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Abstract

Consider an autonomous ordinary differential equation in Rn that has a homoclinic solution asymptotic 
to a hyperbolic equilibrium. The homoclinic solution is degenerate in the sense that the linear variational 
equation has 2 bounded, linearly independent solutions. We study bifurcation of the homoclinic solution 
under periodic perturbations. Using exponential dichotomies and Lyapunov–Schmidt reduction, we obtain 
general conditions under which the perturbed system can have transverse homoclinic solutions and nearby 
periodic or chaotic solutions.
Published by Elsevier Inc.
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1. Introduction

Consider the system of autonomous differential equations

ẏ(t) = f (y(t)), (1.1)

where y ∈ R
N . We make the following assumptions:
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(H1) f ∈ C3.
(H2) f (0) = 0 and the eigenvalues of Df (0) lie off the imaginary axis.
(H3) Eq. (1.1) has a homoclinic solution γ (t) asymptotic to the equilibrium y = 0. That is,

γ̇ (t) = f (γ (t)) and lim
t→±∞γ (t) = 0.

The variational equation of (1.1) along the homoclinic solution γ is

u̇(t) = Df (γ (t))u(t). (1.2)

Since γ̇ is a bounded solution of (1.2), system (1.2) has d ≥ 1 linearly independent bounded 
solutions. In this paper, we study bifurcation of γ (t) to nearby transverse homoclinic solutions 
under the periodic perturbations. The perturbed system is

ẏ(t) = f (y(t)) + g(y(t),μ, t), (1.3)

where y ∈R
N and μ ∈R is a parameter. We assume g satisfies

(H4) g ∈ C3, g(y, 0, t) = 0 and g(y, μ, t + 2) = g(y, μ, t).

By (H2), y = 0 is a hyperbolic equilibrium of (1.1). From g(x, 0, t) = 0, generically, 
Eq. (1.3) has a hyperbolic periodic orbit θ(μ) := O(|μ|) near 0. Using the change of vari-
able y = x + θ(μ), (1.3) becomes ẋ = f (x) + g̃(x(t), μ, t), where g̃(x, μ, t) = f (x + θ(μ)) +
g(x + θ(μ), μ, t) − g(θ(μ), μ, t) − f (x) − f (θ(μ)). Clearly, g̃ satisfies g̃(0, μ, t) = 0.

With this as a motivation, we consider the following perturbed problem to (1.1):

ẋ(t) = f (x(t)) + g̃(x(t),μ, t),

which satisfies assumptions (H1)–(H4) and g̃(0, μ, t) = 0.
From g(x, 0, t) = 0 in (H4), we can rewrite the perturbation term as g̃(x, μ, t) = μg(x(t),

μ, t). After dropping ∼ and − on g, we consider the following problem that is equivalent to 
(1.3):

ẋ(t) = f (x(t)) + μg(x(t),μ, t), x ∈ R
n, μ ∈R. (1.4)

The new system satisfies (H1)–(H4) and an additional condition

(H5) g(0, μ, t) = 0.

The advantage of having (H5) on (1.4) is that x = 0 will be a hyperbolic equilibrium even 
after small periodic perturbations. For the autonomous equation when μ = 0, let Ws(0), Wu(0)

be the stable and unstable manifolds of the equilibrium 0. Clearly, the homoclinic orbit γ lies on 
Ws(0) 

⋂
Wu(0). If the variational equation of (1.1) along γ has d dimension bounded solutions, 

then d = dim(Tγ (0)W
s(0) 

⋂
Tγ (0)W

u(0)).
When μ �= 0, (1.4) may have bifurcations near γ . The case d = 1 has been extensively studied. 

In [8], Hale proposed to study the degenerate cases where d ≥ 2. See also [3,9,12,13]. The 
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purpose of the present work is to treat the case d = 2. Using the method of Lyapunov–Schmidt 
reduction, see [1], and exponential dichotomies, we derive a system of bifurcation functions 
Hj , j = 1, 2, the zeros of which correspond to the persistence of homoclinic solutions for (1.4). 
By the method of codiagonalization of quadratic forms, we show that the quadratic system can 
have up to 4 solutions. Finally, if the solutions to the quadratic system are nondegenerate, then 
the corresponding homoclinic orbits are transversal. Using the Shadowing Lemma in [16,17], we 
prove the existence of chaotic motions near such homoclinic bifurcations [7].

We use codiagonalization as an abbreviation of simultaneous diagonalization (of two matrices 
or two quadratic forms). Codiagonalization of matrices has been used by Jibin Li and Lin [14]
to study systems of coupled KdV equations, and will be one of the main tool used in this paper. 
Given a symmetric real matrix A ∈R

2×2, then

F(a1, a2) = (a1, a2)A(a1, a2)
T

is a quadratic form associated to A. If A is diagonalized by a nonsingular matrix M : MT AM =
diag(d1, d2), then

F(a1, a2) = (b1, b2)diag(d1, d2)(b1, b2)
T = d1b

2
1 + d2b

2
2,

where (a1, a2)
T = M(b1, b2)

T . The symmetric transformation described above is also called the 
congruence diagonalization. One should not confuse this with the similarity transformation of 
A which is defined by M−1AM . For example the matrix diag(λ1, −λ2), λj > 0, can be reduced 
to diag(1, −1) by the matrix M = diag(1/

√
λ1, 1/

√
λ2), which is a symmetric reduction, not 

similarity reduction.
In Section 2, we introduce notations to be used in this paper. We also present the reduced 

bifurcation functions, which to the lowest degree, represent the breaking of the homoclinic or-
bits under the periodic perturbations. In Section 3, we introduce the methods of codiagonalizing 
two quadratic forms and use them to study the quadratic bifurcation equations. The case when 
one equation is elliptic is considered in Section 3.1. The other case when both equations are 
hyperbolic is considered in Section 3.2. In Section 4, we study the coexistence of homoclinic so-
lutions. In Section 5, we study the transversality of homoclinic solutions obtained in the previous 
sections.

2. Notations and preliminaries

Notations. Since y = 0 is a hyperbolic equilibrium point, from [4–6,16], (1.2) has exponen-
tial dichotomies on J = R

± respectively. In particular, there exist projections to the stable and 
unstable subspaces, Ps + Pu = I , and constants m > 0, K0 ≥ 1 such that

(i) |U(t)PsU
−1(s)| ≤ K0e

2m(s−t), for s � t on J,

(ii) |U(t)PuU
−1(s)| ≤ K0e

2m(t−s), for t � s on J.
(2.1)

For the same m > 0, define the Banach space

Z = {z ∈ C0(R,Rn) : sup |z(t)|em|t | < ∞},

t∈R
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with the norm ‖z‖ = supt∈R |z(t)|em|t |. The linear variational system

Lu := u̇ − Df (γ )u = h (2.2)

will be considered in Z . The adjoint operator for L is

L∗ψ := ψ̇ + (Df (γ ))∗ψ. (2.3)

The domains of (2.2) and (2.3) are the dense subset of Z , defined as

D(L) := {u : u,ut ∈ Z}, D(L∗) := {ψ : ψ,ψt ∈Z}.

