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Synopsis
A function space approach is employed to obtain bifurcation functions for which the zeros correspond
to the occurrence of periodic or aperiodic solutions near heteroclinic or homaclinic cycles. The
bifurcation function for the existence of homoclinic solutions is the limiting case where the period is
infinite. Examples include generalisations of Silnikovy’s main theorems and a retreatment of a

singularly perturbed delay differential equation.

1. Introduction

Let g(f) be a solution of an autonomous differential equation
x(1) = fx(0), 1) 1.1)

that is homoclinic to a hyperbolic equilibrium p when the parameter [ = 0. In an
influential series of papers, Silnikov [21-24] studied periodic and aperiodic
solutions near the orbit of g(f), both for u =0 and for u near 0. Silnikov’s work
has been carried on by Blazguez [1], Chow and Deng [3], and Walther [29] to
infinite dimensional spaces.

All these authors obtain their results by studying Poincaré maps both inside a
neighbourhood of the equilibrium p and outside that neighbourhood but near the
orbit of q(t) and then matching the two maps. Our main goal in this paper is to
provide an alternate approach that uses function spaces 10 analyse a linear
variational equation around the solution g(t) and then uses the Liapunov-
Schmidt method to obtain bifurcation functions to the problem. The function
space approach to homoclinic and heteroclinic bifurcation problems has been
extensively developed following the original works of Chow, Hale and Mallet-
Paret [7], Kirchgassner [26], Mielke [27], Renardy (28], and Palmer {18]. Our
contribution is to extend this approach so that it also deals with nearby periodic
and aperiodic solutions.

Let us briefly indicate how our approach works. Let = be an (n — 1)-plane
through ¢(0) that is transverse to g(0). We fix a large number @ >0 and try to
find u=0 and x(1), —~0w == 0, such that x(r) satisfies (1.1), x(0) €Z, and
x(—w)=x(w). If we write x(t)=q(t) +z(1), ~0=t=w, then z(t) satisfies a
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weakly nonlinear boundary value problem of the form

Z([) - Dxf(q([)P O)Z(t) = g(Z(!), Y, t)r

z{(w) - z(-w)=b, (12)

where b =g(—w) — q(w) is known. We now assume that the tangent spaces to
the stable and unstable manifolds of p have only a one-dimensional intersection
along q(¢). Then we can construct a real valued bifurcation function G(w, u),
defined for large w and small y, such that the boundary value problem (1.2) has a
small solution z(¢) if and only if G(w, u) =0. As w— =, G(w, u) approaches a
function G(%, u) that is zero if and only if (1.1) has a homoclinic orbit near g(¢).
Thus G(, u) is the well-known bifurcation function for homoclinic orbits. It is
known that

Gl ) =1 [ v(OD.F(@(), 0)di + OQP)

where () is a bounded solution of the adjoint equation

2(1) + {D:f(q(»), 0)}*z(1) = 0.

(¢) is unique up to scalar multiple. A careful study shows that

G(w, p) = ¥p(w)g(-w) - y(-w)g(w) +u f_: w(*)D,f(q(¢), 0) dt + small terms.

The integral term shows how the perturbation of the distance of the stable and
unstable manifolds enters the problem. The boundary terms show how the un-
stable and stable eigenvalues enter the problem. The sign change of y(w)q(—w)
and y¥(—w)q(w) also shows how the stable and unstable manifold are twisted
along their common intersection g(¢), an idea that played important roles in [25],
[14], and [4]. All the notions mentioned above are known to many investigators,
but here we bring them together in a compact form.

Another merit of our approach is that it has a clear geometric interpretation. It
is well-known that the bifurcation function G{w, u) measures the distance
between the unstable manifold W* and the stable manifold W* of p(u) along a
transverse direction, cf. [9]. Our bifurcation function G(w, ) also measures the
jump of a piecewise continuous solution x(¢) for (1.1) along the same direction.
In this sense G(w, p) is a natural generalisation of G(x, u).

Our approach is sufficiently general so that it also applies to periodic and
aperiodic solutions near heteroclinic cycles, and to delay differential equations.
The key examples treated in this paper include generalisations of Silnikov’s three
theorems — the existence of a unique periodic solution [23], infinitely many
periodic solutions [20, 21}, and uncountably many aperiodic solutions [24], as well
as a complete reproof of the result of [16, 17] concerning a singularly perturbed
differential-difference equation.

We shall now make some remarks on the organisation of this paper. In order to
obtain a theory that applies to both homoclinic solutions and heteroclinic cycles,
and to both periodic and aperiodic solutions, we shall develop our theory for
heteroclinic chains. A sequence of solutions {g;(f)};cz of an autonomous
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differential- equation--is-called a- heteroclinic. chain_if there is a sequence of _

equilibria {p;}iez such that for every i, lim g;(t)=p; and lim gq;(t) =pis1.

In Section 2 we shall develop the linear theory that we need. The theory is
designed to be applicable to both ordinary and delay differential equations, so the
reader interested only in ordinary differential equations may feel the presentation
is somewhat unnatural. We have tried to make the presentation intelligible to
such a reader while avoiding the necessity of redoing the theory for delay
equations. In Section 3 we present results concerning solutions near a heteroclinic
chain. In Section 4 we study periodic and aperiodic solutions near a homoclinic
solution. (The results in this section are new since our assumptions are weaker
than Silnikov’s.) In Section 5 we study a singularly perturbed differential-
difference equation &x = —x(¢) +f(x(t - 1)) that admits a heteroclinic cycle after
some proper rescaling. We show that there is a periodic solution near the
heteroclinic cycle. This implies the existence of a square wave-like solution for
the singularly perturbed equation when &> 0 is small.

The method described in this paper also extends to other types of heteroclinic
or homoclinic bifurcations where the heteroclinic chain is not doubly infinite, for
example, the bifurcation phenomena indicated in [14, Figure 0.1-0.4). See also
[5,6]. To treat those problems, a finite chain of length 2 should be used and we
should look for solutions x;(2), —* == w, and x(1), —w =t =, for (1.1) with
the matching condition x,(@) = xz(—w). A system of two bifurcation functions
Gi{w, ), i=1,2 can be obtained. In particular, for the case indicated in [14,
Figure 0.4], we can easily find that resonance of principal eigenvalues and a twist
of the intersections of W* and W* are necessary for the homoclinic doubling to
occur. See [25], (14], and [4] for scme details as well as more complete
references. Systems with periodic or almost periodic perturbations can also be
handled by our method. However, we have decided to restrict this paper to

bifurcations of infinite chains and to autonomous differential exquations forclarity————

2. System of linear variational equations with discontinuity at boundaries

Throughout this paper & and X are used to denote the range and kernel of an
operator. A two parameter family of linear bounded operators T(z, s), t=sin a
Banach space X is called an evolution operator if it is strongly continuous in ¢ and
s, and satisfies the semigroup properties: T'(t, ) =1I; T(t, 0) = T(t, s)T(s, o) for
t=sZ 0. T(t, 5) is said to have an exponential dichotomy on an interval I with a
constant K=0 and an exponent >0 if there are projections Pi(s) and
P,(s)=1I— P,(s), s €I, strongly continuous in s and

(i) T, s)P(s)=P()T(t,3), t=sinl;
(ii) T, s): RP.(s)— RP,(1) is an isomorphism and Tf(s, ): RP,(t)— RP,(s)
is defined as the inverse of T(t, 5)|arcy

(iii) [T, S)P(S)| = Ke™ ™, tZs, in I;

(iv) |T(s, )P(O)| = Ke™®¢™, 125, in 1.

RP.(r) and RP,(t) are called the stable and unstable invariant subspaces of
T(t, s). We assume that &P, (¢) is finite dimensional. This covers many important
cases like ODEs, parabolic PDEs and delay differential equations.
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L&t T*(s, 1) be the-adjoint-of T(ts), i€ = -~ — e — o -
{x*, T(t, 5)x) =(T"C, Nx* x), xeX, x*eX*

T*(s, 1) is a linear bounded operator, satisfies the semigroup properties for s
in J, and is weak* continuous ins and ¢. T*(s, 1) has an exponential dichotomy on
1, with the projections P*(s) and Pj(s) being the adjoint operators of P,(s) and
P.(s).

(i)* T*(s, OPI(1) = PXs)T*(s, 1), s=¢,in [} .

(ii)* T*(s, 0): RPL(D— RP:(s) is an isomorphism and T*(t, 5): RPL(s)—

RPZ(t) is defined as the inverse of T*(s, )l arun:

Gii)* |T*(s, OPT(OI= Ke o=, s=¢, in [;

(iv)* |T*(t, )P = Ke=*¢=9, s=¢t in L

In this paper T(t, s) comes from the linearisation of homoclinic or heteroclinic
solutions of ODEs or delay differential equations. Let [T(z, —1)]7'RP.(7) be the
pre-image of RP,(7) under T(7, —7). We assume throughout the paper that

=t

(A) T(1,s) has exponential dichotomies on (==, -1] and [7, +w) where
£>0 is a constant. Also, dim RP,(—7)=dim RP,(t)=d*. RP(—T)D
[T(r, —D)] ' RB(7) is one-dimensional, spanned by @o#0.
Remark 2.1. The condition in Hypothesis (A) cannot be replaced by a
condition that T(z, —7)RP.(—7)N RP,(t) is one-dimensional. In the case of a
delay equation, it is possible that @o#0 but T(z, ~T)@o=0.

Consider a linear bounded operator ¥: RP,(—T) X RP(D)— X, F: (4, U)X,
x =jv—T(1, —1)j1. (2.0

Here RP,(—1) and RP(7) are Banach spaces with norms induced from X;j;and
j, are the natural embeddings from RP(r) and RP,(—1) into X. Let x* e X™*.

Now,
(x*, x) = {jix*, v) — (2 T*(=7, O)x%, u).

Thus, F*: X*— RP;(—7) X RPX(z), F*x* =(—j3T*(-7, )7, jix*).

_ Lemma 22. F is Fredholm with index F=0. X% and XF* are both
one-dimensional. RF is of codimension one.

