jump for (V R0 ,W
R
0 ) across xi0. Thus we

can solve for V R0 . We also have V S0 = V R0 (xi0).

µ0U
S
0 = US0ξξ + fuU

S
0 + fvV

S
0 + hu0.

From (H2), µ0 is not an eigenvalue for the above. One can

uniquely solve for US0 .

In the εjth expansion, we can solve for (Uj, Vj) both in regular and

singular layers much like the same way for (U0, V0).

Case 2. j0 = 1. In this case µ0 = 0, µ1 6= λi1 for any 1 ≤ i ≤ r

and h0 = 0 but h1 6= 0.

In the ε0-th expansion, since λ0 = 0, h0 = 0, we have

UR0 = 0, V R0 = 0, in regular layers,

V Si0 = 0, USi0 = di0q̇
i, in the i-th singular layer.

di0 remains to be determined.



Consider the ε1th expansion:

In the regular layer, since µ0 = 0, UR0 = 0, V R0 = 0, then

0 = fuU
R
1 + fvV

R
1 + hu1,

UR1 = −f−1
u (fvV

R
1 + hu1),

V R1xx − (guf
−1
u fv − gv)V

R
1 = guf

−1
u hu1 − hv1.

From (H1) and Lemma 6, if we know the jump of (V R1 , V
R
1x) across

each xi0, we can solve for (UR1 , V
R
1 ).

In the i-th singular layer, since V S0 = 0, µ0V
S
1 + µ1V

S
0 = 0, then

V S1ξ = WS
0 = 0,

WS
1ξ = −gudi0q̇i.

Integrate from ξ = −∞ to ∞, and use the matching principle,

V R1 (xi0+) − V R1 (xi0−) = 0,

WR
1 (xi0+) −WR

1 (xi0−) = di0Mi.



We can now solve for (V R1 ,W
R
1 ). They are of the form

V R1 =
r
∑

1

di0V
i
c + ` · o · t, WR

1 =
r
∑

1

di0W
i
c + ` · o · t.

Here ` · o · t involves h1. Using matching, V S1 = V R1 (xi0). Plug into

µ1d
i
0q̇
i = US1ξξ + fuU

S
1 + fvV

S
1 + di0(fuuq̇

iu1 + fuvq̇
iv1) + hu1,

we can solve for US1 if the nonhomogeneous terms are orthogonal
to ψi. Integration by parts as in (49),

di0µ1 =
r
∑

`=1

d`0n
i · V `c (xi0) − di0n

i · wR0 (xi0)+ < ψi, hu1 > +` · o · t.

µ1







d10...
dr0





 = A







d10...
dr0





+







< ψ1, hu11 >
...

< ψr, hur1 >





+ ` · o · t.

Since µ1 6= λ1,1 ≤ i ≤ r, it is not an eigenvalue. The above has a
unique solution (d10, · · · , dr0).

Assume that the εj−1th expansion has been obtained. We have
USij−1 = dij−1q̇

i + Zij−1 where Zij−1 has uniquely been determined



but dij−1 has not. In the εj-th expansion, we can similarly show

that

dij−1µ1 =
r
∑

`=1

d`j−1n
i · V `c (xi0) − dij−1n

i · wR0 (xi0)+ < ψi, huj > +` · o · t.

µ1









d1j−1
...

drj−1









= A









d1j−1
...

drj−1









+









< ψ1, hu1j >
...

< ψr, hurj >









+ ` · o · t.

From this, we can solve for (d1j−1, · · · , drj−1).

Case 3. j0 > 1. In this case there exists an critical eigenvalue

λi(ε) such that µj = λij, j < j0, µj0 6= λij0
. We shall solve

µΞ − A(ε)Ξ = h(ε) (73)

where hj = 0 for j < j0, hj0 6= 0.

An important observation is that it suffices to find asymptotic

series for (73) up to the εj0th expansion. Let the normalized



eigenfunction corresponding to λi(ε) be

(Ū i(ε), V̄ i(ε)) = (
∑

εjŪ ij,
∑

εjV̄ ij ).

In the future, we drop the index i on λij and (Ū i, V̄ i). For expansions

to the order εj, j < j0, since hj = 0, and µj = λj, we have the same

equations as the eigenvalue/eigenfunction equations. Therefore,

we set

Uj = k0Ūj, Vj = k0V̄j, Wj = k0W̄j, j < j0,

except for USj0−1 = k0Ū
S
j0−1 + diq̇i in the ith internal layer. The

parameters (d1, · · · , dr) remain to be determined.

