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NOTES 

EDITED BY DAVID J. HALLENBECK, DENNIS DETURCK, AND ANITA E. SOLOW 

Another Brief Proof of the Sylvester Theorem 

X. B. LIN 
Mathematics Department, Michigan State University, East Lansing, MJ 48824 

A finite set of points, S, in a projective or affine space such that no lines 
intersects S in exactly two points is known as a Sylvester-Gallai (SG) configuration. 
In real space it is well known that there are no nonlinear SG's. There are several 
simple proofs of this fact (see [1]-[4]) and we offer here still another, as far as we 
know somewhat different from the others. The result in E' follows from that in E2 
by projection. 

THEOREM. If S is a finite set of points in E2 such that no line intersects S in 
precisely two points, the S is a subset of a line. 

Proof We use Hilbert's definition of angle as the union of two noncollinear rays 
with a common end point. If A, B, and C are in S, then the angle defined by rays AB 
and AC is denoted BAC or CAB. If AB U AC contains a fourth point of S, the 
angle is called an admissible angle (relative to S). Suppose now that S is not linear. 
Then the angles at the vertices of the convex hull of S are certainly admissible so the 
set of such angles is not empty. Suppose BAC is the largest such angle with angle 
measure a < 180 and that D is a fourth point of S on ray AC. There is no loss of 
generality in assuming that C is between A and D. 

Now BCD is larger than BAC so it is not an admissible angle. Thus ray CB 
cannot contain a third point of S. But the line CB, by assumption, must contain 
another point E of S so E must be on the ray opposite to CB. 

But now the line AE presents us with a contradiction, since it must contain a 
third point F of S, and if F is on ray AE, then BAE is admissible and larger than 
BA C; while if F is on the ray opposite to AE, then FA C is admissible and greater 
than BAC. 

This contradiction shows that S must be linear. 
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A ? B > 0 Ensures (BA 2B)1/2 > B2 
Solution to a Conjecture on Operator Inequalities 

TAKAYUKI FURUTA 
Department of Mathematics, Faculty of Science, Hirosaki University Bunkyo-cho 3, Hirosaki 

036, Aomori, Japan 

DEDICATED TO PROFESSOR ZIRO TAKEDA WITH RESPECT AND AFFECTION 

In an issue of this MONTHLY [1, p. 539], the following conjecture is stated. 
CONJECTURE. Let A and B be hermitian matrices on a finite dimensional Euclidean 

space. If A ? B > 0, then 

(BA2B)1/2 > B2 

and 

A2 > (AB2A)1/2. 

In this short note, we shall prove this conjecture in a more general form. 
THEOREM 1. If A and B are positive bounded hermitian linear operators on a 

Hilbert space such that A ? B > O, then 

(BA2B)1/2 > B2 (1) 

and 

A2 > (AB2A)1/2. (2) 
We prove the following Lemma needed for Theorem 1. 

LEMMA. If A and B are positive bounded hermitian linear operators on a Hilbert 
space such that A > B > O, then 

(Bl/2A3B1/2)1/2 > B2 (i) 

and 

(B1/2A2B1/2)1/3 > B. (i) 

We quote the following result to show the Lemma. 

THEOREM A ([2]). Let X and Y be bounded linear operators on a Hilbert space H. 
We suppose that X _ 0 and II YII < 1. Iff is an operator monotone function defined on 
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