HF = {(u, v) | u = Eqo, v =JT'T(%, —D)izu, E€RY;
HF* = {Epo| Yo RPL(), T*(—7, T)Yo€ AP} (1), E€R};
AF = (x| (o, x) =0}.
Proof. ¥ is a compact perturbation of the Fredholm operator
x=jv+0.u

From (A), the index of the latter is d* —d* =0. Therefore & is Fredholm with
the same index (see [18]). From (A) again, H%F is one-dimensional. All the other
assertions follow easily.

Let AeX with (¢, AY=1. Then A®RF =X Let 0,>7, w,> 7, and
J=[-w;, w,]. Let E (/) be the Banach space of piecewise continuous functions in
J, with a-possible jump at = T. E(J) is equipped with the sup norm. Let E(J, A)
be the subspace of E(J) which consists of piecewise continuous functions with a
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. _possible jump along_the direction of A at t=1, i.e. x(r)e E(J, A) if x(v7)—

x(t*)=8A, EeR. Here x(v7)= lim x(¢t) and x(v*)= lim x(¢). For he

I<T,i—T (>T (=7

E(J) and 0= 7, define the weighted norm as
g
lally = sup (2 IA()|(e™ + e 1170) 1),
ted

Obviously |lall, Z1lklle. Since woe RP;(tr) and T*(—v, 7)o € RPI(—7),
w(s)dé[T"(s, 7)1, decays exponentially as s — +o. Let ¢ € X* with (9, o) #0.
We now consider the integral equation

x(t) = T(t, o)x(0) + J’ T(t, s)h(s)ds, 0=t inJ. (2.1)

x(t) is said to be a solution of (2.1) if x: /— X is continuous and satisfies (2.1) for
all 0=tinJ. Also, x(2) is said to be a piecewise continuous solution of (2.1) with
a possible jump at ¢ = 7 if x(r) € E(J) and satisfies (2.1) in [~ o, 7) and (7, w,}.

LemMa 2.3. For @, € RP,(—w,), @€ RP.(w,) and h e E(J), equation (2.1)
has a unique piecewise continuous solution x € E(J, A) with F(—w,)x(—w,) = ¢,,
P(wy)x(w;) = @, and (¢, x(—7)) =0. Let x(z7) — x(z7) = EA, then

§= J’_“” (9(s), h(9)) ds + (Y(~ 1), @1} — (Y(@2), @2). (2.2)

Moreover, we have the following estimates:
llxll, = Cligal + @2l + llAll,), 0=n<a; (2.3)
|| + |P.(=)x (= )] + |P(2)x(T)| -
S C(lgile™ ™ + |@ale™ > + ||l (7" +e7™); (2.4)
|P,(02)x (@)l S C||hllq + | @ale ™92 + | g,le 202, (2.5)

[P~ w)x(=@)| = C(llhllo + |@ile™ 2% + |@yle™ (1<), (2.6) -

Here the constants C, not necessarily equal, do not depend on w, or w,.
The solution x(t) will be denoted by x(t) = Z(t; @1, @2, h, w,, w,), while & is
denoted by & = E(@,, @2, h, w,, w,).

Proof. Projecting (2.1) into the stable and the unstable spaces, we have

PR = [ T(5, )PsIAGs) d5 + T(2, @),

P-D)x(=7) = [ T(=1, )Ps)h(s) ds + T(~1, —w,)gr.

We try to find @; € RP,(—71), ¢s€ RP,(7) and § € R such that
@s—T(z, —0)@5= j T (7, s)P.(s)h(s) ds + J T(t, s)h(s) ds
+ J’ T(z, s)P.(s)h(s) ds

+T(7, —w)pr— T(7, w)p, — EA. 27
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The left-hand side of (2.7) is the Fredholm operator %: ¢, X @4— X studied in

Lemma 2.2. The right-hand side is in RF if
E = <V’o,

-t

T(z, 5)P.(s)h(s) ds) + (%, j_ (s, s)h(s) ds>

—wy

+ <1Po: j“” T(z, s)P.(s)h(s) d3> + (o, T(z, —w)@1) — (¥o, T(, w2)@s).

This is equivalent to (2.2) after some simplification, using the definition of y(s)
and the property that yge RP;(t) and T*(—71, 7)yoe RP}(—1).

Let § = P, + P,, where ¢, € RP:(—1) and P, € RP;(—71). Also, {(P., o) =
(9P, o) #0. From the general property of Fredholm operators, (2.7) has a
unique solution (@3, i) such that (,, @3) =0, if (2.2) holds. Let the solution
of (2.7) be @3 = @3+ L{@o and @, = @i+ LT (v, —T)@o, { € R. The parameter § is
determined by the condition

(Pu, @3) + {Ps, B(—7)x(=7)) =0, (2.8)
using the fact that (9,, @) #0. Define x(t), t € [~w,, ®,] by

X0 =T0 ~0)@ + T Ops+ [ T 5)BE(s) ds

[ Te RO ds, —oSi5
x()=T(, —t)x(—1)+ Jﬂ T, Hh(s)ds, —-t=t1<T,

x(8) = T(t, 02)p2 + T(t, T)@s + j ' T(¢, s)P.(s)h(s) ds

+ j T(t, s)P.(s)h(s)ds, t=t=w,.
W

It follows that the restriction of x(f) on [—w,, 7) and (7, w,] satisfies (2.1) on
the indicated intervals. From (2.7) the jump at t =t is EA. Moreover, it can be
verified that P,(—t)x(—7) = @5 and P,(t)x(7) = @,. Therefore {($, x(—7)) =0 by
virtue of (2.8). We conclude that x(t) = Z(t; @1, @2, h, @, w,) is the desired
solution asserted by the lemma with the jump £A, where &=
Z(@1, @2, b, 0y, ;) is given by (2.2).

Observe that [(t)| =1 [|h]l,(e™ "+ + ¢~7®2=)) and

sz (e~M@*) 4 gD gr < Ce™ ™ + €7 197), 0=n<o

—a

Thus from (2.2) and |@(s)| = Ce *"!, we have that |§| is bounded by the
right-hand side of (2.4). Similarly, the right-hand side of (2.7) is bounded by the
right-hand side of (2.4) with possibly a different C>0. Since ' is bounded
from RF 10 XF* = {u, v) | u € RP,(—7), v € RP,(7), {P, u) =0}, we have that
|@3| + | @il is bounded by the right-hand side of (2.4). From (2.8) it is clear that
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I¢| is bounded by C |P.(=7)x(—7)|, and the latter is also bounded by the
right-hand side of (2.4). Estimate (2.4) now follows easily. Estimate (2.3) follows
from (2.4) and the definition of x(t). Observe that

P—w)x(-@) = T(-0, —0@s+ | T(-ww RE) &

-T

Estimate (2.6) then follows from (2.4). The proof of (2.5) is similar to (2.6). O

The following corollary is a useful tool in deriving bifuration functions of
homoclinic solutions, cf. [18] and [15] where T(z, s) has exponential dichotomies
on (—,0] and [0, +»). A proof for the case that T(t, s) only has exponential
dichotomies on (=, —t} and [z, +®), 7>0, was given in [11] using a much
involved argument.

CoROLLARY 2.4. Let h € E(R). Then the integral equation (2.1) has a unique
piecewise continuous solution x in E(R, A), with {, x(—7))=0. Let x(z7) -
x(t*) = EA; then

g=[ (v, ) s 2.9

Proof. Let @(—w) and @-(w) be any bounded functions for w21 Let
w—w, cearly Z(@1, P2, b, 0, ©)= [Z= (P(s), h(s))ds. Let JcR be any
bounded interval, and let 0 <7 < «. From (2.3) (; @1, P2, h, 0, ®) approaches
a limit x(¢) uniformly on J as @ —>. Details will not be given here but can be
supplied by an argument similar to that in the proof of Theorem 4.2. Note that
x(t) is defined for all teR and satisfies (2.1) with the desired supplementary
conditions; x(¢f) does not depend on the choice of @,(—w) or @,(w), and this
implies the uniqueness of x(£). ’ .

We now state the main result of. this section. Consider the system of integral

equations, each defined on [—w;, wiv1), i€Z, with some jump boundary
conditions,

x:(t) = T'(¢, o)xi(0) + J’ Ti(t, s)hi(s)ds, —w;Z2OSIE Wiy, (2.10)

xi—a(wi) — xi(—w;) =b; (2.11)

We assume that the following hypotheses are valid, where all the parameters
without index i € Z do not depend on i. '

(A,) T'(s, s) has exponential dichotomies on (=, —7] and [z, +) for some
7> 0, with projections Py(¢) and Pi(t), exponent « and constant K. The
dimension of RPL(t) is d*.

(A;) RP(~7)N[T(z, —1)] 'RPY7) is one-dimensional, spanned by @;#0.
Here again [T(t, —7)]'®P(7) denotes the pre-image of ®Pi(1).

Let §; € X* and B >0, with the property that |{;, @)1= B |¥il l@:] >0 for all
i eZ. Define % as we did for & in Lemma 2.2. (%, is one-dimensional. Define

(KF)* = {(u, v) |ue RP,(-7) and v e RPi(t), (P;, u)=0}. From (A;) and
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Lemma 2.2, & is Fredholm with index & = 0. X%/ is one-dimensional, spanned
by v, with |y]=1. Let y,(s)=T*(s, 1)y;. Let A, e X be complementary to
RF. (i, A;) =1 and |A;|=K,, where K; 21 is a constant. For any subspaces
X, X X with X, @ X; =X, let P(X,, X,) be the projection operator with the
range being X, and the kernel X,.

(A;) There is a constant @ > 7 and a constant M 2 1 such that for w; 2 @ and
ieZ,
RP(-w,) ® RP () =X,
and |P(RP Y(w;), RP{(-w))| =M.
(As) (Uniformity assumptions with respect to i € Z) The constants «, K, B, K,

and M do not depend on i€ Z. ¥': R% — (¥F)* is uniformly bounded
with respect to i e Z.

It can be shown that |{s)| = Ce™ "™ for all s e R, i € Z. The constant C does
not depend on i. In the sequel any sequence indexed by i € Z will be denoted by a
bold faced letter for brevity, e.g. ® = {@;};.z.

