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Abstract

Consider an autonomous ordinary differential equation in R” that has a homoclinic solution asymptotic
to a hyperbolic equilibrium. The homoclinic solution is degenerate in the sense that the linear variational
equation has 2 bounded, linearly independent solutions. We study bifurcation of the homoclinic solution
under periodic perturbations. Using exponential dichotomies and Lyapunov—Schmidt reduction, we obtain
general conditions under which the perturbed system can have transverse homoclinic solutions and nearby
periodic or chaotic solutions.
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1. Introduction

Consider the system of autonomous differential equations
y@) = f(y@), (1.1

where y € RV, We make the following assumptions:
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(H1) feC’.
(H2) f(0) =0 and the eigenvalues of Df (0) lie off the imaginary axis.
(H3) Eq. (1.1) has a homoclinic solution y (t) asymptotic to the equilibrium y = 0. That is,

y(@)=f(y(®) and lim y(r)=0.
t—=+o00
The variational equation of (1.1) along the homoclinic solution y is

u(t) = Df (y (1))u(t). (1.2)

Since y is a bounded solution of (1.2), system (1.2) has d > 1 linearly independent bounded
solutions. In this paper, we study bifurcation of y (¢) to nearby transverse homoclinic solutions
under the periodic perturbations. The perturbed system is

YOy =f@®)+gy(), 1), (1.3)

where y € RV and 11 € R is a parameter. We assume g satisfies

(H4) geC3 g(y,0,1)=0and g(y, u. t +2) = g(y, 4, 1).

By (H2), y = 0 is a hyperbolic equilibrium of (1.1). From g(x,0,¢) = 0, generically,
Eq. (1.3) has a hyperbolic periodic orbit () := O(Ju|) near 0. Using the change of vari-
able y = x 4+ 6(u), (1.3) becomes x = f(x) + g(x(¢), u,t), where g(x, u,t) = f(x +0(un)) +
g +0(w), u, 1) —gO), w, 1) — f(x) — f(O(w). Clearly, g satisfies g(0, 1, 1) =0.

With this as a motivation, we consider the following perturbed problem to (1.1):

@)= fx@)+gx@), p. 1),

which satisfies assumptions (H1)-(H4) and g(0, t, ¢) = 0.

From g(x,0,1) = 0 in (H4), we can rewrite the perturbation term as g(x, u,t) = ug(x(z),
i, t). After dropping ~ and — on g, we consider the following problem that is equivalent to
(1.3):

x(t) = f(x(@®) + pngx@), u, 1), xeR", pekR. (1.4)
The new system satisfies (H1)—-(H4) and an additional condition
(HS) g0, pn, 1) =0.

The advantage of having (HS) on (1.4) is that x = 0 will be a hyperbolic equilibrium even
after small periodic perturbations. For the autonomous equation when p =0, let W¥(0), W*(0)
be the stable and unstable manifolds of the equilibrium 0. Clearly, the homoclinic orbit y lies on
W*(0) () W*(0). If the variational equation of (1.1) along y has d dimension bounded solutions,
then d = dim(Ty(o) W5(0) ﬂ Ty(O) wWH(0)).

When p # 0, (1.4) may have bifurcations near y. The case d = 1 has been extensively studied.
In [8], Hale proposed to study the degenerate cases where d > 2. See also [3,9,12,13]. The
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purpose of the present work is to treat the case d = 2. Using the method of Lyapunov—Schmidt
reduction, see [1], and exponential dichotomies, we derive a system of bifurcation functions
Hj, j = 1,2, the zeros of which correspond to the persistence of homoclinic solutions for (1.4).
By the method of codiagonalization of quadratic forms, we show that the quadratic system can
have up to 4 solutions. Finally, if the solutions to the quadratic system are nondegenerate, then
the corresponding homoclinic orbits are transversal. Using the Shadowing Lemma in [16,17], we
prove the existence of chaotic motions near such homoclinic bifurcations [7].

We use codiagonalization as an abbreviation of simultaneous diagonalization (of two matrices
or two quadratic forms). Codiagonalization of matrices has been used by Jibin Li and Lin [14]
to study systems of coupled KdV equations, and will be one of the main tool used in this paper.
Given a symmetric real matrix A € R2*Z then

F(a1, @) = (a1,a2)A(ar, az)”

is a quadratic form associated to A. If A is diagonalized by a nonsingular matrix M: MT AM =
diag(di, d»), then

F(ay, @) = (b1, by)diag(dy, da) (b1, bo)T = d\b? + dab3,

where (a1, a2)”T = M (b1, by)T. The symmetric transformation described above is also called the
congruence diagonalization. One should not confuse this with the similarity transformation of
A which is defined by M ~LAM. For example the matrix diag(i;, —A2), A; > 0, can be reduced
to diag(1, —1) by the matrix M = diag(1/+/A1, 1/4/A2), which is a symmetric reduction, not
similarity reduction.

In Section 2, we introduce notations to be used in this paper. We also present the reduced
bifurcation functions, which to the lowest degree, represent the breaking of the homoclinic or-
bits under the periodic perturbations. In Section 3, we introduce the methods of codiagonalizing
two quadratic forms and use them to study the quadratic bifurcation equations. The case when
one equation is elliptic is considered in Section 3.1. The other case when both equations are
hyperbolic is considered in Section 3.2. In Section 4, we study the coexistence of homoclinic so-
lutions. In Section 5, we study the transversality of homoclinic solutions obtained in the previous
sections.