From the theory of homoclinic bifurcation [16,17,9], L :Z → Z is a Fredholm operator with 
index 0. The range of L is orthogonal to the null space of L∗. That is

h ∈ R(L) iff

∞∫
−∞

〈ψ(t), h(t)〉dt = 0, for all ψ ∈ N(L∗). (2.4)

From d = 2, N(L) is two dimensional. Let (u1, u2) be an orthonormal unit basis of N(L) and 
(ψ1, ψ2) be an orthonormal unit basis of N(L∗).

We define some Melnikov types of integrals [15] that will be used in the future. For integers 
i, p, q from the set {1, 2}, define

b(i)
pq =

+∞∫
−∞

〈ψi(t),D
2f (γ (t))up(t)uq(t)〉dt, p, q = 1,2,

ãi =
+∞∫

−∞
〈ψi(t), g(γ (t),0, t)〉dt.

Define the 2 × 2 matrices B(1) = (b
(1)
pq ), B(2) = (b

(2)
pq ), and β = (β1, β2)

T .
By changing ψi to −ψi , we can change B(i) to −B(i) without altering the result of the paper. 

Without the loss of generality, we assume the following conditions are satisfied:

(H6) If the eigenvalues of B(i) satisfy λ1λ2 > 0, then λ1 > 0, λ2 > 0. If the eigenvalues of B(i)

satisfy λ1λ2 = 0, then λ1 > 0, λ2 = 0. If the eigenvalues of B(i) satisfy λ1λ2 < 0, then 
λ1 > 0 > λ2.

We look for conditions so that (1.4) can have homoclinic solutions near γ . Define the reduced 
bifurcation functions M(i) : R2 ×R �→ R

2 as follows:

M(i)(β,μ) = ãiμ + 1

2

2∑
b(i)
pqβpβq, i = 1,2. (2.5)
p,q=1
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We shall show that, to the lowest degree, (2.5) describes the jump discontinuity along the direc-
tion of ψi in Section 4.

We need to solve the following system of bifurcation equations

βT B(i)β = aiμ, i = 1,2, (2.6)

where ai = −2ãi . Geometric method based on circular and hyperbolic rotation will be used to 
codiagonalize the quadratic system (2.6), which can significantly simplify the system.

The following lemma and its corollary show how codiagonalization of matrices are related to 
solutions of quadratic systems.

Lemma 2.1. Let F(b1, b2) := (b1, b2)A(b1, b2)
T be the quadratic form associated to a symmet-

ric matrix A ∈ R
2×2. If there exist β1 �= 0, β2 �= 0 such that either (i) F(β1, β2) = F(−β1, β2), 

or (ii) F(β1, β2) = F(β1, −β2), then A is a diagonal matrix.

Proof. Assume A = (aij ) with a12 = a21. In both cases, we have

a11β
2
1 + 2a12β1β2 + a22β

2
2 = a11β

2
1 − 2a12β1β2 + a22β

2
2 .

Thus a12 = 0. �
Let B(1), B(2) ∈ R

2×2 be symmetric, nonzero matrices as in (2.6).

Corollary 2.2 (Converse to the existence of 4 solutions). Assume that Eq. (2.6) has 4 solutions 
that form a parallelogram, and there exists a nonsingular 2 × 2 matrix X that transfers the 
parallelogram into a rectangle that is symmetric about the α1 and α2-axes. Then

XT B(1)X = �1 and XT B(2)X = �2,

where �1, �2 are diagonal matrices.

Proof. Suppose that P1 = (a, b), P2 = (c, d), P3 = (−a, −b), P4 = (−c, −d) are the vertexes 
of the parallelogram. Without loss of generality, let X be a nonsingular 2 × 2 matrix such 
that after the change of variables (β1, β2)

T = X(α1, α2)
T , then P1, P2 are symmetric about 

α1-axis in (α1, α2) coordinates, that is X−1(a, b)T = (a0, b0)
T and X−1(c, d)T = (a0, −b0)

T . 
The quadratic form βT B(i)β = αT XT B(i)Xα where α = (α1, α2)

T satisfies the conditions in 
Lemma 2.1. Therefore �1 is a diagonal matrix.

Similarly, �2 = XT B(2)X is a diagonal matrix. �
3. Codiagonalization and the bifurcation of the homoclinic solution

We say that the quadratic equation βT Bβ = h, h �= 0 is of elliptic (or hyperbolic, or line) 
type if the graph of the equation is an ellipse (or two hyperbolas, or two lines). We consider the 
graph of two symmetric lines as a special case of two hyperbolas, where the distance to two lines 
replaces the real semiaxis of the hyperbolas.
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3.1. Codiagonalization and solutions of (2.6) if one equation is elliptic

It is well-known that two symmetric matrices can be simultaneously diagonalized if one of 
the matrices is positive definite, [10,11,2]. For 2 × 2 matrices, the proof can be carried out by 
a circular rotation which may serve as a motivation to the hyperbolic rotation to be used in the 
case when both equations are hyperbolic.

Let M, N ∈ R
2×2 be symmetric matrices, where N is positive definite. Let the eigenvalues of 

N be λ1, λ2 > 0 with the corresponding eigenvectors x1 and x2. Assume that the eigenvectors 
are normalized and let X = (x1, x2). Let

Y = X

(
1/

√
λ1 0

0 1/
√

λ2

)
.

Then

YT NY = I. (3.1)

The matrix YT MY is still symmetric. In the next lemma, we will further diagonalize YT MY

without changing the normalized YT NY . Notice if M is positive-definite (or indefinite), then the 
graph of the corresponding quadratic form is an ellipse (or hyperbola).

The circular rotation T (θ) is defined by the 2 × 2 matrix

T (θ) =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, θ ∈R.

If we use the change of variables defined by T (θ), Eq. (3.1) remains unchanged.

Lemma 3.1. If M is positive definite (or indefinite), then there exists a circular rotation with the 
angle θ0, such that the major (or real) axis of the matrix YT MY , after the rotation, is on the c1
axis, i.e., M ′ = T (−θ0)Y

T MYT (θ0) is diagonal, and T (−θ0)Y
T NYT (θ0) is still normalized. 

That is

T (−θ0)Y
T MYT (θ0) = diag(d1, d2),

T (−θ0)Y
T NYT (θ0) = I.

Proof. We assume that the major (or real) semiaxis of

(b1, b2)Y
T MY(b1, b2)

T = 1

is at (b0
1, b

0
2). Let θ0 = arctanb0

2/b
0
1. Then

T (−θ0)(b
0
1, b

0
2)

T = (

√
(b0

1)
2 + (b0

2)
2,0)T .