THEOREM 2.5. There is a constant & = @ with the following property. If w; Z &
for all i e Z, then there exists a unique piecewise continuous solution x(t) for system
(2.10) and (2.11), with x; € E([~;, w;,4], A)) and (§;, x,(—7)) =0. Let x,(7) —
x;(t¥) =& A;; then

Ei = J’“’i‘.'(wi(s)) ht(s)) dS + <wi(_m,’), xi(—(u;)) - <1P[(wl+l)) xi(wn-),))- (2 12)

Let <Pi1 = Pi‘(_wi)xi(_wi) and (P£= Pfa(wi-c-l)xi(wiﬂ)- Then
lpa] + [l = Cy(Ib| + [|b[o); (2.13)
il = Cao(Ib] + (Ihllo + [|Adl,), 0=n<e. (2.14)

Here |:| = sup (|41}, similarly for |ga| and [b]. lIhl, = sup {[Aul,}, similarly for

ixll,- Whill, is defined after Lemma 2.2, but over J,=[-w,;, w;,,] instead of
[_wlx wZ]'

The solution x(t) = {xi(t)},ez will be denoted by x,(t) = X;(t; b, h, ®) while &, is
denoted by E; =T (b, h, ).

Proof. We try to find ot € RP{(—w;) and _ @5 € RP,(w;+1), i€Z such that
Z;-1(w;; o7 @il by, 0y, 0) — #(— o4 9, 05k, @), w)=b;, i€Z, or
equivalently

@5+ P (0o (0) — @5 — Pu(—0)%(-w)=b,, ieZ
Here, %(¢) is abbreviated from &(r; @}, @3, h;, w;, w;4,). Using projections, we
have

@y = P(RP(—w;), P (w)H{ P (w) - (@) — P~ 0)&(—w;) ~ b},

(P; = P(@Pi(wi+1), %P;+‘(-wi+l)){bi+l = RP(; 1) Z(@i41) (2.15)

+ P (= 0,01) %1 (—0,41)}

— e ——————
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From (2.5) and (2.6), if @ is large and @;= & for all i €Z, then (2.15) is a
contraction map from [z RP{—w;) X [licz RP.(w;) into itself. Therefore
(2.15) has a unique solution @} = ®i(b, h, w) and @)= ®i(b,h, ®), i € Z. From
(2.5) and (2.6) again we can show that (2.13) is valid. Define x;(t)=
Xi(t; b, h, ©) = Z(t; D, 5, by, w;, w,4y). x(1) is the desired solution for system
(2.10) and (2.11). (2.14) follows from (2.3) and (2.13). Define & =Ti(b,h,0) =
E(D, B, by, wi, w;4,). Obviously & satisfies (2.12).

Lemma 2.6. If |h(0) = € [x.(0)l, t € [~ w;, w;11], i € Z, then for each 0<n < a,

lIxll, = CIb|, (2.16)
loil + g = C by, (2.17)
lIxll, = CUe@il + 1 92l), (2.16')

and
@il + @271 = C{ibd + (1977 + @al)(e ™™ + e ™ + e~™+)}  (2.18)
provided that 0 < € is sufficiently small.

Proof. From (2.14), and [|h]l, = € |Ix]l,, (2.16) follows if ¢ is sufficiently small
so that C,e <3. (2.17) follows from (2.13) and (2.16).
Note that (2.3) implies (2.16)". (2.4) implies that
|@5] + | @4l = C{l@ile™ " + | @ale ™' + (I@i] + |@2l)(e ™™ + e~ ")}
= C(l@\ + @) (™™ + e, (2.19)

where @4=Pi(—1)x,(—7) and @i=Pi{7)x.(r). From the definition of x(t),
te[—w; —t], we have

lxi|C(-a{,. -0 = C(19} + 195 + Rl g-w;, —)
= C(l@il + | @ol(e™ " + e ™)), (2.20)
Similarly
Xioilepew) = CUl@5 | + @77 (67" + 677, (2.21)

Here Cla, b] is the space of continuous functions defined on [a, b] with the
sup norm | . |cz»)- By (2.15) and (2.19), we then have

|<P'|| + I‘P;_“ = C(|bi + IPi_l(wi)xi-l(wi)l + IPL("wi)xi(‘wi)[)

s clii+ |T‘-‘(wf, g+ [ TN @y, )P 6 (s) ds

+|rcan —nes+ [ T, 9P o]}
= C{|b',| + (l(pil-l| + |(p§|)(e"’"’"" + 7N 4 g T AU g T AW

+ e(lxicilcfr o) + 1%l cpmwi-e) }
= C{lbl + (1917"| + | @2) (™7t + e 71 4 e 77}
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3. A general result on the bifuraction of heteroclinic chains

Consider the ordinary differential equation (1.1) where xeR", peM, M is a
Banach space of parameters, f:R"XM—R" is Ck, k=2 DY, li|S2 is
uniformly bounded for x € 0 and |u| = po, O R" is an open subset. When p =0
there is a heteroclinic chain consisting of a sequence of equilibria {p;};cz, and a
sequence of heteroclinic solutions {g:()}iez with gi(t)—p; as t— — and
gi(t)= pisy as t— +o. Assume that the orbit of g,(t), i € Z, together with its
g-neighbourhood, is contained in 0.

Let Z; be a codimension 1 plane through ¢,(—7) and is transverse to g.(—1),
£>0is a constant. There is'a 9; € R" such that =, = {x | (9;, x — q:(-1)) =0}.
Let x(¢) be a solution that orbitally lies near the heteroclinic chain. Denote the
time spent by x(t) between Z,_, and Z; by 2w;. We intend to derive conditions on
o = {©;};ez and p so that the existence of such solution x(¢) will be possible. Let
the orbit of x(¢) be the union of those of x,(¢), each defined on ¢ € [—w;, wi4) and
subject to the condition x,(—7)€Z;; that is, there exists f; € R such that
x(—t+4)eZ; and x(t) =x(t+¢) for r e [~ wisi)

The reader may have noticed that it is more natural to set t=0 as in the
Introduction. The reason we set 7 >0 is to unify the notation with that to be used
in Section 5, where t is a large positive constant.

Let x;(t)=qi(t) +z(t), —0;St= Wi, i€l {z:}:iez satisfies a variational
system with boundary conditions at tw;, i € Z

2(t) — Ai(0)z:(t) = gi(z(0), 1, £),
zi(w) — z(—w;)=b;, (3.1)
(¥ 2(~0)) =0.

Here Ai(t)=D.f(@(),0), &(z 1 )=F(a0) +2, 1) — f(qi(t), 0) — Ai(D)z =
0(|u| + 1212, b; =qi(—w;) — gi-1(@;). The first equation of (3.1) is equivalent to

an integral equation
z(t) =z(0) + f Ti(t, 5)gi(zi(s), 4, ) ds, —w; ZEOSLIZ Wiar,

where T'(z, s) is the principal matrix solution of the homogeneous equation
2(0) = A (t)z() =0. (3.2)

Denote g:(g:(t), . t) by h(t). Equation (3.1) becomes a system studied in Section

Figure 3.1
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2. We state conditions on f so that the results in Section 2 can be used here.
Symbols without the index i do not depend on i € Z.

(By) f(pi, 0) =0 with [Re o{Dxf(p;, 0)}| Z > 0.
(B,) 4.(t) is the only bounded solution for the linear equation (3.2).

From (B,), T'(¢, s) has exponential dichotomies on (—%, —z] and [t, +). The
exponent can be any 0 <a < a,. From (B,), (A;) is satisfied with @, = ¢;(—1).
Define &, (X%)*, ., ¥i(s) and A; as in Section 2 for all i e Z We now assume
that (A,), (A;) and (A,) are satisfied. In particular, the exponent 0 < & < & and
the constant K(a) do not depend on i € Z, for example. Though most of these
assumptions can be derived from assumptions on f(x, 0), we shall not pursue this,
since they are clearly valid in the problems to be discussed in Sections 4 and 5.

THEOREM 3.1. Let (B,) and (B,) be satisfied. Let (A,), (As) and (A,) and all the
assumptions on T'(t, s), ¥i, @i, Vi, A; and %, as made in Theorem 2.5 be satisfied.
Then there are positive constants @, p, and €, with the following property. For any
sequence ® = {W;};ez With w;Z & and |u| = u,, there exists a unique piecewise
continuous solution x(t) for (3.1) that orbitally lies in a €,-neighbourhood of q(t).
The time spent by x(t) between Z,_, and 2, is 2w;. x(t) has infinitely many jumps of
the form E:A;, & €R, each occurring at the time 2t after it meets Z,. Moreover, if
x(—t+14)eZ; and x,(t) = qi(t) + z;(t) = x(¢ + ;) for t € [—w;, Wisy), then

Wi e

g = [ p)8 s, 1) ds + i~ 0)7(~03) — Pi(@a) 7 @irr). (3.3)

—w;

Denote the solution by z=ZJ{t;o,u) and &=Glo,u). Z(.;m, p)e
E((-w;, wi41), A)) and G{w, u) € R are C* in p for fixed w. Moreover

1Zll eq-wrwap = Cle™* + |ul), (@ =inf{w:}icz), (3.9)
YA
o =Y |if . 3.5)
ou E([—ay, 1)) op

Here

X €0, 14l S o).

e 75

Proof. The norms for functions will be sup norms in this prcof. Since all the
hypotheses of Theorem 2.5 are satisfied, there exists @ >0 such that for each @
with w; Z @ and each h with h; € E([—w;, ©;41]), Xi(t; b, h, ©) can be defined as
in Theorem 2.5. It is clear that (3.1) has a solution z; € E([—w;, w;41], A)), i€ Z if
and only if

Z;(t) =Xi(t; b’ {gi(zi(')’ #: ')}isl; (l)), l € Z (36)

Let U, ,,={(z, 1) lzie E([-wi, 0;41), A), |z:] <&, |ul < u,}. The right-hand
side of (3.6) together with u =y is a C* mapping from Uy, ,, to itself, and is a
uniform contraction with respect to z, for |u| < u,. Therefore (3.6) has a unique
fixed point {Z;(t; ®, u)}iez Which is C*: p—Tliz E((—w;, wis1), A). Let 0=

e ——— . — e~
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inf {@,}. From (3.6)

1Zil = C(b| + [{g(z(), pi, )})
SCe™ ™ +1Z,() + |u))
SC(e™™ +|ul),

Z)g|X 28 22, X o
dul 13g 32 au g aul

8X (z:(- .