Consider the εj0-th expansion. Let

Uj0 = k0Ūj0 + U,

Vj0 = k0V̄j0 + V,

Wj0 = k0W̄j0 +W.

Here U = US, V = V S,W = WS in internal layers, and U = UR, V =

V R,W = WR in regular layers.



In regular layers, since (Ū(ε), V̄ (ε)) satisfies the eigenvalue equa-

tions, then all the terms multiplied by k0 should cancel. In the

εj0-th expansion, after the cancellation, we have

0 = fuU
R + fvV

R + huj0,

0 = V Rxx + guU
R + gvV

R + hvj0,

UR = −f−1
u fvV

R − f−1
u huj0,

0 = V Rxx − gu(f
−1
u fvV

R − f−1
u huj0) + gvV

R + hvj0.

We can solve for (U, V ) if jumps of (V R, V Rx ) across xi0 are obtained.

In the i-th internal layer, we again can cancel all the terms in both

sides of the equation that are also in the eigenvalue equation.

Since

µoU
S
j0

+· · ·+µj0U
S
0 = k0(λ1Ū

S
j0−1+· · ·+λj0Ū

S
0 )+λ1d

iq̇i+k0(µj0−λj0)Ū
S
0 ,

After the cancellation,

λ1d
iq̇i + k0(µj0 − λj0)Ū

S
0 = USξξ + fuU

S + fvV
S + huj0.



V Sξ = 0,

WS
ξ = −diguq̇i,

V R(xi0+) − V R(xi0−) = 0,

WR(xi0+) −WR(xi0−) = diMi.

The solution of V R has the form

V R =
r
∑

`=1

d`V `c +O(|hj0|).

Substituting V S = V R(xi0) into the equation for US, using the

Fredholm alternative, and integrating by parts as (49), we have

λ1d
i + k0(µj0 − λj0)c

i
0 = n

i · [
r
∑

`=1

d`V `c (x
i
0) − diwR0 (xi0)] +O(|hj0|).

λ1







d1
...
dr





 = A







d1
...
dr





− k0(µj0 − λj0)







c10...
cr0





+O(|hj0|).



Since (c10, . . . , c
r
0)
τ is in the kernel of (λ1−A), it is not in the range

of λ1I − A. Since since µj0 6= λj0, there exists a unique k0 that

allows the equation for (d1, . . . , dr) to be solved. Without loss, let

(d1, . . . , dr) ⊥ (c10, . . . , c
r
0).

After the εj0th order expansion has been obtained, we can compute

the εj0+1th and other higher order expansion by induction, with

the similar method. QED

The series expansion is a formal solution to the resolvent problem.

With the help of some contraction mapping and iteration method,

similar to the ones outlined in the Appendix, one can show that

there exists a small ε0 > 0 such that if ε ≤ ε0, then
∑j0

0 εjµj is

a regular value of the internal layer solution. The constant ε0
depends on |µj0 − λj0|.

Denote the critical eigenvalues by λ(`)(ε) =
∑∞

0 εjλ
(`)
j , 1 ≤ ` ≤ r.

A critical eigenvalue λ(`)(ε) is said to be stable if Reλ
(`)
1 < 0. It is

said to be unstable if Reλ
(`)
j > 0. We can show the following



Theorem 17 With (H9), there exists a constant ε0 > 0 such that

if 0 < ε ≤ ε0, then the internal layer solution is unstable if there

exists at least one unstable critical eigenvalue; the internal layer

solution is stable if all the critical eigenvalues are stable.

proof Only the idea of the proof is given. First if λ(`)(ε) is an

unstable eigenvalue with Reλ`1 > 0, then from Theorem 21 there

exists a true eigenvalue of the internal layer solution in the right

half complex plane if ε is sufficiently small. Thus the internal layer

solution is unstable.

Next assume that all the critical eigenvalues are stable. There

exist ε0 > 0 such that all the truncated eigenvalues λ`(ε) = ελ
(`)
1

lie in the left half complex plane provided that 0 < ε < ε0. A cone

centered at λ`(ε) is defined as {ελ : |λ − λ`1| ≤ δ} and is called a

` − δ cone. We choose δ > 0 so that all such cones lie in the left

half complex plane for 0 < ε ≤ ε0.