After the circular rotation T (−θ0), the major (or real) axis is on the c1-axis. Consequently the 
minor (or imaginary) axis is on the c2-axis.

The quadratic form (b1, b2)Y
T MY(b1, b2)

T = (c1, c2)M
′(c1, c2)

T if M ′ =
T (−θ0)Y

T MYT (θ0) and (c1, c2)
T = T (−θ0)(b1, b2)

T . Obvious M ′ is a diagonal matrix. �
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Corollary 3.2 (LE-type). When |M| = 0 and M �= 0, the quadratic form (b1, b2)Y
T MY(b1, b2)

T

can be expressed as (cb1 + db2)
2 for some c, d ∈R. Let θ0 = arctan(d/c). Then

T (−θ0)Y
T MYT (θ0) = diag(d1,0), d1 =

√
c2 + d2,

T (−θ0)Y
T NYT (θ0) = I. (3.2)

Proof. After the circular rotation, the normal direction of the two lines defined by

(c1, c2)T (−θ0)Y
T MYT (θ0)(c1, c2)

T = 1

is on the c1 axis. This proves the first equation of (3.2). �
Let us go back to consider (2.6) where B(1) = (b

(1)
pq ), B(2) = (b

(2)
pq ) and β = (β1, β2)

T . As-
sume that B(2) is positive definite. From Lemma 3.1, there exists a 2 × 2 matrix X such that 
XT B(2)X = I and XT B(1)X = � = diag(d1, d2).

Let us write the second equation of (2.6) as

(X−1β)T XT B(2)X(X−1β) = a2μ.

We assume that a2μ > 0, otherwise (2.6) has no solution. Let α = 1√
a2μ

X−1β . Then by 

XT B(2)X = I , the second equation of (2.6) becomes

α2
1 + α2

2 = 1.

The trajectories of the solutions form a unit circle in the (α1, α2) plane. The first equation of (2.6)
can be written as

(X−1β)T XT B(1)X(X−1β) = a1μ.

By the same substitution α = 1√
a2μ

X−1β , and from XT B(1)X = �, the first equation becomes

d1α
2
1 + d2α

2
2 = a1

a2
.

Hence we have proved the following result.

Lemma 3.3. If B(2) in (2.6) is positive definite, then there exists a change of variable α =
1√
a2μ

X−1β such that (2.6) becomes

d1α
2
1 + d2α

2
2 = a1

a2
,

α2
1 + α2

2 = 1. (3.3)
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Depending on B(1) in (2.6) is positive definite, indefinite, or degenerate, the graph of the 
first equation of (3.3) is an ellipse, a hyperbola, or two lines. Then system (2.6) will be called 
the elliptic–elliptic, hyperbolic–elliptic or line–elliptic type, denoted by EE, HE, LE for brevity. 
When system (2.6) is of (EE) type, from Lemma 3.3 the system (2.6) becomes (3.3), without loss 
of generality, we assume d2 > d1 > 0. We now study in detail all the sub-cases if the matrix B(2)

in (2.6) is positive definite.

Theorem 3.4. Assume that the matrix B(2) in (2.6) is positive definite, and the matrix B(1) satis-
fies the condition (H6). After the codiagonalization as in Lemma 3.3, system (2.6) becomes (3.3). 
Then under the following conditions, system (2.6) has four simple zeros.

(1) If system (2.6) is of (EE) type, then 0 < d1 < a1/a2 < d2;
(2) if system (2.6) is of (HE) type, then d2 < 0 < d1 and 0 < a1/a2 < d1;
(3) if system (2.6) is of (LE) type, then d2 = 0 and 0 < a1/a2 < d1.

Proof. By the discussions above Lemma 3.3, we see the major (or real) axis of the first equation 
of (3.3) is on α1-axis.

Proof of case (1), (EE)-type: Since d2 > d1 > 0 and a1/a2 > 0, then the first equation of (3.3)
is elliptic and the major axis is on the α1-axis. The semi-major and semi-minor axes of the ellipse 
are r2 = √

a1/d1a2 > r1 = √
a1/d2a2. If 0 < r1 < 1 < r2, that is

0 < d1 < a1/a2 < d2,

then system (2.6) has four solutions. The proof for the (EE) case has been completed.
Proof of case (2), (HE)-type: When d2 < 0 < d1, the first equation of (3.3) is hyperbolic. 

Based on the fact of a1/a2 > 0, we know its real axis is on the α1-axis. The hyperbola intersects 
the real axis at C = (±√

a1/(d1a2), 0). If |OC| < 1, the hyperbola and the ellipse in (3.3) has 
four intersections. That is, if

a1

a2
< d1, (3.4)

then the system (2.6) has four solutions. The proof of (HE) has been completed.
Proof of case (3), (LE)-type: When d2 = 0 and d1 > 0, the first equation of (3.3) are two 

straight lines if a1/a2 > 0. The two vertical lines intersect the α1-axis at C. If (3.4) holds, then 
the points C are inside the unit circle. Therefore system (2.6) has four solutions. �
3.2. Codiagonalization and solutions of (2.6) if both equations are hyperbolic

We first introduce the method of hyperbolic rotation that can codiagonalize two symmetric 
indefinite matrices under some general conditions. The hyperbolic rotation H(θ) with angle θ is 
defined by the 2 × 2 matrix

H(θ) =
(

cosh(θ) sinh(θ)

sinh(θ) cosh(θ)

)
, θ ∈R.
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Let M, N ∈ R
2×2 be nonsingular, symmetric and indefinite matrices. Let the eigenvalues for 

N be λ1 > 0 > −λ2 with the corresponding eigenvectors x1 and x2, and let X = (x1, x2) be a 
2 × 2 matrix. Assume that the eigenvectors are normalized. Then it is well-known that

XT NX = �, where � = diag(λ1,−λ2). (3.5)

From (3.5), we can further normalize N by

YT NY =
(

1 0
0 −1

)
, where Y = X

(
1/

√
λ1 0

0 1/
√

λ2

)
. (3.6)

After the normalization, the matrix YT MY is still nonsingular, symmetric and indefinite. 
Without affecting YT NY , in Lemmas 3.6 and 3.7, we show under some general conditions, 
the hyperbolic rotation can be used to further reduce YT MY to a diagonal form. Moreover, the 
real semiaxis of the transformed hyperbola is determined by Corollary 3.8. First we show the 
existence of asymptotes for any nonsingular symmetric indefinite matrix.

Lemma 3.5. To each nondegenerate, symmetric, indefinite 2 × 2 matrix A, there are two asymp-
totes (lines) L1, L2 such that (b1, b2)A(b1, b2)

T = 0 iff (b1, b2)
T ∈ Lj , j = 1, 2.

Proof. There exists a matrix of eigenvectors Z such that

ZT AZ = diag(μ1,−μ2), μ1,μ2 > 0.