For an estimate of EE’ see (2.14) with n = 0. Since Mg)’“’—) = O(lz,| + |ul), if
Z;

§1, then

w is sufficiently large and |u| is small, 3

X ¢
dg "oz

|a—Z|§c|$ gc[il.
ou u ou
Substituting h;(t) = 8,(Z(t; ®, u), u, t) into (2.12), we have (3.3). It is also

clear that Gy(®, p) is C* in u for each fixed w.
The following lemmas are useful in Section 4:

Lemma 3.2.
3G(w, - _ :
T )= [ pODLFa), D s + O™+ ) where 0= inf (a1}
Proof.
Giw, p) _ . OZ(-wio,pu) 3Z; )
on Y~ w)) EW Yi(wis1) M (C"-’1+1, w, u)

+ wl(s)[ngi(Zr’: u, S)DMZI(S; w0, .u) + Dugi(zi’ U, S)] ds.

The first two terms are clearly O(e™**) since D,Z,(- ; w, p) is uniformly bounded
for w; = & and |u| =y, (see (3.5)). The integral term can be rewritten as

00 (060, 0 s + O™+,
due to |D;g,(Z;, u, s)| = O(IZ;| + |u|) = O(e™** + [ul), see (3.4), and
D.gi(Z;, u, s) = D,f(q(s) + Z;, u) = D, f(qi(s), 0) + O(1Zi| + lul)
=D, f(qi(s), 0) + O(e™ + |u]),

and also that [2;! can be replaced by [*,, with an error of Ofe™**).

- —— - e _——n

e
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LemMa 3.3. Let 0<n<a. Then
Gi(w, 0) = —p,(—w)P(RPY~w,), RP. ()b - Wi @, )) P(RP U @;41),
RP(— wis1))bin
+ O{1yi(— )| (1* + [b] (6771 + 727 4 g72101))}
+ O{| (@)l (bixa* + [b] (€727 4 7271 4 g=2000-2))}
4 O{(1b;[? + 1bisa|* + D] (674791 4 @741 4 g4 e ~4nwie2))
X (7" 4 M)},

Proof. We shall use Lemma 2.6 with h;(t) = g(z(t), 0, 1) = O(|z(£)]*). From
(3.4) the hypothesis in Lemma 2.6 is valid if o =inf {w; |i € Z} is sufficiently

large.
From (2.15), we have
@} + P(RP(—w,), RPI(0))bi+195" = P(RPTH(w), RP(~w)bil
= C{IPT (w)zim (@it |Pu(—w)z(—w)l}

=cf [T, e+ | N 5) P i (24(6), 0, 5) |

— W,

+ [T~ 00+ [T 0, ) PUORG), 0,9 s

-t

S C{|b] (e " + e~ + ") ™" + |2 |Epr ) + 12 Ef-w 1}
= C{Jb] (721 + €721+ e 72) + @i + 195

< C{|bi? + |b] (721" + ¢ 721 + g ~21ien)}, (3.7)

Here we have used (2.18), (2.19), (2.20) and (2.21) and the fact b2 |b| if w is

large.
It can also be verified that

@iy

' 95)8(a(5), 0,5) ds

-y

iy
=C j e—nrl-ﬂ ||z,||3, (e—zn(w:ﬂ) + e—2n(m.-+1-S)) ds
—;

S Cllzll} (7 +e7™)
= C(IiP + | @) (e + e7™)
= C{Ibi + [biaaf*+ b (747 + €77
+ @ TNt 4 @ TINWIN2) ) (g TRV g7 IMINT) (3.8)
Here we have employed (2.16)' and (3.7). The desired result then follows from
(3.7) and (3.8).

I

L
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Lemma 3.4. Ler 0@ = (0P}, ,, j=1,2, be such that o2 d for iez,

. 1
j=12, and |0V - a),mlgﬁ for I—-NZi=[+N, where l is an integer. Then

Gi(0, 1) ~ G(0D, g)>0 as N— o,
provided that & >0 is sufficiently large' and |p| = u, is sufficiently small.
Proof. It suffices to set [=0. Let 0® = {0f);cz be defined as w® =
inf {w{", ®}. Then |0 - 0| 51% for —-N=i=N, j=1, 2. We shall give an

estimate on Gy(w®”, u) - Gy(w®, p). Let z{"(t) = Z,(t; Y, p) be as in Theorem
3.1. Let z{(r) be the restriction of z{)(¢) on [—0f, ©2,). Then

2200 = X169, ((2090), 1, Vhiez 0), P2,
where b = (b}, , is defined by b =23 (0f) - Z(~wf). Let z()=
Z(t; @, p). Then

21(3)(t) =X,(t, b(3)1 {gi(zlp)(')i K, ')}iEZ’ w(B)), i€ Z’

where b= (6®},; and b =g, (—0®) - gi-(0f). Let Az(r)=:z®()-
z{(1). Then

Az(t) = X,(t; b — b, Ag, 0®),

Whel’e Ag = {Agi(t))iel Wlth Ag,(t) =gi(zl(3)(t): ”: t) _g,'(Z,«)(t), .u.- t)- If d) iS large
and g, is small, we have |Ag,(f)| S ¢ |Az;(t)] where £>0 can be arbitrarily small.
Therefore Lemma 2.6 applies. Let Ab, = b — b, Observe that

16D - b = lg (- o)~ q(- o) + 19:-1(0) — g, (V)|
+12f2(=0f) ~ 2= + |z_,(0f) - z,_ (0|

1
= O(IT/)’ -N=i=EN.

From (2.18) we then have
IAQY + 1A' S C{IAL] + (189S 7! + |AgY) ), ~NSisN

1 . .
S i+ (a0t + 1ag) 8] (39)

Here Ag}=P(—wf)Az(-0) and Agi= Pi(0;41)Az,(w;4;). 6=3e""® can
be arbitrarily small if & is large. From (2.17), |Aq)] + |Agy| S C, |AB|. Therefore
from (3.19) and by induction

@il + @i} = CN Y 1+Cé+.. + (C6)) + (C18Y*'C, |AD|
for -N+j=i=N-j 0=/=N.
Thus
@il + @ 1S Ci(1- C8) N~ + (C10)VC, | Ab|

1
~o(), -1sist
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1
From (2.16)', ||Az|l, = O(IT/) for i=—1,0. Since |Ago| = £ |Azy, it follows that

wf

G, 1) = G, ) = [ a(5)8g0(s) ds + 0 )
wf N

=O($)—->O, as No o,

Similarly we can show that Go(@®, u) — Gy(0®, u)—0 as N—=. The desired
result then follows.

4. Periodic and aperiodic solutions generated from a homoclinic orbit

Assume that equation (1.1) has a homoclinic solution x = g () asymptotic to an
equilibrium p =0 when p =0. Here u is real, f: R x R—R" is C* with k =2.
Throughout this section we assume

(H,) The equilibrium p = 0 is hyperbolic with |Re o{D,f(p, 0O} Z a>0.
(Hz) x = 4(¢) is the only bounded solution of the linear equation
2(t) = D.f(q(1), 0)x(r) =0. 4.1

Let Z be a codimension-1 plane, passing through g(—7) and transverse to
4(—t), where 7>0 is a constant. From (H,), there exist stable and unstable
manifolds W* and W* for the equilibrium x = p. The tangent spaces at x = q(7)
then span a codimension-1 subspace, TW¥q(r) + TW*q(t), of R" by virtue of
(Hz). Let AeR” be complementary to TW*g(r) + TW*g(r). Let o = {w:}icz
with ;> 0, i e Z

From (H,), (4.1) has exponential dichotomies on (—, —] and [, +). From
(H;), the adjoint equation

)+ Dxf(Q(’)’ 0)*x(r)=0

has a unique bounded solution x = y(t) up to scalar multiples. Without loss of
generality, let {y(t), A) = 1. We can prove the following general result:

. THEOREM 4.1. Assume that (H,) and (H;) are satisfied. Then there are positive
constants @, w, and &, with the following property. For any sequence w with
w;> & and |u| = p,, there exists a unique piecewise continuous solution x(t) of
(1.1) that orbitally lies in a &-neighbourhood of q(t). The time spent by x(t)
between two consecutive intersections with Z is 2w, i € Z. x(t) has infinitely many
Jjumps of the form EA, E eR, each occurring at the time 2t after it meets 3.
Moreover, if x(—t+1)eZ and x,(t) = q;(t) + 2(t) =x(t + 1,) for te [~ w;, ©;,,],
then

Wiy

&= Y(5)8(z,(s), 1, ) ds + Y(~ )z (— ;) = P(Wis1)2A @ 41)-
—ay
We shall denote the solution by z(t) = Z,(t; w, p) and & = G(w, ), i € Z. The
existence of a C' solution x(t) near the homoclinic orbit q(t) is characterised by the
condition Gw, u) =0 for all ie Z.

e v ———— e ——— e - .
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Proof. We can define a heteroclinic chain by setting ¢;(t) = q(¢), p; = p for all
€Z. There exists P € R™ such that = {x | (P, x —q(~1)) =0). Let =, =3,
B=v, W) =v(), A=A, @=4(-1), and A()=D,f(q(),0). Let
T'(1, s)=T(, s) be the principal matrix solution of equation (4.1). T'(¢, s) has
exponential dichotomies on (~w, —1] and [z, +). Define F =% and (XF)* as
in Section 2.

It is clear that all the hypotheses of Theorem 3.1 are satisfied. In particular, the
uniformity assumptions are trivially valid. The results of Theorem 4.1 follow from
the corresponding ones of Theorem 3.1 O

We now study the bifurcation of periodic solutions from the. homoclinic
solution ¢(¢). The following theorem describes a bifurcation function for the
existence of 2w periodic solutions near q(r). It also shows that the bifurcation
function for homoclinic solutions near g(t) is the limiting case as @ — .

TueoREM 4.2. Suppose that (H,) and (H,) are satisfied and thus Theorem 4.1
applies. Let w;=w > ® for allieZ. Then Z,(t; w, u) and Gi(o, ), now denoted
by Z(t; w, u) and G(w, p) for simplicity, do not depend on i. Moreover G(w, u)
is C* jointly in (w, ). The existence of a 2w periodic solution near the orbit of q(t)
is equivalent to the condition G(w, p)=0.