Let µ be a complex number with Reµ ≥ 0. Then for some suffi-

ciently small δ, µ is not in any of the `−δ cone. From Theorem 16,

formally µ is a regular value. Using contraction mapping argument,

we can show rigorously that there exists a small ε0 such that µ is

a regular value if 0 < ε < ε0. Care must be taken to ensure that a

common ε0 can be found for all such µ. Details will be omitted due

to the length of the paper. We have shown that all the eigenvalues

are in the left plane Reλ < 0, therefor the internal layer solution is

stable. QED



The existence of the layer solutions and the critical eigenvalue-

eigenfunctions

The iteration method as stated in Lemma 18 will be used through-

out this section. Let L be a bounded linear operator from Banach

spaces E1 to E2. We say S : E2 → E1 is an approximate right

inverse of L if |I − LS| < 1.

Lemma 18 If L has an approximate right inverse S, then the

abstract equation Lx = y has a (non unique) solution x = S∑∞
0 (I−

LS)jy. If moreover, S is invertible, then the solution is unique.

In practice, E1 is the space of solutions and E2 is the space of forc-

ing functions plus the space of boundary and jump terms related

to a system of differential equations. The operator S is usually

the inverse of a simplified operator L1 derived from L by dropping

some coefficients, changing the forcing terms, jump terms or the
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deforming the domain of solutions. If S = L−1
1 , L1x1 = y, then

|I − LS| = C1 < 1 means

|(L1 −L)(x1)| < C|y|, for all x1 ∈ E1. (74)

Condition (74) can be checked, a posteriori, without using the

exact solution x = L−1y. To solve a difficult abstract equation,

we may need to find a finite chain of operators: Lj,1 ≤ j ≤ k,

satisfying (74) for any two adjacent operators. The last equation

Lkx1 = y must be easy to solve.

For any integer m ≥ 0, let x`ap(ε) =
∑m

0 εjx`j, 1 ≤ ` ≤ r be an

approximation of the position of the `th internal layer . We look

for ∆x` so that x`∆ = x`ap(ε)+∆x` is the exact layer position. For

convenience, we set ∆x` = 0 for ` = 0, r+1. Thus, x0∆ = x0ap = 0

and xr+1
∆ = xr+1

ap = 1. Let εβ, 0 < β < 1, be an “intermediate

variable”. Define a sequence of points ai,0 ≤ i ≤ 2r + 3. Except

for a0 = 0 and a2r+3 = 1, points a1 to a2r+2 are defined as

a2i = xi∆ − εβ, 1 ≤ i ≤ r+ 1,

a2i+1 = xi∆ + εβ, 0 ≤ i ≤ r.



The interval [0,1] is divided by {ai}2r+3
i=0 into 2r + 3 subintervals

that alternatively house singular and regular layers, see Figure .

Ii = {x|ai−1 < x < ai,1 ≤ i ≤ 2r+ 3},
I2`+1, 0 ≤ ` ≤ r+ 1, are for the (r+ 2)-singular layers,

I2`, 1 ≤ ` ≤ r+ 1, are for the (r+ 1)-regular layers.

a a a a a

II I I I I I III
2 3 4 i i+1i-1 2r+32r+22r+1

2 3 ii-1 i+1 i+2i-2 a2r a2r+1 2r+2 2r+3a0  a1 a

I
1 i+2

a
x x x xx l xl+1 r+1r 0 1 a a

The partition of singular and regular layers

where i = 2`+ 1, x` ∈ Ii = I2`+1, the `th internal layer.

Let ξi = ai/ε and ξ = x/ε. Then in the stretched variable, Ii =

{ξ|ξi−1 < ξ < ξi}. The width of a singular layer is O(εβ) in the

x-variable, but is O(εβ−1) >> 1 in the ξ variable. The interval Ii is

customary also called rregular or singular layers if i = 2` or 2`+1.



If ∆x` = 0 for ` = 1, . . . , r, then the corresponding unperturbed

sequences of points and intervals are denoted by ai0, ξ
i
0 and Ii0.

For any integer m ≥ 0, define the εmth approximations of eigen-

values, internal layer solutions with W = (u, v), and eigenfunctions

with W = (U, V ) by truncating the asymptotic series as follows:

λkap =
m
∑

0

εjλkj , k = 1, . . . , r,

Wap(x, ε) =
m
∑

0

εjWR
j (x), x ∈ Ii, i = 2`,1 ≤ ` ≤ r+ 1,

Wap(x, ε) =
m
∑

0

εjWS`
j ((x− x`∆)/ε, ε), x ∈ Ii, i = 2`+ 1,0 ≤ ` ≤ r+ 1.