Let (b1, b2)
T = Z(c1, c2)

T . Then (c1, c2) satisfies

(c1, c2)Z
T AZ(c1, c2)

T = μ1c
2
1 − μ2c

2
2 = 0.

The last equation defines two asymptotes in (c1, c2) coordinates. The asymptotes in (b1, b2)

coordinates are

L1 := {(b1, b2)|〈(√μ1,
√

μ2)
T ,Z−1(b1, b2)

T 〉 = 0},
L2 := {(b1, b2)|〈(√μ1,−√

μ2)
T ,Z−1(b1, b2)

T 〉 = 0}. �
Definition 3.1. Let Lj , j = 1, 2, be the asymptotes for the nondegenerate, symmetric, indefinite 
2 × 2 matrix A. Then Lj , j = 1, 2, divide R2 into four sectors. We say (b1, b2) is in the positive 
(or negative) sector if (b1, b2)A(b1, b2)

T > 0 (or (b1, b2)A(b1, b2)
T < 0).

The slopes of the two asymptotes for (b1, b2)Y
T NY(b1, b2)

T = 0 is clearly k = ±1. For the 
matrix YT MY , the slope of the asymptote Lj can be expressed as kj = b

(j)

2 /b
(j)

1 for a nonzero 

(b
(j)

1 , b(j)

2 ) ∈ Lj .
We now assume the sectors (b1, b2)Y

T MY(b1, b2)
T > 0 are in the interior of b2

1 − b2
2 > 0, so 

the conditions −1 < k1 < k2 < 1 of the following lemma are satisfied.
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Lemma 3.6. If −1 < k1 < k2 < 1, then there exists a hyperbolic rotation with the angle θ0, such 
that the image H(−θ0)Lj becomes symmetric about the b1 axis. The same hyperbolic rotation 
also diagonalizes the matrix YT MY , i.e., M ′ = H(θ0)Y

T MYH(θ0) is diagonal.

H(θ0)Y
T MYH(θ0) = diag(d1, d2), d1d2 < 0

H(θ0)Y
T NYH(θ0) = diag(1,−1).

Proof. The condition −1 < k1 < k2 < 1 ensures that the asymptote Lj , j = 1, 2, inter-
sects with the hyperbola b2

1 − b2
2 = 1. Let (bj1, bj2) be the intersection. Then (bj1, bj2) =

(cosh(θj ), sinh(θj )). Let θ0 = (θ1 + θ2)/2. Then

H(−θ0)(bj1, bj2)
T = (cosh(θj − θ0), sinh(θj − θ0))

T

=
{

(cosh(θ1 − θ2)/2, sinh(θ1 − θ2)/2)T , if j = 1,

(cosh(θ2 − θ1)/2, sinh(θ2 − θ1)/2)T , if j = 2.

The quadratic form (b1, b2)Y
T MY(b1, b2)

T = (c1, c2)M
′(c1, c2)

T if M ′ =
H(θ0)Y

T MYH(θ0) and (c1, c2)
T = H(−θ0)(b1, b2)

T . The quadratic equation after hyperbolic 
rotation, (c1, c2)M

′(c1, c2)
T = 0 has two solutions (1, k) and (1, −k) with k > 0. This shows M ′

is a diagonal matrix. �
If the sectors (b1, b2)Y

T MY(b1, b2)
T > 0 are in the interior of b2

1 −b2
2 < 0, then |k1|, |k2| > 1

as in the following lemma hold.

Lemma 3.7. If |k1|, |k2| > 1, then there exists a hyperbolic rotation with the angle θ0, such that 
the image H(−θ0)Lj becomes symmetric about the b2 axis. The same hyperbolic rotation also 
diagonalizes the matrix YT MY , i.e., M ′ = H(θ0)Y

T MYH(θ0) is diagonal.

H(θ0)Y
T MYH(θ0) = diag(d1, d2), d1d2 < 0

H(θ0)Y
T NYH(θ0) = diag(1,−1).

Proof. The condition |k1|, |k2| > 1 ensures that the line Lj , j = 1, 2, intersects with the hyper-
bola b2

2 − b2
1 = 1. Let (bj1, bj2) be the intersection. Then (bj1, bj2) = (sinh(θj ), cosh(θj )). Let 

θ0 = (θ1 + θ2)/2. Then

H(−θ0)(bj1, bj2)
T = (sinh(θj − θ0), cosh(θj − θ0))

T

=
{

(sinh(θ1 − θ2)/2, cosh(θ1 − θ2)/2)T , if j = 1,

(sinh(θ2 − θ1)/2, cosh(θ2 − θ1)/2)T , if j = 2.

The quadratic form (b1, b2)Y
T MY(b1, b2)

T = (c1, c2)M
′(c1, c2)

T if M ′ =
H(θ0)Y

T MYH(θ0) and (c1, c2)
T = H(−θ0)(b1, b2)

T . The quadratic equation after hyperbolic 
rotation, (c1, c2)M

′(c1, c2)
T = 0 has two solutions (1, k) and (−1, k) with k > 1. This shows M ′

is a diagonal matrix. �
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Corollary 3.8. (1) Assume the same conditions as Lemma 3.6 are satisfied. Let θ0 = (θ1 + θ2)/2
as in Lemma 3.6. If the ray

(r cosh(θ0), r sinh(θ0)), r > 0,

intersects with the hyperbola (b1, b2)Y
T MY(b1, b2)

T = h, h > 0 at r = r0. Then after the hy-
perbolic rotation and in (c1, c2) coordinates, c1 = r0 is the real semiaxis for the transformed 
hyperbola.

(2) Assume the same conditions as Lemma 3.7 are satisfied. Let θ0 = (θ1 + θ2)/2 as in 
Lemma 3.7. If the ray

(r sinh(θ0), r cosh(θ0)), r > 0,

intersects with the hyperbola (b1, b2)Y
T MY(b1, b2)

T = h, h > 0 at r = r0. Then c2 = r0 is the 
real semiaxis of the hyperbola after the hyperbolic rotation.

We now study (2.6) where B(1) = (b
(1)
pq ), B(2) = (b

(2)
pq ) and β = (β1, β2)

T . Since B(2) is 
indefinite, there exists a 2 × 2 matrix X such that XT B(2)X = diag(1, −1) and XT B(1)X =
diag(d1, d2). Similar to the elliptic case, let us write the second equation of (2.6) as

(X−1β)T XT B(2)X(X−1β) = a2μ.

By changing ψi to −ψi if necessary, we can assume a2μ > 0. Let α = 1√
a2μ

X−1β . Then by 

XT B(2)X = diag(1, −1), the second equation of (2.6) becomes

α2
1 − α2

2 = 1.

The trajectories of the solutions form a unit hyperbola in the (α1, α2) plane. The first equation of 
(2.6) can be written as

(X−1β)T XT B(1)X(X−1β) = a1μ.