2. Notations and preliminaries
Notations. Since y = 0 is a hyperbolic equilibrium point, from [4-6,16], (1.2) has exponen-

tial dichotomies on J = R¥ respectively. In particular, there exist projections to the stable and
unstable subspaces, P; + P, = I, and constants m > 0, K¢ > 1 such that

(i) |U@PU(s)| < Ko™, fors<ronJ,

| ) 2.1)
(i) | U@PU(s)| < Koe?™ =9, fort <sonJ.
For the same m > 0, define the Banach space

Z={zeC'R,R") :sup|z(t)|e"!" < o0},
teR
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with the norm ||z|| = sup,cg |z(t)|e™"]. The linear variational system

Lu:=u—Df(Y)u=h 2.2)

will be considered in Z. The adjoint operator for L is

L*y =4 + (Df (y)* . (2.3)

The domains of (2.2) and (2.3) are the dense subset of Z, defined as

D(L):={u:u,u; € 2}, DL*) :={¥:v¥, ¥ €2}

From the theory of homoclinic bifurcation [16,17,9], L : Z — Z is a Fredholm operator with
index 0. The range of L is orthogonal to the null space of L*. That is

o0
h € R(L) iff / (¥ (1), h(t))dt =0, forall y € N(L*). 2.4)
—00
From d =2, N(L) is two dimensional. Let (#1, #») be an orthonormal unit basis of N (L) and
(Y1, ¥2) be an orthonormal unit basis of N (L*).

We define some Melnikov types of integrals [15] that will be used in the future. For integers
i, p,q from the set {1, 2}, define

+00

f<1/fi(t)asz(y(t))up(t)”q(t»dtv p.q=12,

—00

0
b[’q

+00

f(l/fi(t),g(y(t),o,t))dt.

—0o0

2
Il

Define the 2 x 2 matrices BV = (b;,lq)), B(_z) = (bfyzq).), and B = (B1, B)T.
By changing ; to —;, we can change BY) to —B¥) without altering the result of the paper.

Without the loss of generality, we assume the following conditions are satisfied:

(H6) If the eigenvalues of B®) satisfy AjA, > 0, then A; > 0, Ar > 0. If the eigenvalues of B®
satisfy A1Ap = 0, then A; > 0, A, = 0. If the eigenvalues of B® satisfy A1Ap < 0, then
A >0> Ao

We look for conditions so that (1.4) can have homoclinic solutions near y. Define the reduced
bifurcation functions M) : R? x R > R? as follows:

2
. . 1 . )
MOB. ) =i+ Y bybpby. i=1.2. 2.5)
p.q=1
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We shall show that, to the lowest degree, (2.5) describes the jump discontinuity along the direc-
tion of v; in Section 4.
We need to solve the following system of bifurcation equations

BTBYB=ain, i=1,2, (2.6)

where a; = —2a;. Geometric method based on circular and hyperbolic rotation will be used to
codiagonalize the quadratic system (2.6), which can significantly simplify the system.

The following lemma and its corollary show how codiagonalization of matrices are related to
solutions of quadratic systems.

Lemma 2.1. Let F(by, b)) := (b1, b2)A(by, by)T be the quadratic form associated to a symmet-
ric matrix A € R**2, If there exist B1 # 0, By # 0 such that either (i) F(B1, B2) = F(—PB1, B2),
or (ii) F(B1, B2) = F(B1, —B2), then A is a diagonal matrix.

Proof. Assume A = (a;;) with ajp = ap;. In both cases, we have

a1 B} +2a12B1 B2 + anps = an i — 2anpip2 + anps.
Thusa;p =0. O
Let BV, B® ¢ R?*? be symmetric, nonzero matrices as in (2.6).

Corollary 2.2 (Converse to the existence of 4 solutions). Assume that Eq. (2.6) has 4 solutions
that form a parallelogram, and there exists a nonsingular 2 x 2 matrix X that transfers the
parallelogram into a rectangle that is symmetric about the ay and ap-axes. Then

XTBOX =Ayand XTBP X = A,
where A1, Ao are diagonal matrices.

Proof. Suppose that P| = (a, b), P, = (c,d), P3 = (—a, —b), P4 = (—c, —d) are the vertexes
of the parallelogram. Without loss of generality, let X be a nonsingular 2 x 2 matrix such
that after the change of variables (81, ﬁz)T = X (o1, 2)T, then Py, Py are symmetric about
o1-axis in (a1, op) coordinates, that is X ~!(a, »)T = (ap, bo)T and X~ L(c,d)T = (ag, —bp)7 .
The quadratic form ﬁTB(i)ﬂ =al XTB®O X where a = (a1, 2)” satisfies the conditions in
Lemma 2.1. Therefore A1 is a diagonal matrix.

Similarly, A = XT B X is a diagonal matrix. O

3. Codiagonalization and the bifurcation of the homoclinic solution

We say that the quadratic equation 87 BB = h, h # 0 is of elliptic (or hyperbolic, or line)
type if the graph of the equation is an ellipse (or two hyperbolas, or two lines). We consider the
graph of two symmetric lines as a special case of two hyperbolas, where the distance to two lines
replaces the real semiaxis of the hyperbolas.
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3.1. Codiagonalization and solutions of (2.6) if one equation is elliptic

It is well-known that two symmetric matrices can be simultaneously diagonalized if one of
the matrices is positive definite, [10,11,2]. For 2 x 2 matrices, the proof can be carried out by
a circular rotation which may serve as a motivation to the hyperbolic rotation to be used in the
case when both equations are hyperbolic.

Let M, N € R**? be symmetric matrices, where N is positive definite. Let the eigenvalues of
N be A1, Ay > 0 with the corresponding eigenvectors x; and x;. Assume that the eigenvectors
are normalized and let X = (x, x3). Let

_y (Um0
Y_X< 5 1/\//\_2)

Then
YINY =1 3.1

The matrix Y7 MY is still symmetric. In the next lemma, we will further diagonalize Y7 MY
without changing the normalized Y7 NY. Notice if M is positive-definite (or indefinite), then the
graph of the corresponding quadratic form is an ellipse (or hyperbola).

The circular rotation 7' () is defined by the 2 x 2 matrix

[ cos(@) —sin(f)
T®) = (sin(@) cos(0) ) » O€eR

If we use the change of variables defined by 7'(9), Eq. (3.1) remains unchanged.