A function W in Ii will be denoted W i if necessary.

Although the interval Ii changes with ∆xi and ε, Wap is still well

defined. In regular layers, using the differential equations, the

domain of WR
j (x) can be extended from x ∈ (R)` = (x`−1

0 , x`0) to



an open interval Oi containing (R)`. Therefore, if ε and max`{∆x`}
are sufficiently small, then Ii ⊂ Oi so that Wap(x, ε) is defined in Ii.

The width of a singular layer is fixed and Wap(x, ε) is only shifted

in the x direction when ∆x` 6= 0.

Formal approximation of internal layer solutions

(uap, vap) defined above is a formal approximation in the sense

that after substituting into (31), the residual errors in all layers,

boundary errors at x = 0,1, and jump errors between adjacent

singular and regular layers are small.

If we let (−F i,−Gi) be the residual error of the approximation in

Ii, then

uap,ξξ + f(uap, vap) = −F i,
vap,xx + g(uap, vap) = −Gi, 1 ≤ i ≤ 2r+ 3.

It is easy to verify that |F i| + |Gi| = O(εm+1) in regular layers. In

singular layers, the Taylor expansion of f and g involves polynomial



growth terms of ξ. Since the layer width in ξ is of εβ−1, the residual

error due to truncation is of f is O(εm+1ξm+1) = O(εβ(m+1). In

singular layers, only the εm−1th order expansion of g was used

due to the extra term ε in front of g, thus the truncation error

|Gi| = O(εmβ). In the x scale, the L1 norm is O(εβ(m+1)). In

conclusion

|F i| + |Gi| = O(εm+1), in regular layers,

|F i| + |Gi|L1 = O(εβ(m+1)), in singular layers.
(75)

If we define the jump errors between layers with ∆x` = 0, ` =

1, . . . , r as

ui+1
ap (ai0) − uiap(a

i
0) = −J i1, ui+1

ap,x(a
i
0) − uiap,x(a

i
0) = −J i2,

vi+1
ap (ai0) − viap(a

i
0) = −J i3, vi+1

ap,x(a
i
0) − viap,x(a

i
0) = −J i4,

then we have

4
∑

i=1

4
∑

j=1

|J ij| ≤ Cεβ(m+1). (76)



For a proof see [?, ?, ?].

Existence of internal layer solutions

Let (uap + u, vap + v) be the exact solution with the exact layer

position x`ap(ε) + ∆x`. The functions (u, v) satisfy the following

linear variational equations. In regular layers,

uξξ + f iuu+ f ivv = F i(ξ) +M i(u, v, ε),

vxx + giuu+ givv = Gi(x) +N i(u, v, ε).

In singular layers,

uξξ + f iuu+ f ivv = F i(ξ) +M i(u, v, ε),

vxx = Gi(x) +N i(u, v, ε).

The coefficients are based on linearizing at the ε0th order approxi-

mations. For example, in regular layers, f iu = fu(uR`0 (x), vR`0 (x)), i =

2`. In singular layers, f iu = f iu(u
S`
0 (ξ−x`0/ε), vS`0 (ξ−x`0/ε)), i = 2`+1.

Similar definitions apply to f iv, g
i
u, g

i
v. If ξ is used in regular layers,

let x = εx and if x is used in singular layers, let ξ = x/ε.



A direct linearization would yield vxx+giuu+givv = Gi(x)+N i(u, v, ε)

in singular layers. But since the length of the layer is O(εβ), giuu+

givv = O(εβ(|u| + |v|)) and is included in N i.

The nonlinear terms satisfy,

|M i| + |N i|L1 ≤ C(|ui|2 + |vi|2 + εβ(|u| + |v|)).

Let Ii, i = 2` + 1, be a singular layer. Observe that adding ∆x`

does not change the values of ui at the boundaries of Ii. When

∆x` 6= 0 the jump conditions for (u, v) are,

ui+1(ai) − ui(ai) = uiap(a
i) − ui+1

ap (ai),

ui(ai−1) − ui−1(ai−1) = ui−1
ap (ai−1) − uiap(a

i−1).