By the same substitution, the first equation becomes

d1α
2
1 + d2α

2
2 = a1

a2
, d1d2 < 0.

We have proved the following result.

Lemma 3.9. If with M = B(1), N = B(2), conditions in Lemmas 3.6 and 3.7 are satisfied, then 
there exists a change of variable α = 1√

a2μ
X−1β such that (2.6) becomes

d1α
2
1 + d2α

2
2 = a1

a2
, d1d2 < 0,

α2
1 − α2

2 = 1. (3.7)
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We now study (3.7). Let

F1(α1, α2) := (α1, α2)diag(d1, d2)(α1, α2)
T ,

F2(α1, α2) := (α1, α2)diag(1,−1)(α1, α2)
T .

Define h = a1/a2, then system (3.7) can be recast as

F1(α1, α2) = h, F2(α1, α2) = 1. (3.8)

The number of solutions for (2.6) depends on the relative positions of the asymptotes and the 
positive–negative sectors separated by the asymptotes. Listed below in cases (0)–(iii).

Case (0): The two asymptotes of F1(α1, α2) = h are alternatively in the positive and negative 
sectors of F2(α1, α2) = α2

1 − α2
2 .

Next, assume that the two asymptotes for F1(α1, α2) are adjacent to each other and are either 
both in the sector where F2 > 0 or in the sector F2 < 0. Then we have three sub-cases determined 
by the positive sectors of the two matrices.

Case (i): The two positive sectors of F1 are in the interior of the two sectors where F2 > 0
respectively.

Case (ii): The two negative sectors of F1 are in the interior of two sectors where F2 > 0 respec-
tively.

Case (iii): The two positive sectors of F1 are in the interior of the two sectors where F2 < 0
respectively.

Case (iv): The two negative sectors of F1 are in the interior of two sectors where F2 < 0.

We now state a precise theorem on the number of solutions for system (2.6).

Theorem 3.10. Let r1 be the real semiaxis of the hyperbola F1(α1, α2) = h. The number of 
solutions are determined by the asymptotes and positive–negative sectors separated by the 
asymptotes as follows:

Case(0): In this case, for any h �= 0, system (3.8) has two simple zeros. See Fig. 3.1.
Case (i): The system has 4 solutions provided that the real semiaxis of F1(α1, α2) = h, h > 0

satisfies r1 < 1. See Fig. 3.2.
Case (ii): The system has 4 solutions provided that the real semiaxis of F1 = h, h < 0 satisfies 

r1 < 1. See Fig. 3.2.
Case (iii): The system has 4 solutions provided that the real semiaxis of F1(α1, α2) = h, h < 0

satisfies r1 > 1. See Fig. 3.3.
Case (iv): The system has 4 solutions provided that the real semiaxis of F1 = h, h > 0 satisfies 

r1 > 1. See Fig. 3.3.
Case (v): The system always has 4 solutions (not depicted) if in cases (i) and (iii), h < 0; or 

in cases (ii) and (iv), h > 0.

The proof of Theorem 3.10 is straightforward from those figures and will be omitted. Notice 
that in cases (i) to (v), the two hyperbolic types of equations can be codiagonalized.
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Fig. 3.1. If the asymptotes of F1 = 0 and F2 = 0 are alternating, then there always exist exactly two solutions.

Fig. 3.2. In case (i), if h > 0 and r1 < 1, or in case (ii), if h < 0 and r1 < 1, then the system has 4 solutions.

Fig. 3.3. In case (iii), if h < 0 and r1 > 1, or in case (iv), if h > 0 and r1 > 1, then the system has 4 solutions.
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To be consistent with Theorem 3.4, we give more details on the two cases using diagonalized 
system as follows. We also provide conditions for the (LH) case to have solutions.

Using Lemmas 3.6 and 3.7, we assume the second equation of (2.6) is normalized and the first 
equation is in the diagonal form d1α

2
1 + d2α

2
2 = h with d1d2 < 0. We rewrite the system as:

	1α
2
1 + 	2α

2
2 = 1,

α2
1 − α2

2 = 1, (3.9)

where 	i = di/h. Now we are ready to solve (3.9). By the definitions of 	i, di , it is clear that 
	1/	2 = d1/d2.

Theorem 3.11. Assume that the matrix B(2) in system (2.6) is indefinite, and the matrix B(1)

satisfies the condition (H6). After the codiagonalization as in Lemma 3.9, system (2.6) becomes 
(3.9). Then under the following conditions, system (2.6) has four simple zeros.

(1) If system is of (HH) type, then one of the following holds:
(i) 0 < 	1 < 1 and |	1/	2| > 1;
(ii) 	1 > 1 and |	1/	2| < 1;

(2) If system is of (LH) type, then 	2 = 0 and 0 < 	1 < 1 or 	1 = 0 and 	2 > 0.

Proof. Clearly, the slopes of the two asymptotes of the first equation of (3.9) are ±√−	1/	2.
Proof of case (1), (HH)-type: (i) Since 	1 > 0, then the real axis of the first equation of (3.9)

is the α1-axis. The real axis α1 intersects the first and second equations of (3.9) at A1 and A2, 
where

A1 = (±1,0), A2 = (±1/
√

	1,0).

Note that |	1/	2| > 1. Then the two asymptotes of the first equation is out of the ones of the 
second equation (3.9). Let |OA1|, |OA2| be the distance to the origin. If |OA2| > |OA1| = 1, 
that is 	1 < 1, then (2.6) has four solutions.

(ii) Since 	1 > 1, then the real axis of the first equation of (3.9) is the α1. Since |	1/	2| < 1, 
then the two asymptotes of the first equation are between the ones of the second equation (3.9). 
If |OA2| < |OA1| = 1, that is 	1 > 1, then (2.6) has four solutions.

Proof of case (2), (LH)-type: Since 	2 = 0, then Eq. (3.9) becomes:

	1α
2
1 = 1,

α2
1 − α2

2 = 1.

The first equation is two lines which are vertical to α1 axis for 	1 > 0. The distance from the 
origin to the lines is 1/

√
	1. Hence, for 0 < 	1 < 1, (2.6) has four solutions.

By similar reason, we can prove the case 	1 = 0. �
When both the matrices B(1), B(2) are degenerate, Eq. (2.6) can have 4 solutions.

Remark 3.1. When B(i) �= 0, det(B(i)) = 0, i = 1, 2, then each equation of (2.6) is two lines. 

Since det(B(i)) = 0, then we have b(i)
b

(i) − b
(i)2 = 0 and hence b(i)

b
(i)

> 0. If b(i)
(aiμ) < 0, 
11 22 12 11 22 11
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then the i-th equation of (2.6) has no solutions and hence (2.6) has also no solution. If 
b

(i)
11 (aiμ) > 0, (2.6) becomes

βT B(1)β = (

√
|b(1)

11 |β1 +
√

|b(1)
22 |β2)

2 = |a1μ|,

βT B(2)β = (

√
|b(2)

11 |β1 +
√

|b(2)
22 |β2)

2 = |a2μ|. (3.10)

Clearly, (3.10) has four solutions if and only if∣∣∣∣∣ b
(1)
11 b

(1)
22

b
(2)
11 b

(2)
22

∣∣∣∣∣ �= 0.