Lemma 3.1. If M is positive definite (or indefinite), then there exists a circular rotation with the
angle 0y, such that the major (or real) axis of the matrix YT MY, after the rotation, is on the ¢
axis, i.e., M' =T (—00)YT MYT (8y) is diagonal, and T(—600)YT NYT (8y) is still normalized.
That is

T(~60)Y" MYT (60) = diag(dy, da),

T(—0)YINYT (6y) =1.

Proof. We assume that the major (or real) semiaxis of
(b1, b)Y MY (b1, b)) =1

is at (b?, bg). Let 6y = arctan bg/b?. Then

T(=60) (Y, BT = (/B2 + (¥9)2,0)7.

After the circular rotation T (—68p), the major (or real) axis is on the cj-axis. Consequently the
minor (or imaginary) axis is on the cz-axis.

The quadratic form (b1, b)Y MY (b1, b))T = (c1,c)M'(c1, )T if M =
T(—00)YT MYT (0) and (c1, c2)T = T(—60) (b1, b>)T. Obvious M’ is a diagonal matrix. O
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Corollary 3.2 (LE-type). When |M| = 0 and M # 0, the quadratic form (b, b2))YT MY (b1, by)T
can be expressed as (cb1 + db2)2 for some c,d € R. Let 6y = arctan(d /c). Then

T(—00)YT MYT (6p) = diag(dy,0), di=+/c?+d2,
T(—0)YINYT (6p) =1I. (3.2)

Proof. After the circular rotation, the normal direction of the two lines defined by
(1, )T (=00)Y " MYT (Bp)(c1.c)” =1
is on the ¢ axis. This proves the first equation of (3.2). O
Let us go back to consider (2.6) where BD = (b5)), B® = (b)) and B = (81, B2)7 . As-
sume that B is positive definite. From Lemma 3.1, there exists a 2 x 2 matrix X such that

XTB@X =1 and XT BV X = A = diag(d;, d»).
Let us write the second equation of (2.6) as

X 'BHTXTBPX(X7'B) = arpt.

We assume that apu > 0, otherwise (2.6) has no solution. Let e« = \/alz_MX’lﬁ. Then by
XTB@ X =1, the second equation of (2.6) becomes

2, 2
o) +ay =1.

The trajectories of the solutions form a unit circle in the (a1, a2) plane. The first equation of (2.6)
can be written as

X 'BHTXTBYX(X7'B) =ap.

1

o X~!8, and from X7 BM X = A, the first equation becomes

By the same substitution & =

ai
dya} 4+ dyad = —.
az

Hence we have proved the following result.

Lemma 3.3. If B? in (2.6) is positive definite, then there exists a change of variable o =

1 —1
«/‘WX B such that (2.6) becomes

2 2_ 4
dioy +droy = —,
a

al 4+ al=1. (3.3)
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Depending on B() in (2.6) is positive definite, indefinite, or degenerate, the graph of the
first equation of (3.3) is an ellipse, a hyperbola, or two lines. Then system (2.6) will be called
the elliptic—elliptic, hyperbolic—elliptic or line—elliptic type, denoted by EE, HE, LE for brevity.
When system (2.6) is of (EE) type, from Lemma 3.3 the system (2.6) becomes (3.3), without loss
of generality, we assume d» > d; > 0. We now study in detail all the sub-cases if the matrix B
in (2.6) is positive definite.

Theorem 3.4. Assume that the matrix B® in (2.6) is positive definite, and the matrix BV satis-
fies the condition (H6). After the codiagonalization as in Lemma 3.3, system (2.6) becomes (3.3).
Then under the following conditions, system (2.6) has four simple zeros.

(1) If system (2.6) is of (EE) type, then 0 < dy < aj/ax < dy;

(2) if system (2.6) is of (HE) type, then dy <0 <d; and 0 <aj/ax <di;

(3) if system (2.6) is of (LE) type, then d» =0 and 0 < a1 /ay < d;.

Proof. By the discussions above Lemma 3.3, we see the major (or real) axis of the first equation
of (3.3) is on «p-axis.

Proof of case (1), (EE)-type: Since dy > d| > 0 and a; /a> > 0, then the first equation of (3.3)
is elliptic and the major axis is on the oy -axis. The semi-major and semi-minor axes of the ellipse

are ry = J/ai1/diaz > r1 = Jay/drar. If 0 <r; <1 <, thatis

0<d <ai/ar < dy,

then system (2.6) has four solutions. The proof for the (EE) case has been completed.

Proof of case (2), (HE)-type: When d» < 0 < dj, the first equation of (3.3) is hyperbolic.
Based on the fact of aj /a; > 0, we know its real axis is on the «-axis. The hyperbola intersects
the real axis at C = (£4/a1/(d1a2),0). If |OC| < 1, the hyperbola and the ellipse in (3.3) has
four intersections. That is, if

ai
— <dy, .
. <d (3.4)

then the system (2.6) has four solutions. The proof of (HE) has been completed.

Proof of case (3), (LE)-type: When d, = 0 and d; > 0, the first equation of (3.3) are two
straight lines if a1 /a> > 0. The two vertical lines intersect the «-axis at C. If (3.4) holds, then
the points C are inside the unit circle. Therefore system (2.6) has four solutions. O

3.2. Codiagonalization and solutions of (2.6) if both equations are hyperbolic

We first introduce the method of hyperbolic rotation that can codiagonalize two symmetric
indefinite matrices under some general conditions. The hyperbolic rotation H (6) with angle 6 is
defined by the 2 x 2 matrix

__( cosh(f) sinh(0)
H©) = <sinh(6) cosh(9)> . OeR.
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Let M, N € R>*? be nonsingular, symmetric and indefinite matrices. Let the eigenvalues for
N be A1 > 0 > —X, with the corresponding eigenvectors x; and x7, and let X = (x1, x2) be a
2 x 2 matrix. Assume that the eigenvectors are normalized. Then it is well-known that

XTNX = A, where A =diag(r{, —A2). (3.5)

From (3.5), we can further normalize N by

rov (1 0 _y (UM 0
YNY_<O _1>,whereY_X< 0 I/JE)' (3.6)

After the normalization, the matrix YT MY is still nonsingular, symmetric and indefinite.
Without affecting YTNY, in Lemmas 3.6 and 3.7, we show under some general conditions,
the hyperbolic rotation can be used to further reduce Y7 MY to a diagonal form. Moreover, the
real semiaxis of the transformed hyperbola is determined by Corollary 3.8. First we show the
existence of asymptotes for any nonsingular symmetric indefinite matrix.