After linearization, we have

ui+1(ai) − ui(ai) = J i1 − u
R,`+1
0x (x`0+)∆x` +Ki

1,

ui(ai−1) − ui−1(ai−1) = J i−1
1 + u

R,`
0x (x`0−)∆x` +Ki−1

1 .



The nonlinear terms satisfy

Ki
1 = O(|∆x`|2 + |ui+1|2 + |ui+1

x |2 + εβ(|∆x`| + |ui+1|2 + |ui+1
x |2),

Ki−1
1 = O(|∆x`|2 + |ui−1|2 + |ui−1

x |2 + εβ(|∆x`| + |ui−1|2 + |ui−1
x |2)

Similar formulas for the jumps of ux, v, vx can be written at the

junction points.

If we can solve the following system of linear nonhomogeneous

equations, then the nonlinear system can be solved by the con-

traction mapping principle.

In a regular layer Ii, i = 2`,1 ≤ ` ≤ r+ 1,

uξξ + f iuu+ f ivv = F i(ξ), (77)

vxx + giuu+ givv = Gi(x). (78)

In a singular layer Ii, i = 2`+ 1,1 ≤ ` ≤ r+ 1,

uξξ + f iuu+ f ivv = F i(ξ), (79)

vxx = Gi(x). (80)



The boundary conditions at x = 0,1 are

ux(0) = ux(1) = 0,

Ajvx(j) +Bjv(j) = 0, j = 0,1.
(81)

Denote u, ux, v, vx by z, the jump conditions for i = 2` + 1, Ii a

singular layer, are:

zi+1(ai) − zi(ai) = J ij − zR0x(x
`
0+)∆x`,

zi(ai−1) − zi−1(ai−1) = J i−1
j + zR0x(x

`
0−)∆x`,

(82)

where j = 1,2,3,4 if z = u, ux, v, vx respectively.

We can prove the following result

Theorem 19 The system (77)-(80) with boundary conditions (81)

and jump conditions (82) has a unique solution (u, v, {∆xi}r1), that

satisfies

|{∆xi}| + |u| + |v| ≤ C{
∑

|F i| +
∑

|Gi|L1 +
∑

i

4
∑

j=1

|J ij|}.



By the superposition principle, the proof is divided into two steps.

(1) STEP ONE: We solve the nonhomogeneous system (77)-(80)

in each regular or singular layer, taking care of the boundary con-

ditions (81) but ignoring the jump conditions (82).

(2) STEP TWO: We solve a homogeneous system (77)-(80) with

zero (F i, Gi) and zero boundary conditions, but nonhomogeneous

jump conditions, which are modified to accommodate the changing

due to the first step. The sum of the solutions in the two steps is

the solution of Theorem 19.

System (77)-(82) bears some resemblance of the linear systems

in §3. However, in regular layers, the term uξξ = ε2uxx can not

be dropped to make an algebraic-differential system. Because of

this, even the relatively easier STEP ONE is not trivial to carry

out. The point is we need to find a solution in each layer that is

bounded uniformly by (F i, Gi) as the length of intervals approaches



infinity in the ξ scale when ε → 0. The procedure of performing

STEP ONE is discussed in [?] and will be skipped in this paper.

To accomplish STEP TWO, based on Lemma 18, we will simplify

the system to make it easy to solve. Eventually, the system is

reduced to the (BVPIC) which is known to have a solution.

In regular layers, by the change of variable u = y− (f iu)
−1f ivv, (78)

becomes

vxx + giuy+ [giv − giu(f
i
u)

−1f iv]v = 0.

The idea is if y=0, we are on the slow manifold of the linear

system, so that the deviation y must be small. If we drop giuy then

the system to solve in regular layer is

uξξ + f iuu+ f ivv = 0, (83)

vxx + [giv − giu(f
i
u)

−1f iv]v = 0. (84)



In singular layers, we convert vxx = 0 into a system vx = w,wx = 0,

and approximate it by vx = 0, wx = 0. Then in singular layers

uξξ + f iuu+ f ivv = 0, (85)

vx = 0, wx = 0. (86)

Recall that by the iteration method, all we need is to solve the

system approximately with small errors. After solving for (u, v,w),

we can show a posteriori that giuy is small in L1 norm, see [?] for

a proof, and |w|L1 ≤ Cεβ|w|L∞ is also small.