Finally, the four solutions of Theorems 3.4 and 3.11 are simple. It is the following theorem.

Theorem 3.12. The four solutions of (2.6) obtained in Theorems 3.4 and 3.11 are simple.

Proof. We only give the proof of (EE) of Theorem 3.4. The proofs of others cases are similar. 
Let

G1(α1, α2) := d1α
2
1 + d2α

2
2 − a1

a2
,

G2(α1, α2) := α2
1 + α2

2 − 1. (3.11)

Under the conditions of (EE) of Theorem 3.4, (3.11) has four zeros (α(i)
1 , α(i)

2 ), i = 1, 2, 3, 4. 

We claim that α(i)
j �= 0, j = 1, 2. In fact if α(i)

1 = 0. From G2(0, α(i)
2 ) = 0, we get that α(i)

2 =
±1. Hence by G1(0, 1) = 0 we have d2 = a1/a2. It is impossible since a1/a2 < d2 by (EE) of 
Theorem 3.4.

The normal directions of G1 and G2 at (α(i)
1 , α(i)

2 ) are (d1α
(i)
1 , d2α

(i)
2 ) and (α(i)

1 , α(i)
2 ), re-

spective. Clearly, (d1α
(i)
1 , d2α

(i)
2 ) and (α(i)

1 , α(i)
2 ) are linearly independent. Otherwise d1 = d2 or 

α
(i)
j = 0. It is impossible. Hence

∂(G1,G2)

∂(α1, α2)

∣∣∣(α(i)
1 , α

(i)
2 ) =

∣∣∣∣∣ d1α
(i)
1 d2α

(i)
2

α
(i)
1 α

(i)
2

∣∣∣∣∣ �= 0,

which implies that (α(i)
1 , α(i)

2 ) are simple zeros of (G1(α1, α2), G2(α1, α2)). �
4. The coexistence of homoclinic solutions

By (H2), system (1.4) with μ = 0 has a homoclinic solution γ . In this section, we will find 
conditions such that (1.4), with small μ �= 0, has homoclinic solution γμ satisfying ‖γ − γμ‖ =
O(

√|μ|).
Let Dih or Dijh denote the derivatives of a multivariate function h with respect to its i-th or 

the i, j -th variables. With the change of variable x(t) = γ (t) + z(t), (1.4) is transformed to
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ż = Df (γ )z + g̃(z,μ), (4.1)

where

g̃(z,μ)(t) = f (γ (t) + z(t)) − f (γ (t)) − Df (γ (t))z + μg(γ (t) + z(t),μ, t). (4.2)

Lemma 4.1. The function ̃g(·, μ) : Z �→Z satisfies the following properties:

(1) g̃(0,0) = 0, D1g̃(0,0) = 0,

(2) D11g̃(0,0) = D2f (γ ),

(3)
∂g̃

∂μ
(0,0) = g(γ,0, t).

Proof. It is easy to check from (4.2) that (1)–(3) hold. We now prove ̃g(·, μ) : Z �→Z .
Let B̄1(0, δ) ⊂ R

n and B̄2(0, δ) ⊂ R be closed balls with radius δ > 0 centered at the origins. 
For arbitrary z ∈ Z , we can take a large δ > 0 such that z(t), γ (t), γ (t) + z(t) ∈ B̄1(0, δ) for 
t ∈ R. By (H1) and (H4), there exists a constant A0 such that

|D1g̃(x,μ)| < A0, |D1g(x,μ, t)| < A0

for (x, μ, t) ∈ B̄1(0, δ) × B̄2(0, δ) × R. Since γ is a homoclinic solution and z ∈ Z , there is 
A1 > 0 such that

|γ (t)| � A1e
−m|t |, |z(t)| � A1e

−m|t |.

Define a map σ : [0, 1] → Z by σ(s) = g̃(sz, μ) − μg((1 − s)γ, μ, t). By the smoothness of 
f, g, we see that σ ∈ C1 and σ(0) = 0, then

g̃(z,μ)(t) = σ(1) − σ(0) =
1∫

0

σ ′(p)dp

=
1∫

0

D1g̃(pz(t),μ)z(t) + μD1g((1 − p)γ (t),μ, t)γ (t)dp.

Therefore

|̃g(z,μ)(t)| � sup
x,μ

{|D1g̃(x,μ)|}|z(t)| + |μ| sup
x,μ,t

{|D1g(x,μ, t)|}|γ (t)|

� A0A1(1 + |μ|)e−m|t |, (4.3)

which implies that ̃g(z, μ) ∈ Z . The proof is completed. �
Recall that L(u) = u̇ − Df (γ )u in the Banach space Z . As in [5,16], we define the subspace 

of Z , which consists the range of L in Z .
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Z̃ = {h ∈ Z :
∞∫

−∞
〈ψi(s), h(s)〉ds = 0, i = 1,2}.

Consider a nonhomogeneous equation

ż − Df (γ )z = h. (4.4)

If h ∈ Z̃ , using the variation of constants, with some phase condition, there exists an operator 
K : Z̃ → Z such that Kh is a solution of (4.4). Clearly, the general bounded solution of (4.4) is 
z(t) = ∑2

p=1 βpup(t) + (Kh)(t), where βp ∈ R.
From (2.4), R(L) ⊕N(L∗) =Z . Note that ψ1, ψ2 are orthonormal unit basis of N(L∗). Define 

a map P :Z →Z by

(P z)(t) =
2∑

i=1

ψi(t)

∞∫
−∞

〈ψi(s), z(s)〉ds.

As in [16], one can prove that P satisfies the following properties:

Lemma 4.2. (1) P and I − P are projections.
(2) R(P ) ⊕ R(L) = Z .
(3) R(I − P) = N(P ) = R(L) = Z̃ .

We now use the Lyapunov–Schmidt reduction to solve (4.1). Applying P and (I − P) on 
(4.1), we find that (4.1) is equivalent to the following system

ż = Df (γ )z − (I − P)g̃(z,μ), (4.5)

P g̃(z,μ) = 0. (4.6)

First, we solve (4.5) for z ∈ Z . Then the bifurcation equations are obtained by substituting the 
solution z into (4.6).

Lemma 4.3. There exist open balls B1(δ0) ⊂ R
2, B2(δ0) ⊂ R with radius δ0 > 0 centered at the 

origins and a C2 map φ : B1(δ0) × B2(δ0) → Z , denoted by φ(β, μ), such that z = φ(β, μ) is a 
solution of Eq. (4.5). Moreover φ(β, μ) satisfies φ(0, 0) = 0 and (∂φ/∂βp)|(0,0) = up , p = 1, 2.

