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Abstract. For a singularly perturbed system of reaction–diffusion equations, we
study the bifurcation of internal layer solutions due to the addition of a spatially
oscillatory term. In the singular limit, the existence and stability of internal layer
solutions are determined by the intersection of a fast jump surface Γ1 and a slow
switching curve C. The case when the intersection is transverse was studied in
[26]. In this paper, we show that when Γ1 intersects with C tangentially, saddle-
node or cusp type bifurcation may occur. Higher order expansions of internal layer
solutions and eigenvalue–eigenfunctions are also presented. To find a true internal
layer solution and true eigenvalue–eigenfunctions, we use a Newton’s method in
functions spaces that is suitable for numerical computations.

1. Introduction

There have been many studies of internal layer solutions in reaction diffusion sys-
tems for which the reaction term is independent of the spatial variables. Our objective
here is to continue the work of [26] on the effect of spatial dependence in the reaction
term by considering single layer solutions for a system of two equations modeling
an activator inhibitor. To put the results in the context of existing literature, it is
worthwhile to recall known results for a single equation

ut = ε2uxx + (1− u2)(u− a(x)), x ∈ (0, 1),

ux = 0 x = 0, 1,
(1.1)

where 0 < a(x) < 1 is a C1-function.
If a = 0 for all x, it is known that the only stable solutions of (1.1) are the

constant functions ±1. In [1], the authors have considered the case in which a is a
function of x which assumes the value 0 at points xj 6= 0, 1, a′(xj) 6= 0, 1 ≤ j ≤ M ,
a′(0) 6= 0, a′(1) 6= 0. They proved that there is an ε0 > 0 such that, for 0 < ε < ε0,
(1.1) has the M th Fibonacci number of exponentially stable solutions with sharp
transition layer only at points from the set {x1, . . . , xM}. Furthermore, the dominant
eigenvalue λ(ε) of a solution is λ(ε) = ελ1 + O(ε2) with λ1 < 0. The existence of
stable solutions was obtained by constructing upper and lower solutions to obtain
an invariant region and then invoke a result from Matano [27] on the existence of
a stable solution. The fact that there were exactly the M th Fibonacci number of
stable solutions required some asymptotics and explicit calculation of the dominant
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eigenvalue. In [13], the authors used asymptotic methods to prove the existence
of unstable solutions of the above type and calculated the asymptotic form of the
positive eigenvalues.

In particular, the function a(x) = δ sin ωx, δ 6= 0, ω 6= (2m+1)π/2, m = 0, 1, 2 . . . ,
satisfies the above properties. The number δ can be chosen to be as small as desired
so that (1 − u2)(u − a(x)) is a small perturbation of (1 − u2)u on any compact set.
On the other hand, the number ε0 = ε0(δ) may have to go to zero as δ → 0. In this
sense, δ is not a small perturbation uniformly in ε.

It is not known how these stable layered solutions occur through bifurcation from
the zero function. However, if one is interested in one-layer solutions, the situation
is much simpler. Let a(x) = δ sin ωx + µ and let µ pass through δ (or −δ), the
zeroes of a(x) are created pairwise through generic saddle-node type bifurcations.
It is natural to expect that the monotonically increasing (or decreasing) one-layer
solutions are created through saddle-node type bifurcations. This is indeed true and
can be verified by the method employed in this paper.

A special case of an activator inhibitor system is

ut = ε2uxx + (1− u2)(u− a)− y

yt =
1

σ
yxx + (δu− y), x ∈ (0, 1)

(1.2)

with homogeneous Neumann boundary conditions, where a ∈ (−1, 0), ε > 0, σ >
0, δ > 0 are constants. Suppose that δ is so that there is only one spatially independent
solution of (1.2) (see Figure 3.1). For ε sufficiently large and σ sufficiently small, every
solution of (1.2) approaches this constant solution. On the other hand, there are ε0, σ0

at which this solution bifurcates to a stable spatially dependent solution. This was
observed by Turing in the seminal paper [35]. This solution also has a steep transition
layer in u as ε becomes small (see [30]). The existence of these internal layer solutions
can be traced to earlier papers [8, 10, 14, 28].

As in [1], it is reasonable to study the sensitivity of these single layer solutions
when the vector field is subjected to a spatially dependent perturbation. As in [26],
we choose the perturbation in the following way:

ut = ε2uxx + (1− u2)(u− a)− y − k

ω
sin(ωx+ b)

yt =
1

σ
yxx + (δu− y), x ∈ (0, 1)

(1.3)

with the homogeneous Neumann boundary conditions. The parameters are k > 0,
ω > 0 and b ∈ R. If k is in a compact set and ω is large, this can be considered as a
small perturbation of the vector field in (1.2). However, as we will note below, this
may not correspond to a small change in the dynamics of (1.3) uniformly in ε.

Under generic assumptions on the parameters k and b, and conditions on the large-
ness of ω and smallness of ε, it was shown in [26] that there can be many one layer
solutions with some being exponentially stable and some unstable with index one.
Asymptotic methods were used and the asymptotic form of the dominant eigenvalue
was given as λ(ε) = ελ1 +O(ε2) with λ1 6= 0.
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The purpose of this paper is to complete the study of [26] by showing how these
solutions appear through saddle node bifurcations and cusp bifurcations. In Section
2, we give an intuitive explanation of the results for the special case (1.3). The precise
statement of the results is given in Section 3 for a system more general than (1.3)
which satisfies the same hypotheses as in [30]. The remaining sections contain the
detailed proof and are based on geometric methods in asymptotics.

Throughout the present paper, we use the following notations. M1 t M2 means a
nonempty and transverse intersection of two manifoldsM1 and M2. The tangent space
of a C1 manifold M at a point ℘ ∈ M is denoted T℘M. For a piecewise continuous
function f(x) defined in a neighborhood of x0, let f(x0+) = limx→x0+0, f(x0−) =
limx→x0−0 and [f ](x0) = f(x0+)−f(x0−). Let Pj(R), Pj(R−) and Pj(R+) be Banach
spaces of continuous functions f defined on R, R− and R+ respectively and satisfy
the following growth condition,

|f(ξ)| ≤ C(1 + |ξ|j).
The norms are the weighted norms |f | = sup{|f(ξ)(1 + |ξ|j)−1|, x ∈ R, or R±}.
When a system of linear equations has an exponential dichotomy on an interval I,
the projection to stable and unstable spaces are denoted respectively by Ps(t) and
Pu(t), t ∈ I. The definition of exponential dichotomies and some basic lemmas
are presented in §5. An introduction to exponential dichotomies and their role in
homoclinic bifurcation theory can be found in [6, 32].