Let w—>. Then Z(t; w, u)— Z(t; %, u) uniformly for t on every compact
subset V<R, and G(w, p)—> G(o, u). For |u|Su,, there exists a unique
piecewise continuous solution x(t) = q(t) + Z(t, =, u) € E(R, A) that lies in an £
neighbourhood of the orbit of q(t), with the property that x(t)— p(u) as t— oo,
x(t) has a possible jump x(t7) — x(t*) = EA occurring at the time 21 after it meets
3. E=G(, p)=[Za Y(5)g(Z(s; =, u), p, s)ds. The existence of a homoclinic
solution for |u| = p, in an &, neighbourhood of q(t) is equivalent to G (o0, u)=0.

Proof. If w;=w then Z(t; », u) and ‘Gi(w, ) do not depend on i by the
uniqueness of Z; and G;. Therefore, if G(w, u) =0 then the solution x(¢) is 2w
periodic. We then show G(w, u) is C* in (w, u). Let v(t) e C*(R) such that
v(t)=0forte[—T—1, v+1] and v(t) =1 for t€ (—», =7 ~2] U [+ 2, ®). Let
() =x((1+ Bv()))). Clearly x,()=x(t) for te[-7—1,t+1]. Let x()e
E([-w, ], A] be a piecewise continuous solution for (1.1) with x(—w) = x(w),
then x(z7) — x(7%) = G(w, p)A. This implies x,(¢) € E([—w,, w,], A) is a piece-
wise continuous solution for equation

(1) = A+ B(v() + v (N (xu(0), 1), -~y St= ey, (4.2)

with x,(-@,) =x,(w,) where w =(1+ B)w,. x,(f) extends to reR by period
2w,. Let w, be fixed and B be in a neighbourhood of zero. Then ® is in
a neighbourhood of w,. For equation (4.2), applying the same argument as we
did to (1.1), we find that for each w2'®, |u|=u, and |B|=B,, (4.2) has a
unique 2w, periodic, piecewise continuous solution x1(6) = q(t) + z(r), with
(P, 21(=7)) =0 and x,(r7)—x,(r*) = G(B, u)A. Moreover, G(B, 1) is C* in
(B, u). (Recall that in theorem 3.1, G(w, p) is C* with respect to the parameter

u for each fixed w.) However, G(w, u)=G(B, u)= G(w—w— 1, p). Thus
1

G(w, p) is C* jointly in (w, ). The first part of the theorem has been proved.

— -
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Fixed {>®>0 and consider V = (=€ &) Let w,>¢ i= 1,2 and o=
inf {w,, w,}. Applying Lemma 2.3 to the interval [~w, @], we have forte V

Z(t; w;, p) = Z(t; P(~w)Z(—w; w;, ), Plw)Z(w; w;, p),
g(z(';wi’ #)’ K, ')) —w, (l)), i=1,2.

Denote Z(t; w,, u) — Z(t; w,, #) by Az(r) and 8(Z(s; wy, p), p, s) —
8(Z(s; wy, u), u, s) by Ag(s). We have

Iag(H =3 Az (s)ll,

if ||Az]lp is small, where IIll, is the weighted norm in E([~w, w]). Since
Z(t; @1, 92, h, —w, ) is linear in (@1, @2, h), we have

18zll, = 12(; P(-0)Az(-w), P(0)Az(w), Ag(), ~w, w),
= C(1az(-w)| + [Az(w)| + [1Ag]l,)
=2C(Az(- )] + [Az(w)));

|A2()) S4 [|Azll, (e 7™+ 4 gm0

Since |Az(~w)| + |Az(w)]| is uniformly bounded, [1Az]l, is bounded as w—» +,
For [f|=f, we have |Az(t))=0 as w =inf {w;, w;}—> +x.  Therefore.
lim Z(t; w, 1) exists for all teR since  is arbitrary. Denote the limit by

Z(t;, pu). Z(t;®, p) +q(t) is clearly a solution of (2.1) with a possible jump
along A at ¢t = 7. By the saddle point property of the hyperbolic equilibrium p(u),
Z(t;, u)+q(t)—>p(u) as t—> o It is then straightforward to verify that
G(w, u)= G(, y)as w— +». O

We now make a new hypothesis:

(Hs) JZ w()D,f(q(r), 0) di#0,

THEOREM 4.3. Suppose that (H,), (H,) and (Hs) are satisfied and thus Theorems
4.1 and 4.2 apply. Then there are positive constants @, w,, & and a C* function
o) {w>d}—{|lul<u) with G(w, i(w))=0. The 2w periodic solution
x()=q(t)+ Z(1t; 0, i(w)) tha orbitally lies in the ¢, neighbourhood of q(t) is
unique up to time translations.

Proof. From Lemma 3.2, there exists >0 such that if lu|<u, and w > @,
|D,G(w, p)] Z 8 >0. Therefore |G(w, tu;) - G(w, 0)] 2 4,6 >0. From Lemma
3.3 |G(w, 0)| = Ce 2", 0< o < ovy. Therefore G(w, u) is strictly monotone in
# € [—py, ;] and changes sign in that interval if @ is chosen even larger so that
IG(w, 0)| < ;6 for w>@®. From the Intermediate Value Theorem, for each
> @ there is a unique u = i(w) such that G(w, p(w)) =0 and |a(w)) <y, It
remains to prove that f(w) is C* Let wy> &, consider G(w, u)=0 in a
neighbourhood of (wy, f(w,)) and use the Implicit Function Theorem. 0O

Define the gap in the real part of o{D.f(p,0)} as Gap {o{D.f(p,0)}} =
min {|4, = A,}: 4,, &, € Re o{D,f (p, 0}, A;#1;}. Let 0< & <min {8, &y} where
6 = Gap {o{D.f(p, 0)}}.
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LemMA 4.4. There exists a solution §,(t), i=1,2 for the linear autonomous
equation x(t) — D.f(p, 0)x(¢) = 0 such that
lg() = g = o(1§:()1), (4.3)
as t— — for i =1 or t— +x for i =2. There also exists a solution ,(¢), i =1, 2
for the linear autonomous equation x(t) + D, f(p, 0)* x(t) = O such that
() — Y= C | 9i(e)le", (4.4)
ast— - fori=1ort— +o fori=2.

Proof. The proof of (4.4) will be left to the reader. Note that [13, Theorem
10.13.2] contains a related result. However, both the assumption and the
conclusion in that book are weaker than ours. We now show (4.3). Let P, be the
spectral projection of D, f(p,0) on the unstable space RP,. It is known that

Wi(p)— RP, is a dlffeomorphlsm with the inverse denoted by P;!: RP,—
Wie(p). Since Wi (p) is locally invariant under the flow of (1.1) for u =0,
equation (1.1) then induces a vector field on Wi.(p). In fact, if Bx(¢) = y (1), y(r)
satisfies the equation :
y(6)=P.f(PIly(1), 0). 4.5
Equation (4.5) is an autonomous ODE in ®P, with 0 being an unstable
equilibrium. From a theorem in [12], there is a C' diffeomorphism I + h: RP,—
RP, with h(0) =0, Dh(0) =0 such that (4.5) is equivalent to
)’(‘)—DPquf(P. O)DP y(t)
Here DB,: TWi (p)— @I__’u has an inverse DP;': RP,— TW{ (p). However, we
identify TWi,.(p) with RP,, thus
¥(€)=D:f(p, 0)y(r), y(t)e RE, (4.6)
We then let §,(t) = (I + h)°P.q(t) for —t>0 sufficiently large so that g(z) e
Wis(p). By the definition §,(¢) is a solution of (4.6).
g(t) = (I =1 = BIg()| + |k Pq(2)]
=0(lg(")*) + o(lg(1)])
=o0(l4.()).
Here we have employed the fact that |(I — B,)q(t)| = O(|P.q(t)?), for Wiee(p) is
tangent to RF,, and ~(0) =0, Dh(0) =0. The case i =2 can be proved similarly.

We now give a generalisation of Silnikov's work on the bifurcation of
homoclinic solutions to periodic solutions. Let

p =min {Re A| A€ oD, f(p, 0), Re A>0},
v=min {-Rei|ie oD,f(p, 0), Re A<0}.
Assume 0 < p = v. This implies ap = p. We need the following hypotheses:
(H4) lg(O} ~ Cre”* ¢}, t— —o and |@(t)] ~ Ce~ t}", t— +, where C; and
C, are positive constants, / and h are nonnegative integers.

(Hs) [y(-w)q(o) = p(o)g(-o)l/(I1y(-o)llg(o)] +|¢(w)| |g(-)]) does not

approach zero as o — +x.
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(H,) and (Hs) are generic by virtue of Lemma 4.4. If p <v one may drop the
term Y(—w)g(w) in (Hs).

Lemma 4.5. If (H,), (H,), (Hs) and (Hs) are satisfied, then there is 8 <0 such
that

G(w, ) = Y(-w)a(w) - Y(@)a(-0)+ 1 | (DG, 0)ds
+o(le” @+ 4 ul), as u—0, w— +o. 4.7
If (H,)—-(Hs) are all satisfied, then p = j(w) satisfies

u=W(@a(-0) - p(-0)a@)(|_$OD.S@), 0 ) +oe-em,

(4.8)
as w— +. If p <v, one can drop Y(—w)q(w) in (4.7) and (4.8).

Proof. |q(t) =pl=1q(t)|=C.e ™", teR, for any 0 < a < p, from Lemma 4.4.
Therefore, |D,f(q(¢), 0) — D, f(p, 0)| = C,e™*" as t— +oo. From [18, Lemma
3.4] we have that |P.(t) — P,| +|P,(t) = P,| £ C,e”*" as t— £, where P, and P,
are the spectral projections of D, f(p, 0) to the stable and unstable spaces. Based
on this, it is easy to prove that

|P(RP,(-w), RP,(w)) — P| +|P(RP(w), RP.(-w)) — B,| = C e,
for w > @. Observe that
q(-w)=Pq(-w)+ I - P)g(-w)
=P.q(-w)+ O(lq(-w)P),

by virtue of the fact that g(—w)e Wi(p) that is tangent to %P, Thus,
Pg(-w)=0(g(-w)I’) and Pg(-w)=q(-w)+O0(lq(~w)[). Similarly,
Pg(w)= O(lq(@)I* and Pg(w)=g(w)+ O(lg(w)|?). Choosing a sufficiently
close to p = a,, we can use Lemma 3.3 to conclude that
G(w, 0)= - y(-w)P(9(-w) - q(»)) - Y(w)P.(9(~ ) - g(w)) + 0(e~¢P*9)?)