Lemma 3.5. 7o each nondegenerate, symmetric, indefinite 2 x 2 matrix A, there are two asymp-
totes (lines) L1, Ly such that (b1, b)) A(b1,b2)T =0iff (b1, b))" € Lj, j=1,2.

Proof. There exists a matrix of eigenvectors Z such that

ZTAZ = diag(u1, —p2), w1, 2 > 0.

Let (b1, b2)T = Z(c1, ¢2)T. Then (cy, ¢) satisfies

(c1,eZT AZ(c1, )T = pied — pack =0.

The last equation defines two asymptotes in (c1, c2) coordinates. The asymptotes in (by, b2)
coordinates are

Ly := {(b1, )11, /i) T, Z7 N by, b)) = 0},
Ly :={(b1, b)) {(V1t1, /1) T, 27 (b1, b2)T) =0}. O

Definition 3.1. Let L, j =1, 2, be the asymptotes for the nondegenerate, symmetric, indefinite
2 x 2 matrix A. Then L;, j =1, 2, divide R2 into four sectors. We say (b1, b») is in the positive
(or negative) sector if (b1, by)A(b1,b2)T > 0 (or (b1, b2)A(b1, by)T < 0).

The slopes of the two asymptotes for (b1, b)Y TN Y (b1, bz)T =0 is clearly k = =£1. For the
matrix Y7 MY, the slope of the asymptote L j can be expressed as k; = b;j ) /b%j ) for a nonzero
b by el

We now assume the sectors (b1, b2)YT MY (b1, b2)T > 0 are in the interior of b% — b% >0, so
the conditions —1 < k1 < ky < 1 of the following lemma are satisfied.
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Lemma 3.6. If —1 < k| < kp < 1, then there exists a hyperbolic rotation with the angle 6y, such
that the image H(—00)L ; becomes symmetric about the by axis. The same hyperbolic rotation
also diagonalizes the matrix YIMY,ie, M' = HO0)YT MY H(6) is diagonal.

HO0)YT MY H(6y) = diag(dy,d>), did> <0
HO0)YT NY H(60) = diag(1, —1).

Proof. The condition —1 < ki < k» < 1 ensures that the asymptote L;,j = 1,2, inter-
sects with the hyperbola b% — b% = 1. Let (bj1,bj2) be the intersection. Then (bj1,bj2) =
(cosh(6;), sinh(6;)). Let 8y = (61 + 62)/2. Then

H(—600)(bj1,bj2)" = (cosh(8; — ), sinh(8; — 6p))"

B { (cosh(6y — 62)/2, sinh(8 — 02)/2)T, ifj=1,
(cosh(6, — 01)/2, sinh(6, — 01)/2)T, if j =2.

The quadratic form (b1, b)Y MY (b1, b))T = (c1,c)M'(c1, )T if M =
H(00)YT MY H (o) and (c1, c2)T = H(—60) (b1, b2)T. The quadratic equation after hyperbolic
rotation, (c1, c2)M’(c1, ¢2)T = 0 has two solutions (1, k) and (1, —k) with k > 0. This shows M’
is a diagonal matrix. O

If the sectors (b1, b)) YT MY (b1, by)T > 0 are in the interior of b7 — b3 < 0, then |k; |, k2| > 1
as in the following lemma hold.

Lemma 3.7. If |k1|, |k2| > 1, then there exists a hyperbolic rotation with the angle 6y, such that
the image H(—6p)L j becomes symmetric about the by axis. The same hyperbolic rotation also
diagonalizes the matrix YT MY, i.e., M’ = H(00)YT MY H (6y) is diagonal.

HO0)YT MY H(6y) = diag(dy,d>), did> <0
H@©Oo) YT NY H (6y) = diag(1, —1).
Proof. The condition |k|, [k2| > 1 ensures that the line L, j = 1, 2, intersects with the hyper-
bola b% — b% = 1. Let (b1, bj2) be the intersection. Then (b;1, b;2) = (sinh(6;), cosh(6;)). Let
6o = (61 + 62)/2. Then
H(—60)(bj1,bj2)" = (sinh(8; — 6p), cosh(6; — 60))"
_ (sinh(8; — 6»)/2, cosh(0; — 62)/2)T, if j=1,
(sinh(0y — 61)/2, cosh(6, — 01)/2)T, if j =2.

The quadratic form (b1, b)Y MY (b1, b)T = (c1,c)M'(c1,c)T  if M =
H@O)YT MY H(6y) and (c1, c2)T = H(=6) (b1, b2)T. The quadratic equation after hyperbolic
rotation, (c1, c2)M'(cy, c2)T = 0 has two solutions (1, k) and (=1, k) with k > 1. This shows M’
is a diagonal matrix. O
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Corollary 3.8. (1) Assume the same conditions as Lemma 3.6 are satisfied. Let 6y = (01 + 62)/2
as in Lemma 3.6. If the ray

(r cosh(6y), r sinh(6p)), r > 0,
intersects with the hyperbola (b1, b)) YT MY by, b)T =h,h > 0atr =ry. Then after the hy-
perbolic rotation and in (c1, c2) coordinates, c1 = ro is the real semiaxis for the transformed
hyperbola.

(2) Assume the same conditions as Lemma 3.7 are satisfied. Let 6y = (61 + 62)/2 as in
Lemma 3.7. If the ray

(r sinh(6y), r cosh(6p)), r > 0,

intersects with the hyperbola (b, b)YTMY by, b2)T =h,h >0 at r =rg. Then ca = ry is the
real semiaxis of the hyperbola after the hyperbolic rotation.