2. Intuition for a special case

To understand how the spatial dependence of the vector field influences one layer
solutions, it is worthwhile to briefly review the construction of such solutions for the
spatially independent case (1.2). If we let

f(u) = (1− u2)(u− a)

and if y is a real number, then the cubic equation f(u)−y = 0 defines three curves u =
h−(y), h0(y), h+(y) where respectively the derivative is negative, positive, negative
(see Figure 3.1). The curves u = h±(y) are stable as solutions of the equation

ut = ε2uxx + f(u)− y(2.1)

with ux = 0 at x = 0, 1 and the curve u = h0(y) is unstable.
For ε small and a special ỹ, there is a stationary solution uε(x) which has a transition

layer near x0 where y(x0) = ỹ and goes approximately from h−(ỹ) to h+(ỹ). It is
unstable with index 1 and there is a positive constant c(ỹ) such that the positive
eigenvalue λ(ỹ) = O(e−c(ỹ)/ε) as ε→ 0. It is unstable but the degree of instability is
exponentially small.

The construction of such an approximation of uε(x) and the determination of ỹ
proceeds as follows. If ξ = (x− x0)/ε, v(ξ) = u(x0 + εξ), then

vξξ + f(v)− y = 0, ξ ∈ (−x0

ε
,
1− x0

ε
),(2.2)

with vξ = 0 at the boundaries. For the ODE (2.2), with ξ ∈ (−∞,∞), there is a
unique ỹ such that there is a heteroclinic orbit v0 of (2.2), with y = ỹ, going from
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h−(ỹ) to h+(ỹ). The constant ỹ is chosen so that the cubic function f(v) − ỹ is
symmetric about the middle zero h0(ỹ); that is, the area under the curve described
by the graph of f(u) from h−(ỹ) to h0(ỹ) is equal to the area from h0(ỹ) to h+(ỹ)
(the equal area rule).

From symmetry, the solution should be symmetric about zero and so we take
x0 = 1/2. The function uε0(x) = v0(x−0.5

ε
), x ∈ (0, 1), should be an approximate

solution to (2.1). One can now show that there is an exact solution uε(x) of (1.2)
with

uε(x)− uε0(x) = O(ε), uε0(0.5) = h0(ỹ).

A more difficult analysis shows that uε(x) is unstable with index 1 and the positive
eigenvalue is O(e−c̃(ỹ)/ε) as ε→ 0 (see [4, 11]).

If we now look at the coupled system of equations (1.2), then we do not expect
that an equilibrium solution will have y remain at the constant value ỹ since y should
satisfy approximately

yxx + σ(δh±(y)− y) = 0, x ∈ (0, 1)(2.3)

yx(0) = yx(1) = 0, with the − sign being used on the interval (0, x0) and the + sign
on (x0, 1). As we note below, the constant x0 must be determined and is related to
the equal area rule. It can not be specified a priori since we do not expect to preserve
the symmetry as for the scalar equation.

The solution y of (2.3) is a C2 function except at the point x0, where there is a jump
in the second derivative. The sign of yxx(x) assures that y(x) is concave up for x < x0

and concave down for x > x0. The shape of the solution is plotted in Figure 3.2. We
need to determine the point x0 and the value (y(x0), yx(x0)). Once (y(x0), yx(x0), x0)
is known, the solution y is determined by integrating (2.3) backward in [0, x0] and
forward in [x0, 1].

From the equal area rule it is clear that

y(x0) = ỹ(2.4)

in order to obtain a fast jump in the u equation. Define

Γ1 = {(y, z, x) ∈ R3 : y = ỹ}.(2.5)

We must have (y(x0), yx(x0), x0) ∈ Γ1 in order to obtain an approximate one layer
solution of system (1.2).

The solution of (2.3) has to satisfy the boundary conditions at x = 0, 1. This
also imposes some restriction on the point (y(x0), yx(x0), x0). To give a geometric
description of this restriction, let us rewrite (2.3) as

dy

dt
= z

dz

dt
= σ(δh±(y)− y)

dx

dt
= 1

(2.6)

and consider the solutions of (2.6) in R3 . Notice that there are two vector fields in
(2.6), one is defined with h−(y) and the other with h+(y). To have a solution that



5

satisfies z(0) = z(1) = 0, it is natural to integrate the equation with h−(y) with
initial value at t = 0 given by (α, 0, 0), α ∈ R to obtain a two dimensional surface
M− ⊂ R3 and to integrate the equation with h+(y) with initial value at 1 given by
(β, 0, 1), β ∈ R, to obtain a two dimensional surface M+ ⊂ R3 . It is shown [26]
that M− is transversal to M+. The curve C = M− ∩M+ gives all of the possible
switching points between the two vector fields of (2.6) if the boundary conditions
z(0) = z(1) = 0 are to be satisfied. It is shown [26] that C has the form

C = {(y, z, x) : x = x∗(y), z = z∗(y), |y − ỹ| ≤ η}
where η > 0 is a small constant and ∂x∗

∂y
< 0.

If we can find a point (y(x0), z(x0), x0) ∈ C ∩ Γ1, then we obtain an approximate
equilibrium solution (uε(x), yε(x)) of (1.2). To obtain an exact solution, one uses the
fact that C is transversal to the set Γ1 (see [30, 26]).

The final part of the analysis involves showing that the exact solution is stable by
showing that the dominant eigenvalue of this solution is λ(ε) = ελ1 +O(ε2) as ε→ 0
and λ1 < 0.

Now let us study the existence of one layer solutions when the vector field is sub-
jected to a small oscillatory perturbation; more precisely,

ut = ε2uxx + (1− u2)(u− a)− y − k

ω
sin (ωx+ b)

yt =
1

σ
yxx + (δu− y), x ∈ (0, 1)

(2.7)

with homogeneous Neumann boundary conditions. The parameters k, ω, b are con-
stant with k ≥ 0, ω > 0.

We seek solutions with a transition layer in u near some point x0 to be determined.
For k in a compact set and ω large, this represents a small perturbation which is
rapidly oscillating. However, as ε becomes small, this does not correspond to a small
perturbation in the dynamics in the same way as we have noted in the discussion of
(1.1) and the results in [1].

We proceed in the same way as remarked above for (2.1). We consider the equation

dy

dt
= z

dz

dt
= σ(δh±(y +

k

ω
sin (ωx+ b))− y)

dx

dt
= 1

(2.8)

which defines two vector fields in R3 . To obtain solutions that satisfy boundary

conditions at x = 0, 1, the two dimensional surfaces M(k,ω,b)
± and the curve

C(k,ω,b) =M(k,ω,b)
− ∩M(k,ω,b)

+

are used as before. The curve C(k,ω,b) is close to the curve C(0,ω,b) = C to order O(1/ω)
in the C1 topology. Thus, the tangent vector to C(k,ω,b) is almost the same as the
tangent vector of C. The switching point (y(x0), z(x0), x0) between the two vector
fields must lie on C(k,ω,b) so that the boundary values can be satisfied.