= Y(~w)q(0) — Y(w)g(-w) +o(e”@**+9%), 4.9
where 6 >0 is a small constant. From Lemma 3.2,

G(w, u)-G(w,0)=D,G(w, 6u). u (0<6<1)
=[[ wonsaw, 0 d]u+ o tu + ). @10

Estimate (4.7) follows from (4.9) and (4.10). If (H,) is also valid, from Theorem
4.3, u= fi(w). Estimate (4.8) then follows easily from (4.7). O
From Lemma 4.4, we have )
P(-0)q(0) - P(0)g(—0) = §1(~ ©)§x(©) = Px(w)§\(~w)
+o(|y(-w)llg(@) +y(w)ig(-w)]) as w— <=

|
!
{
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Since solutions of linear equations with constant coefficients are linear combina-
tions of products of generalised eigenvectors and exponential-polynomial func-
tions, from (H,) and (H;) it is easy to see that

(- w)q(w) - P(0)g(-w) = e 0" O(w) + o(e~*w™),

where m 20 is an integer and ©(w) is a quasi-periodic function. In fact, ©(w) is
a sum of trigonometrical functions of period /8, where B is such that +p +if is
an eigenvalue of D, f(p, 0).

Treorem 4.6. (i) If (H,)-(H;) are satisfied and if inf|©(w)| >0, then the sign
of p(w), w>d is determined by the sign of the product of ©(w) and

Z=9(0)D,f(q(t), 0) dr. That is, bifurcation to periodic solution occurs only at
one side of u=0.

(ii) If (Hy), (Hy), (H,) and (H;) are satisfied and if inf O(w) <0 <sup O(w),
then there are positive constants L, & and p, with the following property. For each
(4| = w,, there is a constant ®(u)> &, @(u)— = as u—0, such that there exists a
solution  for G(w, u) =0 on each interval [& + L, & + (G+1)L), ifj20 and
&+ (j+ 1)L = @(u). In particular, if u =0 then @(u) = = and there exist infinitely
many periodic solutions for equation (1.1).

Proof. The assertion (i) follows from (4.8). To show (ii), solve y = ¢~@e+&%
and define @(u)=~-Inpu/(2p+ ) and ®(0)= +. Let d<w= @(p). Then
from (4.7)

G(w, p) = e 0" () + o(e~*“w™).

Let inf O(w) < -£<0<2¢ <sup O(w). Since ©(w) is almost periodic, there
exists a relatively dense set E(¢,), 0< e, <¢, and a length L > 0 such that

E(e)N (B, B+L)+Q, forall feR,
and for each ¢ € E(¢,),
1O(w +1)— O(w)|<e,, forallweR.

See [2] for the above notions. There exist w, and w, such that ©(w,;) >2¢ and
O(w,) <—e. By the almost periodicity, we have w; with ©(w;)>¢ and
wee[®+IL, @+ (F+1)L], k=2, 3, for some integer i. By the almost peri-
odicity again, on each interval [ + L, & + (j + 1)L], there exist w™® and ©®
with O(wM)> ¢ — &, and O(w®) < —(e - ¢,). If we set & large and p sufficiently
small with & < &(u), then on each interval [& +jL, & + (G+1D)Llc[o, a(p)],
we have G(w™, u) >0 and G(w®, p) < 0. Thus there is at least one solution for
G(w, p) =0 on such interval. 0O

We now study the bifurcation of aperiodic solutions from the homoclinic
solution g(r). Let {w;};cz be an aperiodic sequence. We look for a solution x(?)
that orbitally lies near q(r) and spends the time 2w, between two consecutive
intersections with . For simplicity we shall assume 0<p<wv in what follows.
Hypothesis (Hs) can be restated as

(Hs)' |y(0)q(—w)l/|yp(w)| lg(-w))) does not approach zero as w—> +,

Let (H,) and (H;) be valid and let 0,2 &, i € Z and || = u,. Then Theorem
4.1 applies and G,(w, p), i € Z is the bifurcation function described there.
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LemMa 4.7. If 0<p<v and if (H,) and (H,) are satisfied, then there exist
@ >0, u, >0 (possibly different from those in Theorem 4.1), y>1 and 6> 0 with
the following property. If o is such that ;2 @, w;s\/w; <y and w,/w;s\ <y for
all i € Z and |u| = py, then

Gi(w, p) = = P(@:41)q(~ @;4y) + O(e™ P+ 4 |u),

Proof. Let p/2<a<p, 0<e<min{a, v— p} and € be also smaller than
Gap {a{D.f(p, 0)}}. There clearly exists y > 1 satisfying the following conditions
simultaneously:

ptv+e
Y<T, (411)
3
200 v
7+;>20,' . (4.13)
2a
Y<‘;; (4.14)
20+ @
y< 2 (4.15)

We shall show that such y is the desired constant. From the assumptions of this

w; .. . .
lemma, we have “’«'+i§y|,::| for all i, j e Z. Such relations will be used freely

without explanation in the sequel.

Observe that Gi(w, u) = G)(w, 0) + O(Ju]). The proof is then based on Lemma
3.3. We remark that the constant 7 can be replaced by 0 < a < ay.

Define

L = —y(—w)P(RP.(— @), RP.(0))(q(~w:) — q(w)))

— Y(Wis1)P(RP(0i41), BP(— i1 ))(q(= wir1) — 9(@441))-
As in Lemma 4.5, we can show that

P(RP,(—w,), RP.(w;)) = P, + O(e™*™),

P(RP(wi41), RP(—0;41)) = P, + O(e™*+).
Therefore
L= = 9(wis1)q(-@i1) + O(e™ (P01 4 g=GrTe)orm)
= = P(Wir1)g(— @) + O(e—(2p+6')wm): (4.16)

. +v+e¢ )
where 0 < 8, <min {Ly— -2p, s}, by virtue of (4.11). From (4.12), there

3
exists 0 < &, <—}le —2p, and

lw(—w)l |b*SC |; e~ PP+ IW S Ce3pu £ Co= 2P+ 80win, (4.17)
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From (4.13), there exists 0 < §; < —:: + i—‘: - 2p, and

(=) bl (725057 + 725 4+ e 2ewis1) S C |07+
§ Ce_(zp-o-é;)m;u. (4. 18)

Let 0< 8, < p. We have

1@ )] [Bini S C @y a[re300s = Cem T 000, (4.19)

2
By (4.14), there exists 0< &5 < —: ~p, and

(@) IBI] (€725 + €701 4 e 72000 S C [y e~ P20

= Cem@prodvin, (4.20)
By (4.15), there exists 0 < 66<2p o 2p, and
|bi|* (e + e~ ™) = Ce~(2p+a¥7)wins §.C |w;[2re =3P+ 80w, (4.21)
1t is also clear that 0 < 66<% . We then have
|birl? (e +e7 ) =C | ;41| FPF MO < Ce™@p+oadwt  (4.22)
da 2p+a da

4o a «
By (4.14), —>2p, 5 +—=> . Therefore 64 <— +——2p and
y (414, < Yoy v A

"b||2(e—4aw,-_| +e—4aa:,»+ e—4awlﬂ +e—4arm,~4.z)(e—aw,-+e-awiﬂ)
= Ce-(«taly’-&-aly)wiﬂ =< Ce—(2p+65)m,-¢,_ (423)

Based on (4.16)—(4.23), we have
Gi(w, 0) = =Y (@i41)g(— wi1) + Ole
where 0< & <inf {8, | 1 Si =6}. The desired estimate then follows easily. a

-(2P+6)we+1)’

We now present a generalisation of Silnikov’s theorem on bifurcation to
aperiodic solutions. Assume that (H,) and (Hs)' are valid. Then
—p(w)g(~w) =" 0mO(w) + o(eT* ™),

where m =0 is an integer and ©(w) is a quasi periodic function-a sum of

trigonometric functions of period x/B where p +if is an eigenvalue of D.f(p, 0).

TueoreMm 4.8. Let 0<p <v and let (H,), (H,), (H,) and (Hs)' be valid. If
inf ©(w) <0< sup O(w), then there are positive constants L, & and p, with the
following property. For each |p|=p,, there is a constant @(p)> @, ao(u)—
@(0)= as p—>0. Let {i())}icz be a sequence of nonnegative integers and

|| = py, such that
o+ (@) +DL=a(u), i€Z (4.24)
[@+ (i + D)+ DLY/[@ + L)<y, i€ Z, (4.25)
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and
[0+(EO+DLY[o+ji+1)L])<y, ieZ (4.26)

Then there exists a sequence ® with w; € [@ + j(i)L, & + (j(i) + 1)L), that satisfies
Gi(w, p) =0, i€ Z. In particular, if u is sufficiently small, there are uncountably
many ways to choose the aperiodic sequence {j(i)};cz. Thus there exist uncoun-
tably many aperiodic orbits near the homoclinic orbit x = q(t).

Proof. We shall use the result from Lemma 4.7. Solve u = ¢ ~®**+9@ {5 obtain
@(p)=—Inp/(2p + ), @0)=». Let & <w;<@(u) for all ieZ. Then from
Lemma 4.7

Gi(w, p) = e ]} ,0(w;r1) +0(e 0.

The lower case o is uniform with respect to i € Z. In a similar way to the proof of
Theorem 4.6, we can show that there exist w¥ and w! in the interval
[@+jG)L, @ + (j(i) + 1)L], for all i € Z, with O(w})>e> —e>O(w?). If & is
sufficiently large and u small, @(u)> @, then G,(w¥, u)>0> Gi(0™, u). Here
o (or @™)={w;};z is a sequence with w,,, =, (or w,,=w?,). From
Lemma 4.9 below, there exists at least one solution {®;}_,55, for the system

Gi(w, p)=0, —-k=isk.