Proof. Since R(I − P) = Z̃ and K : Z̃ → Z , we define a C2 map: F : Z ×R
2 ×R →Z by

F(z,β,μ) =
2∑

p=1

βpup + K(I − P)g̃(z,μ), (4.7)

where β = (β1, β2) ∈ R
2. Clearly, the fixed point z of (4.7) is a solution of (4.5) in Z .

From (1) of Lemma 4.1, we have

F(0,0,0) = 0, D1F(0,0,0) = 0. (4.8)
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By the smoothness of F , given any δ > 0, there exists c > 0 such that

‖D2F‖ < c, ‖D3F‖ < c, ‖D11F‖ < c, ‖D12F‖ < c, ‖D13F‖ < c,

for (z, β, μ) ∈ B̄(δ) × B̄1(δ) × B̄2(δ), where B̄(δ) ⊂ Z , B̄1(δ) ⊂ R
2, B̄2(δ) ⊂ R are closed balls 

of radius δ. Let

δ1 = min{δ, 1

4c
}, δ2 = min{δ, δ1,

δ1

8c
}.

For any (z, β, μ) ∈ B̄(δ1) × B̄1(δ2) × B̄2(δ2), define a map ϕ1 : [0, 1] → L(Z, Z) by ϕ1(s) =
D1F(sz, sβ, sμ). By the smoothness of F , we see ϕ1 ∈ C1. By (4.8) we know ϕ1(0) = 0, then

‖D1F(z,β,μ)‖ = ‖ϕ1(1) − ϕ1(0)‖ = ‖
1∫

0

ϕ′
1(p)dp‖

� ‖D11F(pz,pβ,pμ)‖ · ‖z‖ + ‖D12F(pz,pβ,pμ)‖ · ‖β‖
+ ‖D13F(pz,pβ,pμ)‖ · ‖μ‖

� c · 1

4c
+ c · 1

4c
+ c · 1

4c
= 3

4
. (4.9)

For (z, β, μ) ∈ B̄(δ1) × B̄1(δ2) × B̄2(δ2), define a map ϕ2 : [0, 1] → Z by ϕ2(s) = F(sz, sβ, sμ). 
Clearly ϕ2 ∈ C1 and ϕ2(0) = 0, then

‖F(z,β,μ)‖ = ‖ϕ2(1) − ϕ2(0)‖ = ‖
1∫

0

ϕ′
2(p)dp‖

� ‖D1F(pz,pβ,pμ)‖ · ‖z‖ + ‖D2F(pz,pβ,pμ)‖ · ‖β‖
+ ‖D3F(pz,pβ,pμ)‖ · ‖μ‖

� 3

4
δ1 + c · δ1

8c
+ c · δ1

8c
= δ1,

which implies that F(·, β, μ) maps B̄(δ1) into itself.
For z1, z2 ∈ B̄(δ1), (β, μ) ∈ B̄1(δ2) × B̄2(δ2), define a map ϕ3 : [0, 1] → Z by ϕ3(s) =

F(sz1 + (1 − s)z2, β, μ). Then ϕ3 ∈ C1 and ϕ3(0) = 0, then

‖F(z1,β,μ) − F(z2,β,μ)‖ = ‖ϕ3(1) − ϕ3(0)‖ = ‖
1∫

0

ϕ′
3(p)dp‖

� ‖D1F(pz1 + (1 − p)z
(k)
2 ,β,μ)‖ · ‖z1 − z2‖

� 3‖z1 − z2‖.

4
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Therefore F is a uniform contraction in B̄(δ1). By the contraction mapping principle, there are 
δ21, δ22 > 0 and a C1 map φ : B1(δ21) × B2(δ22) → B(δ1) such that φ(0, 0) = 0 and

φ(β,μ) = F(φ(β,μ),β,μ).

Let δ0 = min{δ2, δ21, δ22}. From (4.7), we have

φ(β,μ) =
2∑

p=1

βpup + K(I − P)g̃(φ(β,μ),μ). (4.10)

Differentiating (4.10) with respect to β, we have

D1φ(β,μ) = D1F(φ(β,μ),β,μ)D1φ(β,μ) + D2F(φ(β,μ),β,μ).

This, together with (4.9), implies that

D1φ = (I − D1F(φ,β,μ))−1D2F(φ,β,μ).

By the smoothness of F , D1φ is a C1 function. Hence φ is C2 in β . Similarly, we can prove φ
is C2 in μ.

Differentiating (4.10) with respect to βp and evaluating at (0, 0), we get

∂φ

βp

∣∣∣∣
(0,0)

(t) = up(t), p = 1,2.

The proof has been completed. �
By Lemma 4.3, (4.5) has a solution φ(β, μ). Substituting φ(β, μ) into (4.6), we have the 

bifurcation equation

0 = P g̃(φ(β,μ),μ)

=
2∑

i=1

ψi(t)

+∞∫
−∞

〈ψi(s), g̃(φ(β,μ),μ)(s)〉ds, (4.11)

where the definition of projection P is used. By the linear independence of ψ1, ψ2, we see that

Hi(β,μ) :=
+∞∫

−∞
〈ψi(s), g̃(φ(β,μ),μ)(s)〉ds = 0, i = 1,2.

If there are some parameter values (β, μ) ∈ R
2 ×R such that

Hi(β,μ) = 0, i = 1,2,
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then z = φ is a solution of (4.1) and hence the perturbed system (1.4) has a homoclinic orbit 
x = γ + φ, where φ is given in (4.10). Let

H(β,μ) = (H1(β,μ),H2(β,μ)).

Through direct calculations, we can prove the following lemma.

Lemma 4.4. For i, p, q ∈ {1, 2}, the function H(β, μ) has the following properties:

(i) If there are some (β, μ) ∈ R
2 ×R such that H(β, μ) = 0, then φ is a solution of (4.1);

(ii) Hi(0, 0) = 0, 
∂Hi

∂βp

(0, 0) = 0;

(iii) b(i)
pq = ∂2Hi

∂βp∂βq

(0, 0) =
+∞∫

−∞
〈ψi(t), D2f (γ (t))up(t)uq(t)〉dt ;

(iv) ãi = ∂Hi

∂μ
(0, 0) =

+∞∫
−∞

〈ψi(t), g(γ (t), 0, t)〉dt .

Let M :R2 ×R → R
2 be given by

M(β,μ) = (M1(β,μ),M2(β,μ)),

where Mi(β, μ) = 1
2βT B(i)β + ãiμ contains the lowest order terms of Hi(β, μ). Compare this 

with (2.6). If we let ãi = −ai/2, then the simple solutions of (2.6) are the simple solutions 
of M(β, μ) = 0. From the discussions in Theorems 3.4, 3.11 and 3.12 of Section 3, for some 
fixed μ, Eq. (2.6) have four simple solutions β(1)

0 , . . . , β(4)
0 . Hence β(1)

0 , . . . , β(4)
0 are the simple 

zeros of M(β, μ).