6 JACK K HALE AND XIAO-BIAO LIN

To obtain the approximate value of x0 for which the u equation of (2.7) can have
a fast jump from h−(ỹ) to h+(ỹ), we need to have

(y(x0), z(x0), x0) ∈ Γ
(k,ω,b)
1 = {(y, z, x) : y +

k

ω
sin(ωx+ b) = ỹ},(2.9)

due to the equal area rule again. We see that the switching point is on C(k,ω,b)∩Γ
(k,ω,b)
1 .

By a perturbation argument, we prove that the curve C(k,ω,b) can be represented as

C(k,ω,b) = {(y, z, x) : x = x∗(y, k, ω, b), z = z∗(y, k, ω, b), |y− ỹ| ≤ η}
where ∂x∗(y, k, ω, b)/∂y < 0. In fact, if ω is large, C(k,ω,b) is C1 close to C and is

monotone. However, the surface Γ
(k,ω,b)
1 is oscillatory and therefore can have many

intersections with C(k,ω,b) if k is sufficiently large. Most of these intersections are
transversal intersections for which the existence of exact solutions near these was
given in [26].

Our objective here is to prove that the nontransversal intersections of Γ
(k,ω,b)
1 and

C(k,ω,b) either occur with a quadratic tangency (corresponding to an exact saddle-
node bifurcation of one layer solutions) or a cubic tangency (corresponding to a cusp
bifurcation of one layer solutions). Moreover, each of these tangential intersections
also gives rise to an exact solution near it.

The exact statement of the result for a more general system is given in the next
section.

3. Main results

We study the following general system of fast-slow equations.

ut = ε2uxx + F (u, y +
k

ω
sin(ωx+ b)), 0 < x < 1,

yt = yxx + σG(u, y), u, y ∈ R,(3.1)

ux = yx = 0, x = 0, 1.

The prototype of F and G are given in (1.3). Stationary solutions satisfy the following
equations:

0 = ε2uxx + F (u, y +
k

ω
sin(ωx+ b)), 0 < x < 1,

0 = yxx + σG(u, y), u, y ∈ R,(3.2)

ux = yx = 0, x = 0, 1.

It is possible to consider more general types of perturbation in the fast equation,
but the special type in (3.1) makes the illustration simpler.

For k = 0, Nishiura and Fujii in [30, 31] used the SLEP method to show that the
one layer solution u that jumps from near h−(y) to near h+(y) is unique and stable
by proving that the unique critical eigenvalue λ(ε) =

∑∞
0 εjλj has λ0 = 0, λ1 < 0.

When k 6= 0 and ω is large, system (3.2) is close to the one for k = 0 uniformly
for 0 < ε0 ≤ ε ≤ ε1. However, it is not close to the one for k = 0 uniformly for
ε > 0. In fact, under some generic assumptions on the parameters k and b, Lin [26]
has shown that system (3.2) can have several one layer solutions with each having
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a unique critical eigenvalue with λ0 = 0. These solutions can be stable (λ1 < 0) or
unstable with index 1 (λ1 > 0).

The analysis in [26] is valid only when the one layer solutions are hyperbolic with
λ1 6= 0 and does not help in understanding how these solutions occur through bifur-
cation. The purpose of this paper is to complete the study in [26] by discussing the
bifurcations in (k, b). As will be shown, they can be either saddle-node bifurcation
(fold) or a cusp bifurcation.

We remark that system (3.2) can have solutions with several internal layers. In
fact, for k = 0, such solutions can be obtained by an even extension of a one layer
solution and concatenate the results [33, 29]. A new proof of the stability of such
multiple layered solution is given is [26]. The analysis of multiple layer solutions will
not be discussed in this paper. Also, to avoid confusion, in the sequel, by a single layer
solution, we mean the solution that jumps up from near the slow manifold u = h−(y)
to near u = h+(y). The other single layer solution which jumps downward will not
be discussed in this paper.

Our assumptions on (3.1) are precisely the same as those in [30].
A1. The nullcline of F is sigmoidal and consists of three curves

R− = {(u, y) : u = h−(y), y ∈ (y−,∞)},
R0 = {(u, y) : u = h0(y), y ∈ (y−, y+)},
R+ = {(u, y) : u = h+(y), y ∈ (−∞, y+)}.

A2. If J(y) =
∫ h+(y)

h−(y)
F (s, y)ds, then there is a ỹ such that

J(ỹ) = 0, dJ(ỹ)/dy < 0.

A2 implies that

uξξ + F (u, y) = 0,

has a heteroclinic solution q(ξ) connecting h−(ỹ) to h+(ỹ) if y = ỹ. Define the
Melnikov integral

n =

∫ ∞
−∞

q̇(ξ)Fy(q(ξ), ỹ)dξ.

Elementary calculation shows that n = d
dy
J(ỹ) < 0. This shows that the heteroclinic

connection breaks with nonzero speed if y moves away from ỹ.
The linear equation

Uξξ + Fu(q(ξ), ỹ)U = 0,

has a bounded solution q̇ that approaches zero exponentially as ξ → ±∞, and any
other such solution is a multiple of q̇.
A3. Fu < 0 on R− and R+.
A4. G < 0 on R− and G > 0 on R+. d

dy
G(h±(y), y) < 0 for y ∈ (y−,∞) or (−∞, y+).

A5. Gy|R± ≤ 0.

To ensure that the reduced boundary value problem on the slow manifold

yxx + σG(h(y), y) = 0, yx = 0 for x = 0, 1.
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Figure 3.1. The nullclines of F and G
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Figure 3.2. Internal layer solutions and their singular limits, k = 0

has a solution, Nishiura and Fujii assumed that 0 < σ ≤ σ0 for some σ0 > 0. Similarly,
in Theorems 3.1 and 3.2, we assume that σ is a fixed constant, satisfying 0 < σ < σ0

with the same σ0 as in their paper.
Our first result is essentially due to Lin [26].

Theorem 3.1. There are positive constants ω0, c0 and positive continuous functions
ω∗(k), ε∗(k, ω), k∗(ω), 0 < k < ∞, 0 < ω < ∞ with k∗(∞) = limω→∞ k

∗(ω) existing
such that the following conclusions hold:

(1) For any k ≥ 0, if ω ≥ ω∗(k) and 0 < ε ≤ ε∗(k, ω), then (3.2) has at least one
single internal layer solution.
(2) For any ω > ω0, 0 ≤ k ≤ k∗(ω), 0 < ε ≤ ε∗(k, ω) and b ∈ R, there is a unique
internal layer solution and it is stable (λ1 < 0). If k∗(ω) < k ≤ c0ω, then there exist
b and ε > 0 such that (3.2) has more than one internal layer solution.
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(3) For any integer N , there exist values of k, ω, b, ε such that system (3.2) has at
least N stable single layer solutions and at least N unstable single layer solutions of
index 1.