We look for solutions of a system consisting of (83)-(86) plus the

boundary conditions (81) and the jump conditions (82). The next

step is to reduce the system to the (BVPIC) as in §3.

First we solve for v in regular layers from (84). We need jump

conditions for v in two ajacent regular layers, one before the other

after the `th internal layer Ii = I2`+1. Observe that from (86),



(vi, wi) are constants in Ii. If we Recall that [vR0x](x
`
0) = 0, from

the jump conditions (82), we find that

vi+1(ai) − vi−1(ai−1) = J i3 + J i−1
3 , (87)

wi+1(ai) − wi−1(ai−1) = J i4 + J i−1
4 + ∆x`[wR0x](x

`
0), (88)

A0v
2
x(a

1) +B0v
2(a1) = A0J

1
4 +B0J

1
3 , (89)

A1v
2r+2
x (a2r+2) +B1v

2r+2(a2r+2) = −A1J
2r+1
4 −B1J

2r+1
3 . (90)

Let us turn to the u equations in singular and regular layers. Con-

sider (83) and (85) in regular and singular layers with Neumann

boundary conditions. For the jump conditions on (u, ux), consider

the `th singular layer Ii, i = 2`+ 1.

ui+1(ai) − ui(ai) = Hi
1 := J i1 − u

R,`+1
0x (x`0+)∆x`,

ui+1
x (ai) − uix(a

i) = Hi
2 := J i2 + u

R,`
0x (x`0−)∆x`.

(91)

Equations for u have the property that in the two boundary layers

and all the regular layers, uξξ+f iuu = 0 has exponential dichotomies

in Ii = (ξi−1, ξi). In each internal layer Ii = I2`+1, ` = 1, . . . , r,



uξξ + f iuu = 0 has exponential dichotomies only on the two half-

subintervals of Ii. By having an exponential dichotomy for a sec-

ond order equation, we mean that the correspponding first order

system on (u, uξ) has an exponential dichotomy. The constants

and exponents of the dichotomies do not depend on ε or the length

of the intervals, which approaches infinity as ε → 0. Let the pro-

jections to stable and unstable spaces in Ii be P is(ξ) and P iu(ξ).

The projections in internal layers have a jump at the middle of the

interval Ii since the dichotomies only exist on half of each Ii.

If Hi
j, j = 1,2, is given, the system with jump conditions and

exponential dichotomies described as above has been studied in

[?, ?, ?, ?]. The problem to solve is similar to the classical shad-

owing lemma except for the lack of exponential dichotomies in

the whole internal layers. Assuming at ξi, RP iu(ξi) ⊕ RP i+1
s (ξi)

which can be verified in our system, we have the unique splitting

(Hi
1, H

i
2)
τ = φi+1

s − φiu where φi+1
s ∈ RP i+1

s (ξi) and φiu ∈ RP iu(ξi).



Denote φiu := Qiu(H
i
1, H

i
2)
τ , φi+1

s := Qis(H
i
1, H

i
2)
τ . The system for

u can be approximated by a local boundary value problem in Ii:

uξξ + f iuu+ f ivv = 0,

P is(ξ
i−1)(u(ξi−1), ux(ξ

i−1)) = φis,

P iu(ξ
i)(u(ξi), ux(ξ

i)) = φiu,

In regular layers, and in the two boundary layers, the above always

has a solution for any continuouse or L1 function v(ξ) and any

vectors (φis, φ
i
u). In internal layers, v is constant, If Ψ = (−ψ̇`, ψ`),

where ψ` is the solution to the adjoint eqaution as in §2. To have

a solution u in Ii = I2`+1, which is (−εβ−1, εβ−1) using local coor-

dinate, a Melnikov type condition must be satisfied, see Lemma 4.

∫ β−1

−β−1
ψ`(ξ)fvv

idξ = Ψi(ξi)φiu − Ψi(ξi−1)φis

=Ψi(ξi)Qiu(H
i
1, H

i
2)
τ − Ψi(ξi−1)Qi−1

s (Hi−1
1 , Hi−1

2 )τ .

It is now clear, base on Ψi(ξ) is exponentially small as ξ → ∞,

we can drop the ∆x` terms in the definitions of (Hi
1, H

i
2) in (91).