Lemma 4.5. There are some fixed μ0 such that M(β, μ0) has four simple zeros β(1)
0 , . . . , β(4)

0 . 

For each β = β
(j)

0 , 1 ≤ j ≤ 4, there exist an open region Ij ⊂ R containing zero and differen-

tiable function, ωj : Ij → R
2 such that ωj (0) = 0, and H(s(β

(j)

0 + ωj (s)), s2μ0) = 0 for s ∈ Ij

and s �= 0.

Proof. Since β(j)

0 are simple solutions, we have M(β
(j)

0 , μ0) = 0 and DβM(β
(j)

0 , μ0) is a 2 × 2

nonsingular matrix. For each β = β
(j)

0 , j = 1, 2, 3, 4, define a C2 function W :R2 ×R �→R
2 by

W(x, s) =
{

1
s2 H(s(β

(j)

0 + x), s2μ0), for s �= 0,

M(β
(j)

0 + x,μ0), for s = 0.

Clearly, H = 0 if and only if W = 0 for s �= 0. Through direct calculations, we have W(0, 0) = 0
and DxW(0, 0) = DβM(β

(j)
, μ0) is a nonsingular matrix. By the implicit function theorem there 
0
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exist an open region Ij ⊂ R containing zero and a differentiable functions, ωj : Ij → R
2 with 

ωj (0) = 0 such that W(ωj (s), s) = 0 for s ∈ Ij . Hence we have

H(s(β
j

0 + ωj (s)), s
2μ0) = 0 for s �= 0.

The proof has been completed. �
By Lemma 4.5, the bifurcation function H vanishes at β = s(β

(j)

0 + ωj (s)) and μ = s2μ0. 
Then system (4.1) has the solution φ(β, μ). Hence system (1.4) has four homoclinic solutions 
given by

γ
(j)
s (t) = γ (t) +

2∑
p=1

s(β
(j)

0p + ωjp(s))up(t)

+ K(I − P)g̃(φ(s(β
(j)

0 + ωj (s)), s
2μ0), s

2μ0)(t),

for 0 �= s ∈ Ij , j = 1, . . . ,4. Clearly, lims→0 γ
(j)
s (t) = γ (t).

5. The transversalities

If all the four homoclinic solutions γ (j)
s are transverse, then the periodic system (1.4) has 

four transverse homoclinic solution. Hence the periodic map of system (1.4) has four horseshoe 
chaotic motions. By Shadowing Lemma in [16], to prove the transversality of γ (j)

s suffices to 
prove Eq. (5.3) has no nonzero bounded solution.

Through calculations, we have

∂γ
(j)
s

∂s
|s=0 =

2∑
p=1

β
(j)

0p up. (5.1)

Since γ (j)
s is a solution of (1.4) with μ = s2μ0, we get by substituting γ (j)

s into (1.4) that

γ̇
(j)
s = f (γ

(j)
s ) + s2μ0g(γ

(j)
s , s2μ0, t).

Differentiating with respect to t , we have

γ̈
(j)
s = [Df (γ

(j)
s ) + s2μ0D1g(γ

(j)
s , s2μ0, t)]γ̇ (j)

s + s2μ0D3g(γ
(j)
s , s2μ0, t). (5.2)

The variational equation of (1.4) along γ (j)
s is

u̇ = [Df (γ ) + G(s)]u, (5.3)

where

G(s) = Df (γ
(j)
s ) − Df (γ ) + s2μ0D1g(γ

(j)
s , s2μ0, t).
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We now prove that the variational equation (5.3) has no nonzero bounded solutions. It is easy to 
check that

G(0) = 0

∂G

∂s
|s=0 =

2∑
p=1

β
(j)

0p D2f (γ )up. (5.4)

Applying the projections P and (I − P) on Eq. (5.3), we have

u̇ = Df (γ )u + (I − P)G(s)u, (5.5)

0 = PG(s)u. (5.6)

The general bounded solution u∗ of (5.5) has the following form

u∗ =
2∑

q=1

ηquq + K(I − P)G(s)u∗,

where ηq ∈ R. Since G(0) = 0, there exists a small region Ĩ around zero such that
(I − K(I − P)G(s)) is invertible for s ∈ Ĩ . We get

u∗ = [I − K(I − P)G(s)]−1
2∑

q=1

ηquq for s ∈ Ĩ .

Substituting u = u∗ into Eq. (5.6), we have

0 = PG(s)[I − K(I − P)G(s)]−1
2∑

q=1

ηquq

=
2∑

i=1

ψi

+∞∫
−∞

〈ψi,G(s)[I − K(I − P)G(s)]−1
2∑

q=1

ηquq〉ds

=
2∑

i,q=1

ψiηq

+∞∫
−∞

〈ψi,G(s)[I − K(I − P)G(s)]−1uq〉ds

= (ψ1,ψ2)V (G(s))(η1, η2),

where matrix V (G(s)) is given by V (G(s)) = [viq(s)]2×2 and

viq(s) =
+∞∫

〈ψi,G(s)[I − K(I − P)G(s)]−1uq〉dt. (5.7)
−∞
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Note that ψ1, ψ2 are linearly independent. If we can prove that V (G(s)) is a nonsingular matrix, 
then η1 = η2 = 0. Thus the only bounded solution for the linear variational equation along γ (i)

s

is u∗ = 0. The Shadowing Lemma implies that γ (i)
s is a transverse homoclinic solution of (1.4)

and its periodic map exhibits chaotic motion.
It remains to show V (G(s)) is nonsingular. By (5.4) and (5.7), we have viq(0) = 0 and

∂viq

∂s
|s=0 =

2∑
p=1

β
(j)

0p

+∞∫
−∞

〈ψi,D
2f (γ )uqup〉dt.

=
2∑

p=1

b(i)
pqβ

(j)

0p = ∂Mi

∂βq

(β
(j)

0 ,μ0)).

We have the following approximation of vip(s):

viq(s) = s

2∑
p=1

b(i)
pqβ

(j)

0p + O(s2), (5.8)

where i, q = 1, 2. Therefore

det(V (G(s))) = s2 det

(
∂(M1,M2)

∂(β1, β2)
(β

(j)

0 ,μ0)

)
+ O(s3)

= s2 det(DβM(β
(j)

0 ,μ0)) + O(s3).

Note that DβM(β
(j)

0 , μ0) is nonsingular. Then there exists a region Î , Î ⊂ Ĩ such that V (G(s))

is nonsingular when 0 �= s ∈ Î . Then the variational equation along γ (j)
s has no nonzero bounded 

solutions. So γ (j)
s is a transverse homoclinic solution of (1.4) and its periodic map exhibits 

chaotic motion.
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