To state the next result on the manner in which the solutions in Theorem 3.1 occur
through bifurcation, we introduce some additional notation. Throughout the paper,
we let x0 denote the position of the internal layer of a single layer solution. Let [0,K]
be a compact interval in R+ . Let ω > ω0 and ε̄(K, ω) = sup0≤k≤K ε

∗(k, ω). Let

BK,ω,ε ={(k, b, x0), 0 ≤ k ≤ K, b ∈ R, x0 ∈ (0, 1), ε < ε̄(K, ω) :

there exists a one layer solution},
BK,ω ={(k, b, x0), 0 ≤ k ≤ K, b ∈ R, x0 ∈ (0, 1) :

there exists a singular one layer solution}.
Theorem 3.2. For any K > 0, there exists ω̄(K) > 0 such that if ω > ω̄(K) then
BK,ω = limε→0BK,ω,ε, in the topology of the distance of sets. The set BK,ω is a two-
dimensional smooth manifold modeled on (k, b) coordinates except at points that form
lower dimensional sets at which there is either a quadratic fold which occurs at points
(k, b) with k > k∗(ω) or a cusp which occurs at (k∗(ω), b) for some b.

At the fold points on BK,ω, by moving b, internal layer solutions are created or
eliminated through saddle-node type bifurcations. In a neighborhood of the cusp points
of BK,ω, the number of internal layer solutions locally ranges from one to three.

The method of proof of these results is to give a recursive procedure for obtain-
ing formal matched asymptotic expansions, to any desired power of ε, of one layer
solutions as well as expansions of the critical eigenvalue λ(ε) =

∑∞
0 εjλj and a corre-

sponding eigenfunction. Some higher order expansions are needed near the fold and
cusp since λ0 = λ1 = 0.

For the mth order matched expansion of the one layer solution, there is an exact
one layer solution (u(ε), y(ε)) near the formal expansion to within order O(εβ(m+1))
for some 0 < β < 1. The same is true for λ(ε) and a corresponding eigenfunction.

The location of cusp points is 2π periodic in the b axis. The folds, projected to the
(b, k) plane, are smooth curves issuing from the cusps. As k and ω increase, the folds
of cusps get wider and overlap with each other. This creates an unbounded number
of solutions through saddle–node type bifurcations. See Figure 3.3 for an illustration
of a cusp in (k, b, x0) space.

In the sequel, we will show that the surface BK,ω is approximately determined by
the equation

k

ω
sin(ωx+ b) = C(x− x0),

where −C is the slope of C at the switching point. After rescaling k we assume that
C = 1. This allows us to plot an approximation of B numerically for a large, fixed ω.
In Figure 3.4, we show that the trajectories of folds in the (b, k) plane, issuing from
cusps and intersect with each other as k increases. In Figures of 3.5 and 3.6, we show
cross sections of BK,ω for k = 2 and k = 6 respectively. The maxim number of mono
layer solutions is three right after the forming of cusps (e.g. k = 2), and is five right
after the first intersection of fold lines (e.g. k = 6).
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Figure 3.3. Cusp in the (k, b, x0)-space. The k axis is perpendicular
to the paper, while the x0-axis is upward.
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Figure 3.4. Trajectories of folds issuing from the cusps, located at
k = 1. The number of mono layer solutions increases after the fold lines
intersect.

Let Γ1 be the codimension one surface in the space of slow variables defined as in
(2.9). When ε = 0 and (y, z, x) ∈ Γ1, our assumptions imply that the unstable fibers
of the slow manifold R− intersect the stable fibers of the slow manifold R+. The
intersection is generic in the sense that the connection breaks with nonzero speed
if moving along the normal direction of Γ1. As in Fenichel [7], it follows that a
heteroclinic solution connecting two center manifolds persists even when ε is positive
and small. The surface Γ1 will be called the fast jump surface on which a slow
variable acting as a parameter guarantees a fast jump of solutions of the u equation
to occur. However, additional knowledge about the relation of Γ1 with the flow on the
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Figure 3.5. The cross section of the surface B at k = 2, after cusps
have formed.
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Figure 3.6. The cross section of the surface B at k = 6, after the first
intersection of fold lines.

slow manifold also plays an important role. The naive guess that the flow on the slow
manifold should intersect Γ1 transversely turns out to be irrelevant. In §4, we will
construct a slow switching curve C in the space of slow variables. All of the slow
solutions have to switch from one vector field defined by u = h−(y+ k

ω
sin(ωx+ b)) to

another defined by u = h+(y + k
ω

sin(ωx + b)) at C in order to satisfy the boundary
conditions at x = 0, 1. As shown by the case of this paper, C is not a solution curve
in general. See Figure 4.1 for Γ1 and C. The construction of higher order expansions,
and the proof of the existence of a true solution near the formal solution heavily
depends on whether the intersection of C and Γ1 is transverse or not.

If C and Γ1 intersect transversely, then the heteroclinic solution q breaks trans-
versely when moving along C. This case was treated in [26] where higher order ex-
pansions of (u, y) = (

∑
εjuj,

∑
εjyj) were obtained together with the location of the

internal layer
∑∞

0 εjxj . The free parameter xj , j ≥ 1, was needed when computing
uj in the internal layer, denoted by uSj , since the the equation for uSj turns out to be
not invertible. Physically {xj}∞j=1 acts as a phase perturbation since the stretched

variable used in [26] was ξ = (x −
∑
εjxj)/ε. Therefore, the small perturbation in

the switching time corresponds to a phase shift from uS0 (ξ) = q(ξ+ x1 + εx2 + . . . ) to
q(ξ). Proof of the existence of a true solution follows from the geometric method in
[34, 16] or the analytic method in [8, 21].

If C intersects Γ1 tangentially, the case considered in this paper, moving along C
does not break the heteroclinic solution transversely. Some fundamental argument in
[26] does not work here. This implies that the methods in [21] and [34] do not apply
directly to this case. In particular, the linear system for (uj, yj) is not invertible even
with the help of a free parameter xj . We will employ a common trick in bifurcation
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theory, namely, assuming that the switching time x0 is given and letting the system
parameter b =

∑
εjbj depend on x0. Each bj is determined in the expansion of (or

helps to determine) (uj, yj). We no longer need the terms x1, x2, · · · (They can be
arbitrarily given and set to be zero). In the rest of the paper ξ = (x − x0)/ε in the
internal layer.