We now study (2.6) where BM = (b;lq)), B® = (b;,zq)) and B = (B1,B2)T. Since B? is
indefinite, there exists a 2 x 2 matrix X such that X7 B@ X = diag(1l, —1) and xTpWDx =
diag(d, d»). Similar to the elliptic case, let us write the second equation of (2.6) as

X 'BHTXTBPX(X7'B) = aru.

By changing v; to —; if necessary, we can assume axp > 0. Let o = \/%X_lﬂ. Then by
XTB@ X =diag(1, —1), the second equation of (2.6) becomes

2 2 _
ay —ay =1.

The trajectories of the solutions form a unit hyperbola in the (1, a2) plane. The first equation of
(2.6) can be written as

XX BOXX ) =ain.
By the same substitution, the first equation becomes
a
dla%—}-dza%:a—l, didy < 0.
2

We have proved the following result.

Lemma 3.9. If with M = BV, N = BP, conditions in Lemmas 3.6 and 3.7 are satisfied, then
there exists a change of variable o = L_ X—1B such that (2.6) becomes

Jar

dval 2_ 4
10y + drory = . didy <0,

of —ad=1. (3.7)
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We now study (3.7). Let

Fi(a1, a2) := (a1, an)diag(dy, da) (a1, a2) 7,

Fy (a1, a2) = (@1, ap)diag(l, =D (a1, a2)”.
Define h = a; /a3, then system (3.7) can be recast as
Fi(ar,a) =h, Fa(ar,a2)=1. (3.8)

The number of solutions for (2.6) depends on the relative positions of the asymptotes and the
positive—negative sectors separated by the asymptotes. Listed below in cases (0)—(iii).

Case (0): The two asymptotes of Fj(c1, op) = h are alternatively in the positive and negative
sectors of F>(oq, o) = a% — a%.

Next, assume that the two asymptotes for F (o1, o) are adjacent to each other and are either
both in the sector where F, > 0 or in the sector » < 0. Then we have three sub-cases determined

by the positive sectors of the two matrices.

Case (i): The two positive sectors of F; are in the interior of the two sectors where F, > 0

respectively.

Case (ii): The two negative sectors of F] are in the interior of two sectors where F, > 0 respec-
tively.

Case (iii): The two positive sectors of F; are in the interior of the two sectors where F>» < 0
respectively.

Case (iv): The two negative sectors of F are in the interior of two sectors where F> < 0.
We now state a precise theorem on the number of solutions for system (2.6).

Theorem 3.10. Let r1 be the real semiaxis of the hyperbola Fi(a1,w2) = h. The number of
solutions are determined by the asymptotes and positive—negative sectors separated by the
asymptotes as follows:

Case(0): In this case, for any h # 0, system (3.8) has two simple zeros. See Fig. 3.1.

Case (i): The system has 4 solutions provided that the real semiaxis of Fi(oy,a2) =h, h >0
satisfies r1 < 1. See Fig. 3.2.

Case (ii): The system has 4 solutions provided that the real semiaxis of F1 = h, h < 0 satisfies
r1 < 1. See Fig. 3.2.

Case (iii): The system has 4 solutions provided that the real semiaxis of F1(a1,02) =h, h <0
satisfies r1 > 1. See Fig. 3.3.

Case (iv): The system has 4 solutions provided that the real semiaxis of F1 = h, h > 0 satisfies
r1 > 1. See Fig. 3.3.

Case (v): The system always has 4 solutions (not depicted) if in cases (i) and (iii), h < 0; or
in cases (ii) and (iv), h > 0.

The proof of Theorem 3.10 is straightforward from those figures and will be omitted. Notice
that in cases (i) to (v), the two hyperbolic types of equations can be codiagonalized.
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Fig. 3.1. If the asymptotes of F; =0 and F, = 0 are alternating, then there always exist exactly two solutions.

Fig. 3.2.Incase (i), if h > 0 and r| < 1, or in case (ii), if # < 0 and r| < 1, then the system has 4 solutions.

Fig. 3.3. In case (iii), if # < 0 and | > 1, or in case (iv), if # > 0 and r; > 1, then the system has 4 solutions.
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To be consistent with Theorem 3.4, we give more details on the two cases using diagonalized
system as follows. We also provide conditions for the (LH) case to have solutions.

Using Lemmas 3.6 and 3.7, we assume the second equation of (2.6) is normalized and the first
equation is in the diagonal form dlo(% + dzoc% = h with d1dy < 0. We rewrite the system as:

Q]Ol% —|—Q20l% =1,

af —ad =1, (3.9)
where o; = d;/h. Now we are ready to solve (3.9). By the definitions of p;, d;, it is clear that
01/02 =dy/d>.

Theorem 3.11. Assume that the matrix B in system (2.6) is indefinite, and the matrix BV
satisfies the condition (H6). After the codiagonalization as in Lemma 3.9, system (2.6) becomes
(3.9). Then under the following conditions, system (2.6) has four simple zeros.

(1) If system is of (HH) type, then one of the following holds:
(@) O<o1 <landloi/02] > 1;
(i) o1 >l andlo1/02| < 1;
(2) If system is of (LH) type, then 0o =0 and 0 < o1 <1 or o1 =0 and g2 > 0.

Proof. Clearly, the slopes of the two asymptotes of the first equation of (3.9) are £./—01/02.

Proof of case (1), (HH)-type: (i) Since o1 > 0, then the real axis of the first equation of (3.9)
is the o-axis. The real axis o] intersects the first and second equations of (3.9) at A| and A»,
where

Ap=(£1,0), Ay=(£1/,/0,,0).

Note that |01 /02| > 1. Then the two asymptotes of the first equation is out of the ones of the
second equation (3.9). Let |O A1]|, |O A3| be the distance to the origin. If |OA>| > |OA1| =1,
that is 01 < 1, then (2.6) has four solutions.