The right hand side is approximated by given terms involving only



(J i−1
1 , J i−1

2 , J i1, J
i
2). If we denote n`0 :=

∫ β−1

−β−1 f
i
vψ

`(ξ)dξ and use

the jump condition vi+1(ai)− vi(ai) = J i3 −wR0 (x`0)∆x`, we have a

condition on vi+1(ai):

n
`
0·(vi+1(ai))+wR0 (x`0)∆x`) = Ψi(ξi)Qiu(J

i
1, J

i
2)
τ−Ψi(ξi−1)Qi−1

s (J i−1
1 , J i−1

2

(92)

In the simpified system, the v variable in regular layers must satisfy

(92), with jump conditions (87), (88) and boundary conditions

(89), (90).

If we shrik the the singular layer to a point x`0,0 ≤ ` ≤ r + 1,

and move a2` and a2`+1 to x`0, and approximate the n`0 by n` =
∫∞
−∞ f ivψ

`(ξ)dξ, then (92) is approximated by

n
` · (vi+1(x`0+) + wR0x(x

`
0+)∆x`) = given terms.

This is precisely the third equation in (BVPIC). The boundary con-

ditons become the second equation in (BVPIC) and the jump con-

ditions the last two equations in (BVPIC). Acoording to Lemma ??,

the modefied system has a unique solution. If we solve this



(BVPIC) and map the solution in each (x`−1
0 , x`0) by a near iden-

tity map to (a2`−1, a2`), we have a good approximation of the v

in regular layers. The error of the approximation approaches zero

as ε → 0. By Lemma 18, this means that the system for the v

variable in regular layers has a unique solution.

The v in singular layers can be obtained by jump conditions to

their neighboring regular layers. Finally, since (92) is satisfied, u

with boundary and jump consitons can be obtained.

Once the liear systenm has been solved, the nonlinear variational

system can be solved by a contraction mapping principle. We

summarize the result below:

Theorem 20 For any integer m ≥ 0, then there exists ε0 > 0 such

that if 0 < ε < ε0, there exists a unique internal layer solution



(uexact, vexact) near the formal approximation (uap, vap). The inter-

nal layer solution has exact layer positions (determined by some

phase condition) x`exact,1 ≤ ` ≤ r that is near x`ap. Moreover,

|uexact−uap|+ |vexact− vap|+
∑

`

|x`exact−x`ap| ≤ Cεβ(m+1),0 < β < 1.

Formal approximation of critical eigenvalue and eigenfunc-

tions

By truncating the formal series of eigenvalues and eigenfunctions

as above, we can show that λap(ε) and (Uap, Vap) are approxima-

tions of eigenvalue and eigenfunctions with small residual in each

Ii and jump errors between layers..

If we let (−F i,−Gi) be the residual error of the approximation of

eigenvalue and eigenfunctions in Ii, then

− λapUap + Uap,ξξ + f iu(exact)U + f iv(exact)V = −F i,
− λapVap + Vap,xx + giu(exact)U + giv(exact)V = −Gi, 1 ≤ i ≤ 2r+ 3.



Here f iu(exact) = fu(uexact, vexact) in regular layers, etc.. One can

verify that |F i| and |Gi| satisfy estimates (75) with perhaps differ-

ent constants C.

When ∆` = 0, ` = 1, . . . , r, the jump errors between layers are

defined as

U i+1
ap (ai0) − U iap(a

i
0) = −J i1, U i+1

ap,x(a
i
0) − U iap,x(a

i
0) = −J i2,

V i+1
ap (ai0) − V iap(a

i
0) = −J i3, V i+1

ap,x (ai0) − V iap,x(a
i
0) = −J i4.

They satisfy (76) with perhaps different constants C.

Existence of critical eigenvalue-eigenfunctions

The existence of a true critical eigenvalue-corresponding eigen-

function near the approximation (λkap(ε), Uap, Vap) can also be proved

by the contraction and iteration methods. For a related system,

see [?]. We can prove the follwing result:



Theorem 21 For any integer m ≥ 0 and 1 ≤ k ≤ r, there exists

ε0 > 0 such that if 0 < ε < ε0, there exists a unique eignevalue-

eigenfunction triplet (λexact, Uexact, Vexact) near (λkap(ε), Uap, Vap). More-

over,

|λkap − λexact| + |Uap − Uexact| + |Vap − Vexact| = O(ε(m+1)β).