This paper is organized as follows. In §4, we construct leading terms for the as-
ymptotic expansions of the internal layer solutions. We show that for some values
of k and b, multiple internal layer solutions can be created through cusp and fold
type bifurcations. The fold or cusp occurs when the slow switching curve C inter-
sects with the fast jump surface Γ1 at quadratic or cubic tangency points. In §5,
we construct higher order expansions of the internal layer solutions. These expan-
sions are determined by systems of linear differential-algebraic equations obtained by
expanding (3.2) in powers of ε and matching inner and outer layers. Although the
leading order expansion is sufficient to determine a true one-layer solution near it, the
stability of this solution must be determined by the expansions up to the order ε1. In
§6, we discuss the stability of the internal layer solutions when the intersection of C
and Γ1 is tangential. We obtain expansions of critical eigenvalues and corresponding
eigenfunctions to any order of ε. The stability of the internal layer solution is deter-
mined by the first nonzero coefficient of the expansion of the critical eigenvalue. Since
λ0 = 0, we need to compute the expansions up to at least ε1λ1. In §7, We justify
that our formal series for internal layer solutions and eigenvalue–eigenfunctions are
correct. We find correction terms to asymptotic series so that the result is an exact
solution. Our main tool is Theorem 7.1 which uses a Newton’s method in function
spaces with an undetermined parameter. When applied to the internal layer solu-
tion, the parameter is b. When applied to the eigenvalue-eigenfunction problem, the
parameter is the eigenvalue λ.

We remark that the method used in [26] also can be used to obtain the results in
[1, 13] for the existence and stability of the one layer (or multiple layer) solutions
of (1.1). In fact, it is only necessary to replace the function y + k

ω
sin(ωx + b) by a

function αy + βa(x) where α, β are constants with a(x) satisfying the transversality
conditions in the introduction. For α = 0, we obtain the scalar equation of [1, 13] and
for α 6= 0, β 6= 0, we have a system. The results on bifurcation in the present paper
should permit the understanding of the flow for nongeneric functions a(x); that is,
for functions a(x) which have a quadratic tangency at zero at some point xj .

4. Leading terms of the internal layer solutions

We first construct the leading terms (u0, y0) of the asymptotic expansion

u(x, ε) =
∑

εjuj, y(x, ε) =
∑

εjyj.

In regular layers, let ε = 0 in (3.2). The u equation 0 = F (u, y+ k
ω

sin(ωx+ b)) has
two branches of solutions,

u = h±(y +
k

ω
sin(ωx+ b)).
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Inserting the expression into the y equation yields

yxx + σG(h±(y +
k

ω
sin(ωx+ b)), y) = 0.

With x0 remaining to be determined and using h− for x < x0 and h+ for x > x0, we
obtain the equation for y(x) on (0, x0) ∪ (x0, 1).

In the internal layer, letting ξ = (x− x0)/ε in the first equation in (3.2), we have

uξξ + F (u, y(x0 + εξ) +
k

ω
sin(ω(x0 + εξ) + b)) = 0.

For ε = 0, we obtain the u equation with y(x0) and x0 as parameters:

uξξ + F (u, y(x0) +
k

ω
sin(ωx0 + b)) = 0.

At x = x0, from A2, the u equation has a heteroclinic solution q(ξ) if

y(x0) +
k

ω
sin(ωx0 + b) = ỹ.

We now return to the construction of y0 in regular layers. Consider a first order
system in (y, z, x) space:

dy/dt = z,
dz/dt = −σG(h(y + k

ω
sin(ωx+ b)), y),

dx/dt = 1,
(4.1)

where h = h− or h+. Define the following subsets of R3 :

Γ0 = {(y, z, x)|x = 0},
Γ1 = {(y, z, x)|y + k

ω
sin(ωx+ b) = ỹ},

Γ2 = {(y, z, x)|x = 1},
S0 = {(y, z, x)|x = 0, z = 0},
S1 = {(y, z, x)|x = 1, z = 0}.

The fast jump surface Γ1 will be denoted Γ
(k,ω,b)
1 when we want to express its

dependence on (k, ω, b) .
The solution (y, z, x) of (4.1) must start from S0 and end at S1. Notice that
−σG > 0 for x < x0 and < 0 for x > x0. This means that z is increasing if x < x0

and decreasing if x > x0 (or y is concave up if x < x0 and concave down if x > x0).
In order to satisfy the boundary conditions at x = 0, 1, the solution must switch from
one vector field of (4.1) related to h− to another related to h+ at a switching point
℘ = (y(x0), z(x0), x0) where dz/dt = d2y/dt2 changes sign. We now describe the set
of all the switching points ℘.

Let Φ−(t) or Φ+(t) be the solution map of (4.1) with h = h− or h = h+ respectively.
Let

M− = {Φ−(t)S0, t ≥ 0},
M+ = {Φ+(t)S1, t ≤ 0}.

Notations Φ
(k,ω,b)
± andM(k,ω,b)

± will be used when we want to express their dependence
on (k, ω, b).
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Figure 4.1. In the (x, y, z) space, the switching point is determined
by the intersection of a slow switching curve C and a fast jump surface
Γ1.

Since Γ0 and Γ2 are transversal to the flow of (4.1), the sets M± are smooth
two-dimensional manifolds. Each switching point ℘ ∈ M− ∩M+ ∩ Γ1.

Lemma 4.1. Let k = 0 in (4.1). Let Π̄ = {(y, z, x)|x = x0} where x0 is the switching
time, and let µ± = M± ∩ Π̄. Then µ− t µ+ in Π̄. In particular, M− t M+.
Moreover, the curve C = M− ∩ M+ is a C1 submanifold and can be written as
C = {(y, z, x)|x = x∗(y, b), z = z∗(y, b), |y − ỹ| < η, η > 0}, with ∂x∗(y, b)/∂y < 0.

Proof. We will use results from [30] concerning the regular solution y0 of (4.1) when
k = 0. In regular layers, linearize around the solution y0 and consider an initial value
problem for x ≥ 0:

Yx = Z,
Zx = −σ d

dy
G(h−(y0(x)), y0(x))Y,

Y (0) = 1,
Z(0) = 0,
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Since d
dy
G(h(y0(x)), y0(x)) < 0, the solution (Y −, Z−) satisfies Y −(x0) > 1, Z−(x0) >

0. Consider a similar initial value problem for x ≤ 1:

Yx = Z,
Zx = −σ d

dy
G(h+(y0(x)), y0(x))Y,

Y (1) = 1,
Z(1) = 0,

The solution (Y +, Z+) satisfies Y +(x0) > 1, Z+(x0) < 0.
Recall that T℘M denotes the tangent space of a manifold M at ℘. Observe that

(Y −(x0), Z−(x0), 0) ∈ T℘M− and (Y +(x0), Z+(x0), 0) ∈ T℘M+ and the two vectors
are linearly independent. Thus µ− t µ+ on Π̄. Since Π̄ is transversal to the flow of
(4.1), it follows that the intersection of M− andM+ is transverse.