(ii) Since o > 1, then the real axis of the first equation of (3.9) is the «. Since |01 /02| < 1,
then the two asymptotes of the first equation are between the ones of the second equation (3.9).
If |OA;| <|OA1| =1, thatis g1 > 1, then (2.6) has four solutions.

Proof of case (2), (LH)-type: Since o2 = 0, then Eq. (3.9) becomes:

2
o1y =1,
2 2 _
ay —ay =1.

The first equation is two lines which are vertical to oy axis for o1 > 0. The distance from the
origin to the lines is 1/\/51. Hence, for 0 < g1 < 1, (2.6) has four solutions.
By similar reason, we can prove the case o1 =0. O

When both the matrices B4, B@ are degenerate, Eq. (2.6) can have 4 solutions.

Remark 3.1. When B #0, det(B(i)) =0,i =1, 2, then each equation of (2.6) is two lines.
Since det(B®) = 0, then we have b\")b\) — b')" = 0 and hence b\')b%) > 0. 1f b\") (a;0) < 0,
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then the i-th equation of (2.6) has no solutions and hence (2.6) has also no solution. If
b 511) (a;jp) > 0, (2.6) becomes

BBV = D181+ 1655 182)% = la al,
BTBPB = Ibﬁ)lﬂl +/165)182)% = laapul. (3.10)

Clearly, (3.10) has four solutions if and only if

m
bll b22

£0.
2 (2)
bl 1 b22

Finally, the four solutions of Theorems 3.4 and 3.11 are simple. It is the following theorem.
Theorem 3.12. The four solutions of (2.6) obtained in Theorems 3.4 and 3.11 are simple.

Proof. We only give the proof of (EE) of Theorem 3.4. The proofs of others cases are similar.
Let
ai

Gi(a1, @) :=dia? + dra3 — .

Ga(ar, ) ==af +a3 — 1. (3.11)

Under the conditions of (EE) of Theorem 3. 4 (3 11) has four zeros (oz1 , 0y )) i=1,2,3,4.

We claim that a;) #0, j=1,2. In fact 1fa = 0. From G (0, aé)) =0, we get that a() =
+1. Hence by G1(0, 1) =0 we have d, = al/az It is impossible since aj/a; < d» by (EE) of
Theorem 3.4.

The normal directions of G1 and G, at (ozfl),oez)) are (dloz dzaz)) and (ozfl),oez)) re-

spective. Clearly, (dla(l) d2a2 )) and (ai’), a, )) are linearly independent. Otherwise d| = d or

a;l) = 0. It is impossible. Hence

dlagi) dza(')

0G1,G) | & o
By GRS o o
o )

d(ar, 02)

#0,

which implies that (ag') , 0y )) are simple zeros of (G(a1, a2), Ga2(oy, a2)). O

4. The coexistence of homoclinic solutions

By (H2), system (1.4) with . = 0 has a homoclinic solution y. In this section, we will find
conditions such that (1.4), with small u # 0, has homoclinic solution y,, satisfying ||y — y.|l =
O(/Iul.

Let D;h or D;jh denote the derivatives of a multivariate function ~ with respect to its i-th or
the i, j-th variables. With the change of variable x(t) = y (¢) + z(¢), (1.4) is transformed to
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t=Df(y)z+8(z, W), 4.1

where

g =fy®+z1) = fy®)—Df(yO)z+ugly®) +z),n.1).  (42)

Lemma 4.1. The function g(-, 1) : Z — Z satisfies the following properties:

(1) 2(0,0)=0, D;3(0,0)=0,
(2) D11g(0,0)=D*f(y),

g
(3) 8_(0’ 0)=¢(,0,1).
I

Proof. It is easy to check from (4.2) that (1)—(3) hold. We now prove g(-, u) : Z+— Z.

Let B1(0,8) C R"” and B>(0, 8) C R be closed balls with radius 8 > 0 centered at the origins.
For arbitrary z € Z, we can take a large 6 > 0 such that z(¢), y(t), y(¢) + z(t) € B1(0, 8) for
t € R. By (H1) and (H4), there exists a constant Ag such that

ID1g(x, W)l < Ao, |D1g(x, m,1)| < Ao

for (x,u,1) € B1(0,8) x B»(0,8) x R. Since y is a homoclinic solution and z € Z, there is
A1 > 0 such that

ly @) < Are™™ 1 jz(0)] < Aje™,

Define a map o : [0, 1] — Z by o(s) = g(sz, u) — ng((1 — )y, u, t). By the smoothness of
f, g, weseethato € C! and o (0) =0, then

1

3 W0 =o(1) — o (0) = / o' (p)dp
0
1

_ / DiZ(pz(t). 1)2(t) + uDrg((1 — Py (@), 1. D)y ()dp.
0

Therefore

18 (z, ) (®)| < sup{|D1g(x, )}z ()| + |l SUPt{IDlg(x, w, O}y @)
X,

X,

< Ao A (L + |uhe ™!, 43)
which implies that g(z, u) € Z. The proof is completed. O

Recall that L(«#) =1t — Df (y)u in the Banach space Z. As in [5,16], we define the subspace
of Z, which consists the range of L in Z.
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Z=t(heZz: / (Wi (s), h(s))ds =0,i = 1,2}.

Consider a nonhomogeneous equation

z—=Df(y)z=h. (4.4)

If h € zZ , using the variation of constants, with some phase condition, there exists an operator
K : Z — Z such that Kh is a solution of (4.4). Clearly, the general bounded solution of (4.4) is

2(t) =Y 0 Bpup(t) + (KR)(1), where B, € R.
From (2.4), R(L)® N(L*) = Z. Note that ¥, ¥, are orthonormal unit basis of N (L*). Define
amap P:Z — Z by

i=1

2 o0
(P20 =Y 0t [ (its).z00ds,

As in [16], one can prove that P satisfies the following properties:

Lemma 4.2. (1) P and I — P are projections.
(2) R(P)® R(L) = Z. ~
B)R(I—-—P)=N(P)=R(L)=Z.