When we construct Uap, an undetermined term εmc`mq̇
` can be

added in the `th singular layer. The vector {c`m}r`=1 will be deter-

mined now. Let an exact solution be

λexact = λkap + εm+1λ,

Uexact = Uap + εm+1U, in regular layers,

Uexact = Uap + εmc`mq̇
` + εm+1U, in the `th singular layer,

Vexact = Vap + εm+1V, in regular and singular layers.

In regular layers,

Uξξ + f iuU + f ivV = F i(ξ) +M i(U, V, λ, ε),

Vxx + giuU + givV = Gi(x) +N i(U, V, λ, ε).



In the `th singular layer,

− λ1c
`
mq̇

` − λc`0q̇
` + Uξξ + f iuU + f ivV + f iuuc

`
mq̇

`u1 + f iuvc
`
mq̇

`v1

= F i(ξ) +M i(U, V, λ, c`m, ε),

Vξ = εW, Wξ = −giuc`mq̇` +Gi(x) +N i(U, V, λ, c`m, ε).

Th nonlinear terms satisfy

|M i|+ |N i|L1 ≤ C(|U |2+ |V |2+ |λ|2+ |c`m|2+ε(|U |+ |V |+ |λ|+ |c`m|)).
In regular layers, the nonlinear terms satisfy a similar estimate.

There are also boundary conditions at x = 0,1 and jump conditions

at {ai} to be satisfied. If we drop the nonlinear and small terms,

we have a linear system.

In regular layers,

Uξξ + f iuU + f ivV = F i(ξ),

Vxx + giuU + givV = Gi(x).



In the `th singular layer,

− λ1c
`
mq̇

` − λc`0q̇
` + Uξξ + f iuU + f ivV + f iuuc

`
mq̇

`u1 + f iuvc
`
mq̇

`v1 = F i(ξ),

Vξ = 0, Wξ = −giuc`mq̇` +Gi(x).

The boundary and jump conditions are,

U1
x (a

0) = U2`+3
x (a2`+3) = 0, AjVx(j) +BjV (j) = 0,

U i+1(ai) − U i(ai) = J i1, U i+1
x (ai) − U ix(a

i) = J i2,

V i+1(ai) − V i(ai) = J i3, V i+1
x (ai) − V ix(a

i) = J i4.

Integrating in the `th singular layer, we have

V i(ai) − V i(ai−1) = 0,

W i(ai) −W i(ai−1) = c`m(g(q`(−εβ−1), v) − g(q`(εβ−1), v)) ≈ c`mM`.

Here M` := g(q`(−∞), v) − g(q`(∞), v) as defined in §4. It is now

clear that the jump of (V,W ) between the two regular layers next

to I2`+1 are approximately

V i+1(ai) − V i−1(ai−1) = J i3 + J i−1
3 ,

W i+1(ai) −W i−1(ai−1) = J i4 + J i−1
4 + c`mM`.



Using the change of variable U = Y − (f iu)
−1f ivV , in regular layers

Vxx − [giu(f
i
u)

−1f iv − giv]V + giuY = 0.

Dropping the small term giuY , also observing ai and ai−1 are εβ

close to x`0, an approximate system of V has the form

Vxx − [giu(f
i
u)

−1f iv − giv]V = 0,

[V ](x`0) = J i3 + J i−1
3 ,

[Vx](x
`
0) = J i4 + J i−1

4 + c`mM`,

with homogeneous boundary conditions. The solution can be writ-

ten as V = c`mV
`
c+ given terms, V `c as in §4.

To determine c`m, plug V into the U equation in internal layers.

In order to have a solution in I2`+1, we have a Melnikov type

condition

∫ β−1

−β−1
< ψ`(ξ),−λ1c

`
mq̇

` − λc`0q̇
` + f ivV + f iuuc

`
mq̇

`u1 + f iuvc
`
mq̇

`v1 − F i(ξ)

=given terms.



Replacing the domain of integral by (−∞,∞) and recalling that
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With A being the coupling matrix, the above can be written as

(A− λ1I)cm = λc0 + given terms.

Here we denote a r-vector (c1, . . . , cr)τ by c . Since λ1 is a simple

eigenvalue and c0 is not in the range of A − λ1I, there exists a

unique λ such that the above can be solved for a unique vector cm.

After that, we can determine a unique U2`+1 ⊥ q̇` in each singular

layer. Approximations for (U, V ) in regular layers can also be solved

accordingly. The exact solution of (U, V, λ, {c`m}) is obtained by the

iteration method as in Lemma 18.