Based on the properties of (Y ±(x0), Z±(x0)), the following linear system has a
unique solution (Y c, Zc).

dY/dx = Z,
dZ/dx = −σ d

dy
G(h(y0(x)), y0(x))Y,

Z(0) = 0, Z(1) = 0,
[Y ](x0) = 0,
[Z](x0) = σ(G(h−(ỹ), ỹ)−G(h+(ỹ), ỹ)),

(4.2)

where h = h− or h+ if x < x0 or > x0. We now have two tangent vectors on M−:

(Y c(x0), Zc(x0−), 0) and (y0x(x0),−σG(h−(ỹ), ỹ), 1),

and two tangent vectors on M+:

(Y c(x0), Zc(x0+), 0) and (y0x(x0),−σG(h+(ỹ), ỹ), 1).

Denote y0x = z0. A tangent vector of C at the switching point has the form

(Y c(x0)− z0(x0), Zc(x0−) + σG(h−(ỹ), ỹ),−1)

=(Y c(x0)− z0(x0), Zc(x0+) + σG(h+(ỹ), ỹ),−1)

Nishiura and Fujii [30] have shown that Y c(x0) − z0(x0) > 0, which implies that
locally we can express the x and z coordinates of C as functions of y, |y − ỹ| < η. It

is also obvious that if η > 0 is small, ∂x∗(y,b)
∂y

< 0 for all |y − ỹ| < η.

Observe that the distances betweenM(k,ω,b)
± andM(0,ω,b)

± areO( k
ω2 ) in the C0 metric

and O( k
ω

) in the C1 metric. For any k 6= 0, if ω is sufficiently large, M(k,ω,b)
− and

M(k,ω,b)
+ still intersect transversely along a smooth curve C(k,ω,b). The curve C(k,ω,b) is

called the slow switching curve on which yxx has to change sign in order to satisfy
boundary conditions at x = 0, 1. The distance between C(k,ω,b) and C(0,ω,b) is O(k/ω2)
in the C0 metric and is O(k/ω) in the C1 metric. This implies that C(k,ω,b) also has
the form

C(k,ω,b) = {(y, z, x) : x = x∗(y, k, ω, b), z = z∗(y, k, ω, b), |y− ỹ| ≤ η}
where ∂x∗(y, k, ω, b)/∂y < 0.
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The y coordinate of Γ
(k,ω,b)
1 oscillates between ỹ ± k/ω. When ω > k/η, C(k,ω,b) ∩

Γ
(k,ω,b)
1 is nonempty. Each point on C(k,ω,b) ∩ Γ

(k,ω,b)
1 gives rise to an approximate

internal layer solution. Observe that the slope of C(k,ω,b) is nonzero and depends very

little on k if ω is sufficiently large. Therefore, if k is sufficiently large, C(k,ω,b)∩Γ
(k,ω,b)
1

consists of multiple points. This gives rise to multiple existence of internal layer
solutions.

If (y, z, x) ∈ C∩Γ
(k,ω,b)
1 , then x = x∗(ỹ− k

ω
sinφ, k, ω, b) with ωx∗(ỹ− k

ω
sinφ, k, ω, b)+

b − φ = 0. It was proved in [26] that, for each (φ, k, ω) ∈ R3 with sufficiently large
ω, there exist a unique b∗(φ, k, ω) ∈ R satisfying this latter equation. Therefore,
the x coordinate of C ∩ Γ1 is x0 = (φ − b∗(φ, k, ω))/ω. In the following figures, we

depict some possible intersections of C(k,ω,b) and Γ
(k,ω,b)
1 . At φ = φ1, C(k,ω,b) intersects

Γ
(k,ω,b)
1 transversely. At φ = φ2, the intersection is of second degree. The curve C(k,ω,b)

can intersect Γ
(k,ω,b)
1 transversely at three points corresponding to φ = φ3, φ4, φ5

respectively. At φ = φ6, the intersection is of third degree.

y
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φ

φ
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φ
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Figure 4.2. Several possible intersections of C(k,ω,b) and Γ
(k,ω,b)
1 are depicted.
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The existence of a true solution and its stability corresponding to a point at which

C(k,ω,b) intersects Γ
(k,ω,b)
1 transversally were discussed in [26]. To discuss solutions that

correspond to points near the tangential intersection of C(k,ω,b) and Γ
(k,ω,b)
1 , we need

the following lemma.

Lemma 4.2. For a fixed k = k†, let ℘† = (y†, z†, x†) be a tangential intersection of

C and Γ1. Then there exists a smooth function b̃(x, k) defined in a neighborhood of x†

and k†, such that, if b = b̃(x0, k), then there is a point in Γ1 ∩ C whose x coordinate
is x0. Moreover, if ℘† corresponds to a quadratic tangency, then

b̃(x0, k) = b0(k) + b1(k)(x0 − x†) + b2(k)(x0 − x†)2 +O((x0 − x†)3),

with b1(k†) = 0, b2(k†) 6= 0. If ℘† corresponds to a cubic tangency, then

b̃(x0, k) = c0(k) + c1(k)(x0 − x†) + c2(k)(x0 − x†)2 + c3(k)(x0 − x†)3 +O((x0 − x†)4),

with c1(k†) = c2(k†) = 0, c3(k
†) 6= 0. Moreover,

dc0(k†)/dk = O(ω−1), dc1(k†)/dk 6= 0, dc2(k†)/dk = O(ω−1).(4.3)

Here, 6= 0 means that the quantity is bounded away from zero uniformly as ω →∞.

Proof. The manifolds M(k,ω,b)
± can be expressed as graphs of solution maps of (4.1)

with a parameter (k, ω, b). Using linear variational equations, we can prove the esti-
mate

|∂
i+j+`x∗(y, k, ω, b)

∂yi∂bj∂k`
| ≤ Cωi

ω2
, if j + ` ≥ 1.(4.4)

The ω−2 factor comes from the fact that the L1 norm of | k
ω

sin(ωx + b)| is O(ω−2)
within one period. The method used to prove (4.4) is the same as used in [26], Lemma
5.3.