We now use the Lyapunov—Schmidt reduction to solve (4.1). Applying P and (I — P) on
(4.1), we find that (4.1) is equivalent to the following system

z=Df(y)z— U — P)g(z, ), 4.5)
P3(z, ) =0. (4.6)

First, we solve (4.5) for z € Z. Then the bifurcation equations are obtained by substituting the
solution z into (4.6).

Lemma 4.3. There exist open balls B1(8g) C RZ, B>(6p) C R with radius §y > 0 centered at the
origins and a C*> map ¢ : B1(80) x B2(80) — Z, denoted by ¢ (B, 1), such that z = (B, ) is a
solution of Eq. (4.5). Moreover ¢ (B, u) satisfies ¢(0,0) =0 and (3¢/9Bp) 0,00 =up, p=1,2.
Proof. Since R(I—P):gandl(:ge Z,we definea C> map: F: Z xR?>xR — Z by
2
F(Z,ﬂ,u)=Z/3pup+K(1—P)Z’(Z,M), 4.7)
p=1

where B = (81, B2) € R2. Clearly, the fixed point z of (4.7) is a solution of (4.5) in Z.
From (1) of Lemma 4.1, we have

F(0,0,00=0, D;F(0,0,0)=0. (4.8)
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By the smoothness of F, given any § > 0, there exists ¢ > 0 such that
ID2F || <c, ID3sF| <c, IDnF| <c, [[DnFll <c, [Di3F| <c,

for (z, B, ) € B(8) x B1(8) x B»(8), where B(8) C Z, B1(8) C R?, B»(8) C R are closed balls
of radius §. Let

1 8
81 =min{8, —}, 8 =min{s, 8y, —-}.
4c 8¢

For any (z, B, ) € B(81) X B1(82) x B2(82), define a map ¢ : [0, 1] — L(Z, Z) by ¢1(s) =
D F(sz,sB,su). By the smoothness of F, we see ¢; € cl. By (4.8) we know ¢1(0) =0, then

1
ID1F(z, B, )l = lle1 (1) — @1 (0)|| = || / ¢ (p)dpl|

<D F(pz, pB, pwl -zl + ID12F (pz, pB, p)l - 1Bl

+ 1D F(pz, pB, pr)|l - | ]|

SN RPN R B “o)
SO T 4 T e Ty ‘

For (z, B, i) € B(81) x B1(82) x B2(82), define amap ¢, : [0, 1] — Z by ¢a2(s) = F(sz, 5B, s ).
Clearly ¢> € C! and ¢(0) =0, then

£z, B, Wl = llg2(1) — 2(0) [ = |I/¢§(p)dpll

<|ID1F(pz, pB, p)l - Izl + ID2F (pz, pB, p)ll - 1Bl
+ID3F(pz, pB, pr)|l - llll
o1 31

3
5 e s,
Sgoteg e g =a

which implies that F'(-, B, 1) maps B(8) into itself.
For z1,22 € B(81), (B, 1) € Bi(82) x By(87), define a map ¢3 : [0, 1] — Z by ¢3(s) =
F(sz1 4+ (1 —s)z2, B, ). Then @3 € C! and ¢3(0) =0, then

1F(z1, B, ) — F(z2, B, wll = llez(1) — @3 (0)[| = ||f</)§(p)dp||

k
<UD F(pzi + (1= p)z, B, wll - llz1 — 2|l

3
< ZIIZl — 22|l
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Therefore F is a uniform contraction in B(81). By the contraction mapping principle, there are
831,822 >0anda C! map ¢ : B1(621) X B2(822) — B(81) such that ¢ (0,0) =0 and

¢(B. ) =F(p(B, 1), B, 1n).

Let 6o = min{&,, 621, 822}. From (4.7), we have

2
B 1) =) Byup+ KU —PZ@D(B, 1), ). (4.10)

p=1

Differentiating (4.10) with respect to 8, we have

D¢ (B, 1) =D1F(@(B, 1), B, )D1¢ (B, ) + D2F (p(B, 1), B, 1).

This, together with (4.9), implies that

Di¢p=(I —DiF(¢p,B, )" D2F ($, B, ).

By the smoothness of F, D¢ is a C' function. Hence ¢ is C2 in . Similarly, we can prove ¢
is C%in p.
Differentiating (4.10) with respect to 8, and evaluating at (0, 0), we get

¢
| 0 =up), p=1,2.
1317 (0,0)

The proof has been completed. O

By Lemma 4.3, (4.5) has a solution ¢ (8, i). Substituting ¢ (8, n) into (4.6), we have the
bifurcation equation

0=Pg(p(B, 1), 1)
+00

2
=lefi(t)/(1/fi(S),§(¢(ﬂ,u),u)(8))ds, (4.11)
i=1

—00
where the definition of projection P is used. By the linear independence of /1, ¥», we see that

+00

Hi(B. ) = /(Wi(S),§(¢(ﬂ,M),M)(S))dS=0, i=12.

—00
If there are some parameter values (8, 1) € R? x R such that

Hi(B, ) =0,i=12,
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then z = ¢ is a solution of (4.1) and hence the perturbed system (1.4) has a homoclinic orbit
x =y + ¢, where ¢ is given in (4.10). Let

H(B, )= (Hi(B, 1), H2(B, 1)).
Through direct calculations, we can prove the following lemma.

Lemma 4.4. For i, p, q € {1, 2}, the function H(B, ) has the following properties:

(i) If there are some (B, 1) € R? x R such that H(B, i) =0, then ¢ is a solution of (4.1);
0H;
(ii) H;(0,0) =0, —(0,0) =0;

By
+o0
oo 07H 2
(iti) by, = %, aﬁq( 0)= /(%’(I)»D Fr@)up@®uy(t))dt
+00 -
(iv) a; = 5 i = /(Wi(t),g(y(t),O, 1))dt.