Here w;, |i| >k, can be any constant in [ + j({)L, & + (j(i) + 1)L]. Denote the
solution by ©®. Finding a subsequence if necessary, we shall assume 0®— o
coordinatewise. From the continuity of G;(@™, u) in @®, cf. Lemma 3.4, we
have

G{w, u)=0 forallieZ

LemMa 4.9. Let Q =[~1, 1]™ be a unit cube in R™, f: Q—>R™ is continuous
with fi(x)>0 (<0) if x;=1 (or=-1), where f=(fi,fo...,f,) and x=
(x1, X2, . .., X,). Then there exists at least one % € (—1, 1)™ with f(%) = 0.

Proof. There is a homotopy F,, 0=¢=1 on the boundary 3Q of Z with F,=,
Fi =id, and 0 ¢ F(3Q). Therefore deg (0, Q, f) = deg (0, Q, id) #0 (cf. [20]).

5. A singularly perturbed differential difference equation

Consider the singularly perturbed differential difference equation

ez(ty=—z()+f(z(t - 1)) (5.1)

Let fe C*(R,R), k=1, f(a)=—-b and f(~b)=a for some a>0, b>0. For
¢ =0, the difference equation 0 = —z(f) + f(z(+ — 1)) admits a period 2 solution
taking z =a on intervals (2n,2n+1) and x=~-b on 2n+1,2n+2) for ne Z.
Mallet-Paret and Nussbaum [16,17] have shown that under some general
conditions the slowly oscillating periodic solutions of (5.1) approach the period 2
step function as £¢—0. Such a solution z(t) consists of regular layers that stay
near z = a or —b for nearly one unit of time and transition layers connecting a to
—b and —b to a. Assuming that the period of z(t) is 2+ 2¢r, we introduce
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n)=z(@—1—er)and EE)=n(t —1—er)=2z(¢). Let x(t) = E(—ert) and y(¢) =
n(—ert). We have a system of .two equations
x(0)=rx(t) = rf(y(t - 1)),
y(&)=ry(6) = rf (x(r = 1)).
Observe that (x, y) = (—b, a) and (a, —b) are equilibria for (5.2). Although the
existence of heteroclinic solutions between the equilibria is known from Mallet-
Paret and Nussbaum’s work, it can also be proved by a quite different method.
Chow, Lin and Mallet-Paret (8], using perturbation and homotopy techniques,
have shown that under the monotonicity on f and some general assumptions,
there exists a unique r,>0 such that (5.2),, possesses a unique heteroclinic
solution (p,(¢), q,(t)) connecting (—b, a) to (a, —b). By the symmetry of (5.2),,
(q:(6), pi(1)) is a heteroclinic solution connecting (@, —b) to (—b, a). In this
section, we shall use the method described in the previous sections to show the
existence of a periodic solution of (5.2), that orbitally lies near (p,(¢), ¢,(¢)) and
(g:(8), pa(1)), with a large period 4w. Such a periodic solution implies that (5.1)
has a periodic solution of period 4erw =2+2¢er. Here £=[(Qw - 1)r]""
Therefore the method described here provides another approach to the problem
studied by Mallet-Paret and Nussbaum.
We assume the following hypotheses in this section.

(D;) The equilibria (—b, ) and (a, —b) of (5.2), are hyperbolic.

(D) there exist r,>0 and a heteroclinic solution (p,(f), ¢,(¢)) for (5.2),,
connecting (—b, a) to (a, —b).

(D,) Bounded solutions of the linear variational system (5.3) form a one-
dimensional linear space spanned by (p,(#), 4:(?)).

x(8) = rx(6) = rDf (q:(r — 1))y (¢ = 1),

y(&) =ry() = rDf (pa(t = 1))x(t - 1).

From a general theory of the Fredholm operator associated with (5.3), see [15],
the formal adjoint system

£(t)= —rx(t) + rDf (p:())y (t + 1),

y(8) = —ry(0) + rDf (q:()x(z + 1),
possesses a one-dimensional space of bounded solution, say spanned by
(v (), ¥20)).

(D) [ (WO + WP(0)ds (1)) de #0.

Remark 5.1. It has been shown in [8] that Hypotheses (B,)—(Bs) in that paper
imply (D,)-(Dy). I also know some cases where (B,)-(B;) are not satisfied while
(D1)-(D,) are.

THEOREM 5.2. Suppose that the hypotheses (D,)—(D,) are valid. Then there
are positive constants &, u,, £, and a C* function r*: (&, +®)— (ro— iy, ro+ )

(5.2),

(5.3)

(5.4)

with the following property. If |r—r|<u, w>® and if (5.2), admits a

periodic solution (x(t), y(t)) of period 4w, satisfying the estimate |x(t) — p,(t)| +
ly()) — q,()l <&, for —w=t=w and a symmetry condition x(t+2w)=y(t),
then it is sufficient and necessary to have r=r*(w). Moreover, (x(t), y(t)) is
unique among such solutions up to time translations.

—_— e ————

——_
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THEOREM 5.3. Suppose that the hypotheses (D,)—(D,) are valid. Then there exist
€, &> 0 such that for each 0<& < ¢, there exist unique w and r, satisfying
0>0, |[r—rl<p and derw=2+2er with the following property. Equation
(5.1) admits a unique periodic solution z(t) of period 2+ 2er that satisfies the
estimate

|z(—ert) — py()] +|z(—ert ~1— ery—-q, (O =e, —0=tSw
We shall first introduce some notation. Let Z = (x, y)', F(Z)=(f(y), f&x)

01
0). Obviously JF(Z) = F(JZ). We then rewrite (5.2), as

and1=(1

Z(t)=rZ(t)— rF(Z(1 = 1)) (5.5),

If Z(¢) is a solution of (5.5),, so is JZ(r). From (D2), W(OE (p1(1), ¢1(1)) is a
heteroclinic solution of (5.5),, connecting (—b, a)' to (a, —b)", thus Wy(r) =JW, (1)
is a heteroclinic solution of (5.5),, connecting (&, —b) to (—b, a)’. Rewrite (5.3)
as :

Z()=rZ(t) —rDF(W\(t = 1))Z(¢ - 1). (5.6)

Observe that JDF(W(t — 1))Z(t — 1) = DF(W\(t — 1)) Z(t - 1). Thus if Z(¢) is a
solution of (5.6), JZ(¢) is then a solution of

2(t) =rZ{t) — rDF(Wy(t = 1))Z(t — 1). (5.7

Let u(f) be a continuous function in R” with the domain ¢ € [2, b]. We define
u, € C([-1, 0], R") and u(8)=u(t+06), -1=6=0. uisa continuous function
in C({~1, 0], R") with the domain ¢ € [a +1, b]. Let T'(s, 5), t Zs be the solution
map for (5.6) defined in the phase space C([—1, 0], R?), (cf. [10]). Then
T2(1,5) =JT'(¢, s)J is the solution map for (5.7). We also have T?*(s, 1) =
JT(s, ).

Recall that (=b, a)’ and (a, —b)" are hyperbolic equilibria and W,(t)— (-b, a)'
or (a, —b)* as t— — or +». From the roughness of exponential dichotomies,
there exists 7> 0 such that T'(1, 5) has exponential dichotomies on (—%, —7] and
[, +) with projections Pl(t) and Pl(r). Similarly, T?(t,s) has exponential
dichotomies on (—, —t] and [r, +=) with projections Pi(t)=JP.(r)J and
PX(1) = JP¥(t)J.

Let C*([-1,0],R¥) be the dual space for Cc([~1,0], R*). Let
P, e C*([~1, 0], R?) be such that (¥, W,_,)) #0. Here component-wise ¥, =
(P, gy, with ¥PeC*((-1, 0, R), j=1,2 We then define ¥,=¥, J=
(WP, W), Thus (¥, Wy—n) = (W), Wi(n) = (¥, Wy #0.

Let Ti(s,s)=T'*¥s), ieZ T'(t,s) has exponential dichotomies on
(—c, —7] and {7, +) with projections Pi(t) = Pi¥X(t) and Pi(t)= P*(t), i€ Z.
We now define %, ieZ as in Section 2, replacing T(t,s), P.(t) and P,(r) by
Ti(t, s), Pi(¢) and Pi(r). From Lemma 2.2, &, is Fredholm with index &% =0. X%,
and X% is one-dimensional and RF is of codimension 1. Let X¥%*=
{c¥,|ceR}, A eC([-1,0], R?) and {¥,,A\) =1. Then

A, ® RF, = C([-1, 0], R?).
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Let W, =W,/ and A, =JA,. It can be verified that ¥, e X%} and (¥,, A,) = 1.
Also A, ® RF, = C([~1, 0], R?).

Let us now define Wi(r)=W1,(1), W, =Wy, ¥, =W,,,, A=A, forieZ
Let Wi(r)=T*(t, T)¥; and ;(r) = W(t)(6) |o=0- Here W;(1)(0), —1=6=0is an
element in C([—1, 0], R?) for each ¢ € R, and w,(¢) is a continuous function in R?2
defined for teR. y,(s) = (y{"(s), ?(s)) satisfies the formal adjoint equation
like (5.4):

Yy = —ry() + rDf (pi () pP(e + 1),
(1) = =rp(e) + rDf (g )yt + 1),
where (p;(1), q,(t)) = W(¢).
We now consider the following system of linear integral equations:
L=T'(t, 0)Eio + j Ti(t, 5)Xohi(s)ds, —~w=0=2t1Zw, i€Z,
o
C(i—l)w - Ci(—-w) = bi: ie Z, . (58)

where h;:[—w, w]—>R? is a piecewise continuous function, &, € C([-1, 0], R?)
for each t €[~ w, w], b; € C([—1, 0], R?), X, is the matrix-valued jump function
with Xo(6)=0, —-1=60<0, and Xy 0)=1 Through X,¢ C([-1,0], R?),
T(t, s)X, can still be defined through the initial value problem of the delay
equation and [ T'(t, s)Xoh,(s) ds is an element in C([—1, 0], R?) (cf. [10]). It
was shown in [15] that P{()X, and Pi(t)X, can be defined, T'(¢, s)Pi(s) X, =
Pi(1)T (¢, s)X, holds and

[Ti(t, s)PLS)X | = Ke™24—9), =y,
IT4(s, )PL(DXo| S Ke™=¢9), 51,

In conclusion, all the assumptions (A,;)-(A,) in Section 2 are valid for system
(5.8) and all the uniformity assumptions with respect to i € Z are trivially satisfied.
Let E([—w, w], A;) be the space of piecewise continuous functions: [—w, w]—
C([-1, 0], R?) with jumps at =7 along A,. From Theorem 2.5 we have the
following result for (5.8):

LemMA 5.4. There is a constant & >0 with the following property. If @ > &,
then there exists a unique sequence of piecewise continuous solutions & e
E([—w, ), A}, i € Z, for system (5.8) and

(q“,', Ci(—t)) = 0, ied. (59)
Let Cir‘ - Cir‘ = EiAl'; then

&= [ o) ds + (W(-0), L) = (Bl@), o). (5110)

The piecewise continuous solution of (5.8) and (5.9) will be denoted by
Ei=Xi(t;b, h, ). If Jb;=b,,,, then
o VX (t;b, k, ) = X;(t;b, 0™ {Jh;} ez, @), (5.11)

where 0{a;}icz = {@i+1}icz i the shift mapping of sequences.
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Proof. The existence of the unique solution {;};.7 follows from Theorem 2.5.
It is also clear that

&= J:w (Wi(s), Xohi(s)) ds + (lpi(_w): ;i(—w)) - (lpi(w): i)

Since (Wi(s), Xo) = W,(s)(8) |o=o = %i(s), (5.10) follows. (5.11) can be proved by
applying J to (5.8) and (5.9). Details will be left to the reader.