The function b∗(φ, k, ω) satisfies,

ωx∗(ỹ − k

ω
sin φ, k, ω, b) + b− φ = 0.(4.5)

Differentiating (4.5), we have

∂b∗

∂k
= (1 + ω

∂x∗

∂b
)−1∂x

∗

∂y
sinφ+O(ω−1),(4.6)

∂b∗

∂φ
= (1 + ω

∂x∗

∂b
)−1(1 + k

∂x∗

∂y
cosφ).(4.7)

In particular, ∂b∗

∂φ
= 0 if the intersection is tangential. Using (4.4) and (4.7), we

find

∂2b∗

∂φ2
= −k∂x

∗

∂y
(1 + ω

∂x∗

∂b
)−1 sinφ+O(ω−1), if

∂b∗

∂φ
= 0,(4.8)

∂3b∗

∂φ3
= −k∂x

∗

∂y
(1 + ω

∂x∗

∂b
)−1 cosφ+O(ω−1), if

∂b∗

∂φ
=
∂2b∗

∂φ2
= 0.(4.9)
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Assume now ∂b∗

∂φ
= ∂2b∗

∂φ2 = 0. Differentiating (4.5) with respect to both φ and k, we
have

∂2b∗

∂φ∂k
=
∂x∗

∂y
(1 + ω

∂x∗

∂b
)−1 cosφ+O(ω−1),(4.10)

∂3b∗

∂φ2∂k
= −∂x

∗

∂y
(1 + ω

∂x∗

∂b
)−1 sinφ+O(ω−1).(4.11)

Though the details are quite tedious to verify, the above can be obtained by formally
partial differentiating (4.6) with respect to φ, since x∗ depends weakly on k and b.

Consider the equation

x =
φ− b∗(φ, k, ω)

ω
.

Observe that ∂x
∂φ

= 1
ω

if ∂b∗/∂φ = 0. We can solve for φ as a function φ∗(x, k, ω) of

(x, k, ω) in a neighborhood of (x†, k†, ω). It is easy to verify that, if ∂b∗

∂φ
= 0, then

∂φ∗(x, k, ω)/∂x = ω and ∂φ∗(x, k, ω)/∂k = ∂b∗/∂k. Other derivatives of φ∗(x, k) are
also computable. Let b̃(x, k, ω) = b∗(φ∗(x, k, ω), k, ω).

At any tangential intersection, we have ∂b̃
∂x

= ω ∂b∗

∂φ
= 0.

At a point of quadratic tangency, sin φ 6= 0. Therefore, from (4.8), ∂2b∗

∂φ2 6= 0 and
d2b̃
dx2 6= 0. We have proved that b1(k†) = 0, b2(k†) 6= 0.

Similarly, at a point of cubic tangency, cosφ 6= 0 and ∂2b∗

∂φ2 = 0. From (4.9),
∂3b∗

∂φ3 6= 0. We then conclude that d2b̃
dx2 = 0 and d3b̃

dx3 6= 0. Therefore c1(k†) = c2(k†) = 0

but c3(k†) 6= 0. Based on (4.8), sinφ = O(ω−1). Estimates (4.3) can be derived from
(4.6), (4.10) and (4.11).

Let ω be large and fixed. The singular limit bifurcation surface BK,ω = {(k, b, x0)|b =

b̃(x0, k)} has the desired fold and cusp structure as stated in Theorem 3.2. Since
b1(k†) = 0, b2(k†) 6= 0, the structure of a fold is clear at points where C intersects Γ1

quadratically. To see the cusp structure at a point of cubic tangency, consider finding
zeros of the function

H(k, b, x0) = c0(k)− b+ c1(k)(x0 − x†) + c2(k)(x0 − x†)2

+ c3(k)(x0 − x†)3 +O((x0 − x†)4)

≡ γ0 + γ1(x0 − x†) + γ2(x0 − x†)2 + γ3(x0 − x†)3 + h(x0, k),

where h = O(|x0− x†|4). The method in [5] allows us to eliminate γ2 by a shifting in
x0 to obtain

H = γ̃0 + γ̃1(x0 − x† − x̃(k)) + γ̃3(x0 − x† − x̃(k))3 + h̃(x0, k),

where x̃(k) = γ2/(3γ3) = O(k/ω) by (4.3) and h̃ = O(|(x0−x†|4 +ω−4|k− k†|4). The
cusp in (γ̃0, γ̃1) is approximately of the parameterized form

γ̃0 = 2γ̃3(x0 − x† − x̃(k))3, γ̃1 = −3γ̃3(x0 − x† − x̃(k))2.
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One can verify that the map (k, b)→ (γ̃0, γ̃1) is a diffeomorphism. The cusp structure
in (k, b) has thus been obtained.

In §7, we will show that a true internal layer solution exists if ε > 0 is small and b =
b̃(x0, k, ω)+O(εβ) for some 0 < β < 1. The surface BK,ω,ε, defined before Theorem 3.2,
is within εβ to the surface BK,ω which has been shown to bear a cusp structure. It is

possible to have up to C4 estimates of the correction term on b̃(x0, k, ω). By doing
so, we can prove that BK,ω,ε also has a cusp structure. For simplicity, we will only
give C0 estimate of the correction term in this paper.

5. Higher order expansions of the internal layer solutions

For every switching point near a tangential intersection of C and Γ1, there corre-
sponds a zeroth order expansion (y0, u0) in both regular and singular layers. The
purpose of this section is to find higher order expansions in both regular and singular
layers. There are two regular layers, defined in (0, x0) and (x0, 1). There are three
singular layers, two of them are boundary layers, at x = 0 and x = 1; the other is an
internal layer, at x = x0.

Regular layers are points x ∈ (0, 1) where u(x, ε)→ u(x, 0), ε2uxx(x, ε)→ 0 as ε→ 0
with the convergence being uniform in a compact interval surrounding x. These two
properties fail at x = x0. When ε is small, from Figure 3.2, we see that there is a
narrow interval surrounding x0 where uxx(x, ε) is not small so that ε2uxx(x, ε) 9 0
and u(x, ε) 9 u(x, 0) uniformly no matter how small the interval is. In the singular
limit, the internal layer is at a point x = x0. An important observation is that using
the scale ξ = (x− x0)/ε to blow up the internal layer, the result uS(ξ, ε) does have a
limit as ε→ 0. The limit is a heteroclinic solution connecting u(x0−, 0) to u(x0+, 0).

For the problem under consideration, the ε0th order expansion of (u(x, ε), y(x, ε))
satisfies the Neumann boundary conditions at x = 0, 1 and converges uniformly near
x = 0, 1. However, higher order expansions of (u(x, ε), y(x, ε)) do not satisfy boundary
conditions at x = 0, 1. Therefore boundary layers near x = 0, 1 must be added. Again,
the boundary layers are points in the x scale. Using ξ = x/ε and (x−1)/ε to blow up
the neighborhood of x = 0 and x = 1, they become intervals R+ and R− respectively.