Let M : R? x R — R? be given by

M(ﬂs /'L) = (Ml(ﬂv /’L)s Mz(ﬂv M)),

where M; (B, u) = % B ;10 B + a; ;v contains the lowest order terms of H;(f, i). Compare this
with (2.6). If we let a; = —a; /2, then the simple solutions of (2.6) are the simple solutions
of M(B, ) = 0. From the discussions in Theorems 3.4, 3.11 and 3.12 of Section 3, for some
fixed u, Eq. (2.6) have four simple solutions B (1) < By “ Hence /3(1) ey /3(()4) are the simple
zeros of M (B, ).

Lemma 4.5. There are some fixed (o such that M (B, (o) has four simple zeros ﬁ(l) ey ﬂ(()4).
For each f = ﬂgj), 1 < j <4, there exist an open region I; C R containing zero and differen-
tiable function, w; : 1; — R? such that w;(0) =0, and H(s(ﬂ(gj) +wj(s)), s20) =0 fors € I;
and s # 0.

Proof. Since ﬂ(j) are simple solutions, we have M(ﬂ(j) o) =0and Dg M(ﬂ(j) Ho)isa2x2
nonsingular matrix. For each = /3(] ) j=1,2,3,4,define a C? function W : R* x R+ R? by

SLzH(S(ﬂ(()j) +x),s2up), fors#0,

Wi(x,s)= .
M(ﬁ(()j)-i-x,uo), for s = 0.

Clearly, H = 0 if and only if W = 0 for s 7 0. Through direct calculations, we have W(0,0) =0
and D, W(0,0) = Dg M(ﬂ(()j), o) is a nonsingular matrix. By the implicit function theorem there
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exist an open region /; C R containing zero and a differentiable functions, w; : I; — R? with
;(0) =0 such that W(wj(s),s) =0 for s € I;. Hence we have

H(s(B) + @;(5)), s> 110) =0 for s #0.

The proof has been completed. O

By Lemma 4.5, the bifurcation function H vanishes at § = s(ﬂ(()j) +wj(s)) and u = szuo.
Then system (4.1) has the solution ¢ (8, 1). Hence system (1.4) has four homoclinic solutions
given by

v 0=y + ZS(ﬂ(” +0jp()up (1)

p=1

+K(I = P)Z(dsBY + w;(5)), 52 10), s> 10) (1),
forO#sel;, j=1,...,4. Clearly, limyo 3" (1) =y (t).
5. The transversalities

If all the four homoclinic solutions y(] ) are transverse, then the periodic system (1.4) has

four transverse homoclinic solution. Hence the periodic map of system (1.4) has four horseshoe
()

chaotic motions. By Shadowing Lemma in [16], to prove the transversality of y,’’ suffices to
prove Eq. (5.3) has no nonzero bounded solution.
Through calculations, we have
(J)
8)/
Z Bl up. (5.1)

Since y(J ) is a solution of (1.4) with = s% 10, we get by substituting y(j ) into (1.4) that

7w = f ) + 52 0g (1 5o, ).
Differentiating with respect to 7, we have
7 =Df ) + s20D1g (520, 019 + 2o Dsg 17 2o, 1) (52)
The variational equation of (1.4) along ys(j ) is
u=[Df(y)+ G()]u, (5.3)

where

G(s)=Df () = DF () + s2uoD1g (v, %o, ).
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We now prove that the variational equation (5.3) has no nonzero bounded solutions. It is easy to
check that

G(0) =

—|g o= Zﬁ(’)sz(y)up- (5.4)

Applying the projections P and (I — P) on Eq. (5.3), we have

u=Df(y)u+ I — P)G(s)u, (5.5)
0=PG(s)u. (5.6)

The general bounded solution u* of (5.5) has the following form

2
wt = "ngug + K(I — P)G(s)u*,
g=1

where 7, € R. Since G(0) = 0, there exists a small region [ around zero such that
(I — K(I — P)G(s)) is invertible for s € 1. We get

2
w=[1—K(I—=P)GE)]"Y nguy forsel.
g=1

Substituting u = u* into Eq. (5.6), we have

2
0=PGE — KU~ PYGEI™Y  nqu
g=1

2 +00 5
=0 [ Wi GO = KU = PG Y g )ds

g=1

1=
+00

Z Ving / Vi, G — K(I — P)G($)] " ug)ds

i,q=1

= (Y1, Y2) V(G () (1, n2),

where matrix V(G (s)) is given by V(G (s)) = [vi4(s)]2x2 and

Vig(s) = / (Vi, G — KU — P)G(s)]fluq)dt. 5.7)
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Note that ¥, ¥ are linearly independent. If we can prove that V(G (s)) is a nonsingular matrix,
then n; = 72 = 0. Thus the only bounded solution for the linear variational equation along ys(i)
is u* = 0. The Shadowing Lemma implies that ys(i) is a transverse homoclinic solution of (1.4)
and its periodic map exhibits chaotic motion.

It remains to show V (G(s)) is nonsingular. By (5.4) and (5.7), we have v;4(0) = 0 and

oy,
= Zﬁ(” / (Wi, D* (¥ )ugup)dt

p=1 0

2
Z BB = (ﬂ(” 140)).

We have the following approximation of v;,(s):

Vig(s) =s Zb(’) B + 0(s?), (5.8)

where i, g = 1, 2. Therefore

(M1, M)
a(Bi1, B2)
=52 det(D/gM(ﬂ(()j), o)) + 0(s%).

det(V(G(s))) = 5° det( 8y, Mo)) +0(s)

Note that Dg M (ﬂ(j ) o) is nonsingular. Then there exists a region f I c I such that V(G (s))

()

is nonsingular when 0 # s € I. Then the variational equation along ;" has no nonzero bounded

solutions. So 7 i

chaotic motion.

is a transverse homoclinic solution of (1.4) and its periodic map exhibits
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