Proof of Theorem 5.2. We shall look for period 4w solution Z(r) for (5.5),
with the property Z(t +2w)=JZ(1), —w=t=w. Set Z(t)= W,(t) + £,(¢) and
Z(t+2w) = Wa(r) + £5(¢r) for —w=t=w. Then &(r)=JE,(t). Define &(1)=
ix2(t), i € Z. § satisfies a system of boundary value problems’

{éi(t) =rl{t) -~ rDF(W(t-1)E¢ -1+ N(&(t—=1),r,t-1), -w=t=Zo,

C(i—l)a) - Ci(—m) =b, i€l

(5.12)

where by =Wi_u) = Wi_1jo€ C([—1,0], R®), N 1. t)=—rF(W(1)+ &) +
roF(W(1)) + nDF(W,(1))§ + (r = ro)(Wi(6) + £) = O(Ir — ro| +|£I%). We also re-
quire (5.9) for each i € Z. We can rewrite (5.12) as a system of integral equations,

Le=Ti(t, 0)Eiu + f T(t, s)XoNi(Es(—1), r, s — 1) ds, —w=1=w,
o (5.13)
C(i—l)w - Ci(-w) -b;, iel '
From Lemma 5.4, system (5.13) and (5.9) is equivalent to
Cir =Xi(t; b, {Ni(Ci-(—l)x = 1)}:‘&2; w)r iel. (514)

On the other hand, for each given w > & and |r — ry| < p,;, we shall try to find
fixed points |§| <€, i €Z for (5.14). Here & is sufficiently large, yu,>0 and
€, >0 are sufficiently small. (5.14) can be solved by the uniform contraction
principle in [I;ez E([— w, @], A;). The unique solution £, denoted by &,(¢; w, r) is
C* in r for each fixed w. Let us now apply 0~'J to both sides of (5.14). From
(5.11) and the fact that

o~ UN(B;, 1, ) =N(o7UB, 1, 1),
we then have
0" UE =X (t; b, {(N(o™VE(-1), 7, - = 1D}iez, 0), i€Z
The uniqueness of the fixed point of the contraction map implies that
J&=Cisny i€Z

Let &;,- — &+ = &A,. It is not hard to verify that & =£,,, for all i e Z, based
on (5.10) and h;(s) =N;(Ls(~1),r, s —1), with the property Jh,(s) = H;.1(s).
Denote &, i € Z by G(w, r):

G(w: r) = I_w wl(s)Nl(gls(—l)’ r,s— 1) ds + (‘pl(—w)r Cl(-w)) - <IP1(CO), Cla’)-
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The proof of the existence of a unique solution r =r*(w) of G(w, r)=0 for
0> ®, |r—rl <y, follows closely the proof of Theorem 4.3. Here Lemmas 3.2
and 3.3, which are also valid for delay equations, play important roles. Note also
from (D,) that

G(®, ny = i 2
) ™ (i) = £t = 1)+ 9@ ~F (o= 1)

= ,’10 f_: [9$2(0) 5 (1) + W) pao(e)] de #0.

The function r*(w) so obtained is continuous for @ > &. Details will not be given
here.

In order to show that r*(w) is C%, it suffices to prove that G(w, r) is jointly C*
for @ > @ and |r — ro <u,. Here again we use the geometric interpretation of
G(w, r), and the scaling of time used in the proof of Theorem 4.2. First, we
define a pair of functions in R?, {7(), te[-w ~1, —t] and {7(1), te[r -1, w].

Ert+0)=5,(0), te(r, @], 6e[-1,0],
Cl_(l + 6) = \’;“(6), te [-wr ‘L'), 6¢e [_1) 0]

The semi-open intervals can be made closed by taking the right and left limits.
Let £,() = &7 () for te[—w —1, t] and & (r) for re[r— 1, ]. £,(¢) is bivalued
on [t — 1, 7] and has two branches, each of which can be reached by continuous
extension from the right or left. Let Z(f) = Wy(£) + §,(r) and Z(¢ +20) =JZ(2),
for t€[—w, w]. We then extend Z(r) as a 4w periodic function for reR. It is
clear from the construction that Z(t) is a piecewise continuous function bivalued
on the intervals [2jw + © — 1, 2jw + 7], j € Z. The jumps on the two branches are

Zz_jw+r_ Z{iw+‘l’= G(w, “)Al € C(["l, O]J RZ);

where i =1 if j is even and i =2 if j is odd. It is also clear that each continuous
branch of Z(t) satisfies equation (5.5),. Consequently we infer that Z(z) is C**"
on each interval [2jw + T +k, 2jo + 20 + 71— 1].

To rescale the time, let us define v(f) e C*(R) as follows: v(t)=0 for
te[0, t+k), v()=1 for te[t+k+1,«) and v(—)=v() for teR. Let
Z(t)=Z((1+ Bv()f) and Z(t+2w,)=JZ(t) for te[-w;, w,). Here w=
(1+ B)w,, w, is fixed and B is in a neighbourhood of 0. We then extend Z(t) to
be a piecewise continuous, 4w, periodic function which is bivalued on intervals
[2jw, + T— 1, 2jw, + 7], j € Z. Each continuous branch of Z(1) satisfies a delay
equation. For example, if ¢ € [~ w,, w,], we have

%Z'(t) = (1+ B(v(t) + V(ODIrZ(t) — rF(Z(e — d(B, 1)), (5.15)

where d(B, t) = (1 + Bv(1))"" is the time dependent delay. Here we also have to
be careful in choosing the correct branches when ¢ € [t -1, 7).

The advantage for the solution Z(¢) is that the period 4w, is fixed, and B
appears to be a parameter. We can use the previous method to show that for each
|Bl < B, and |r — ro| < p,, there exists a unique piecewise continuous solution for
(5.15) satisfying Zo, + Wia, =J(Z(cwy + Wi-wy), Where W, is rescaled from W,

s
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with a jump Z;—-Z}=G(f, r)A, between two branches on the interval
[t -1, 7], and satisfies a phase condition at t = —z. The function G(8, r) is C*
jointly in (B, r); however, we shall not give the proof here. Interested readers
may refer to [10, Chapter 10, Theorem 2.2] and [11] for a similar problem. Since
Z(t)=Z(1) for te [t — 1, 1], we have

G(w, 1) =G (B, u) = G(wﬁ]— L),

which is C* jointly in (@, p).

Proof of Theorem 5.3. If (x(1), y(t)) is a 4w periodic solution of (5.2),, then
r=r*(w) and z(t)=x(—t/er) is a 2+ 2er periodic solution of (5.1). From
derw =2 +2er, € =[(2w —1)r*(w)]~". We want to show that & approaches zero
monotonically as w—> .

Let w,>0,>®, {P=%t;0,,r) and P =Z(t; w, r). Define b¥=
C{,_,)m' Q. forieZ, j=1,2. In a similar way to the proof of Theorern
3.4, we can show that |b{" — b =0(w, - »,). From Lemma 2.6, (2.16), i
follows that £ — ¢8|, = O(w;— w,). Here || ||, is the weighted norm on
E([_wb Cl)|], Aa)

We now obtain an estimate on G(w,, r) — G(w,, r). First,

[" womepeEnns-nas - [ p@MERED, rs -1 as

-wy

< Ce*\(wy— ;) +C f a(s)] 1£2 — £ ds

Wy
S Ceri(@y =)+ C [ e 50— g0 (e 4 om0 gy
—an

= Ce "y — wy).
It is also clear that

{¥1(—w3), £ ) — (Pr(w2), Cﬁ)»z) = (¥i(=wy), Lilwy) + (Wi(wy), 4P 8]

S C(@2 - ) sup. (Fi(@)]+1¥,(@))) = Ce™™(w; — )

Thus
|G(w,, r) — G(wy, r)} = Ce™ " w, — w,). (5.16)
Let o, +3>w,>w,>d, and n=r*w;), n=r*(w,). If & is sufficiently
large, we have n, >;—°. This is due to the fact that r*(w)—r, as w— =, as can be

seen from a FDE analogue of (4.8).
From G(w,, r,) — G(w;, r,) =0, we have
Ce™™ (w2~ 01) Z|G (w2, 1) ~ G(@y, Rl
g IG(wl, rz) - G(wl, r1)|

Z2Cin—nl
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The last inequality is due to a FDE analogue of Lemma 3.2. Thus, |rp—r|=
Ce " (w, — w,). We then have

(2w, - 1)n - QRw, = Dn=2(w; — w)n + Qw,~ 1)(r.—n)
Z(w;— w)rp - 2w, . Ce™"(w, — w,)>0,

provided & is sufficiently large. It is now clear that for every & >0, sufficiently
small, there is a unique w > @ such that ¢ = [2w — 1)r*(w)]”". O
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