We use superscript S to denote singular layers and superscript R to denote regular
layers. We will label the three singular layers by i = 0, 1, 2. The points x0 = 0, x1 = x0

and x2 = 1 denote the locations of singular layers. With ξ = (x − xi)/ε, i = 0, 1, 2,
we look for expansions of solutions and the parameter b in the form

∞∑
0

εjuRij (x),
∞∑
0

εjyRij (x),

{
x ∈ (0, x0), i = 1,

x ∈ (x0, 1), i = 2;

∞∑
0

εjuSij (ξ),
∞∑
0

εjySij (ξ),


ξ ≥ 0, i = 0,

ξ ∈ R, i = 1,

ξ ≤ 0, i = 2;

b =
∞∑
0

εjbj .



20 JACK K HALE AND XIAO-BIAO LIN

If no confusion arises, superscripts are sometimes dropped for notational simplicity.
Let z = yx in regular layers and z = yξ/ε in singular layers.

The governing equations for higher order expansions can be obtained by expanding
(3.2) in powers of ε. Auxiliary conditions are imposed on the expansions through the
matching of adjacent regular and singular layers, and the boundary conditions.

There are many publications discussing the principles of matching. The one used
in this paper may not be the most general but is convenient for systems that possess
hyperbolic slow manifolds. Let (uR, yR) be the outer solution in one of the regular
layers adjacent to xi. The expansion of (uR, yR, zR) by the inner variable ξ is denoted
(ũR, ỹR, z̃R) with

∞∑
0

εjw̃Rj (ξ) =
∞∑
0

εjwRj (xi + εξ),

where w = u, y or z. It is reasonable to expect that the inner expansions (uS, yS, zS)
should approach (ũR, ỹR, z̃R) as ξ → ±∞. In fact, we can be more precise about the
rate of convergence:
The exponential matching principle

|ũRj (ξ)− uSj (ξ)|+ |ũRjξ(ξ)− uSjξ(ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|,(5.1)

|ỹRj (ξ)− ySj (ξ)|+ |ỹRjξ(ξ)− ySjξ(ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|.(5.2)

(5.2) is equivalent to

|ỹRj (ξ)− ySj (ξ)|+ |z̃Rj (ξ)− zSj (ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|.

The above exponential-polynomial rate was first used in [20]. Since (ũRj , ỹ
R
j , z̃

R
j )

are polynomials of order j obtained through the Taylor expansions, therefore, as
ξ → ±∞, (uSj , y

S
j , z

S
j ) are asymptotically polynomials of order j also. Consider the u

equations. If j = 0, we are back to the statement that qi(ξ)→ uR0 (xi±) exponentially
as ξ → ±∞. The loss of the rate of convergence for j > 0 was also explained in [20].
Briefly, uSj and ũRj satisfy two linear nonhomogeneous systems

LuSj = P(uS1 , u
S
2 , · · · , uSj−1), L̃ũRj = P̃(ũR1 , ũ

R
2 , · · · , ũRj−1).

Here, P and P̃ are two multi-linear forms with their coefficients approaching each
other exponentially as ξ → ±∞. Also, L̃ and L are differential operators with their
coefficients approaching each other exponentially as ξ → ±∞. These are all due to
the fact that qi(ξ) → uR0 (xi±) as ξ → ±∞. Now the difference ∆uj = uSj − ũRj
satisfies a nonhomogeneous linear equation

L̃∆uj = (L̃− L)uSj + P(uS1 , u
S
2 , · · · , uSj−1)− P̃(ũR1 , ũ

R
2 , · · · , ũRj−1).

It is easy to prove, by induction in j, that the right hand side of the above equation is
of O((1+|ξ|j)e−γ|ξ|). Thus, it is reasonable to require that ∆uj is of O((1+|ξ|j)e−γ|ξ|).

The Neumann boundary conditions at x = 0, 1 induce some initial/terminal con-
ditions on the boundary layers: uSiξ (0, ε) = 0, ySiξ (0, ε) = 0, i = 0, 2. Therefore, we
have
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Boundary conditions in boundary layers

uSijξ(0) = 0, zSij (0) = 0, i = 0, 2.(5.3)

In §4, we have shown that the points in Γ1∩C near a tangential intersection can be
exhibited through the expression b0 = b̃(x0, k). With this x0 and b0, there is a unique
point (y†, z†, x0) ∈ C ∩Γ1. The ε0th order expansion in regular layers can be obtained
by solving (yR0 , z

R
0 ) from (4.1) using (y(x0), z(x0)) = (y†, z†) as an initial condition.

To complete solutions in regular layers, let uR0 (x) = h±(yR0 (x) + k
ω

sin(ωx + b0)) for
x < x0 or x > x0 respectively. In singular layers, let uSi0 (ξ) = qi(ξ) where q1 = q is
the heteroclinic solution if i = 1. qi = uRi0 (xi) is a constant solution if i = 0, 2. In
singular layers, ySi0 (ξ) = yR0 (xi) and zSi0 (ξ) = zR0 (xi) are constant solutions.

For the convenience of typing, let f = F and g = σG. In regular layers, let
fu(x) = fu(u

R
0 (x), yR0 (x) + k

ω
sin(ωx + b0)), gu(x) = gu(u

R
0 (x), yR0 (x)). The function

fy(x) is defined similar to fu(x), gy(x) similar to gu(x). In singular layers, let fu(ξ) =
fu(q

i(ξ), yS0 (ξ)+ k
ω

sin(ωxi+b0)), gu(ξ) = gu(q
i(ξ), yS0 (ξ)). The function fy(ξ) is defined

similar to fu(ξ), gy(ξ) similar to gu(ξ).

Some basic lemmas

Definition . Let I be a finite or infinite interval. Let Φ(t, s) be the principal matrix
solution for a linear system U ′ = A(t)U, t ∈ I. The system is said to have an
exponential dichotomy on I if there exist positive constants K,α and projections
Ps(t) + Pu(t) = id such that for t, s ∈ I, we have
(i) Φ(t, s)Ps(s) = Ps(t)Φ(t, s).
(ii) |Φ(t, s)Ps(s)| ≤ Ke−α(t−s), s ≤ t.
(iii) |Φ(t, s)Pu(s)| ≤ K−α(s−t), t ≤ s.
Ps(t) and Pu(t) are called respectively stable and unstable projections, and the

ranges of Ps(t) and Pu(t) are called stable and unstable subspaces of the exponential
dichotomy at the time t ∈ I.

If I = [t1, t2] is a finite interval, then corresponding to any continuous t-dependent
projections Ps(t), Pu(t), there is always an exponential dichotomy on I. However, we
are only interested in dichotomies where K is not too large and t2−t1 is not too small
so that Ke−α(t2−t1) << 1. In singular perturbation problems, the length of regular
layers are O(1/ε), in the stretched variable ξ. If K and α are independent of ε, then
if ε is small, the notion of the exponent dichotomy becomes very useful.

Definition . The second order equation uξξ+c(ξ)u = 0 is said to have an exponential
dichotomy on an interval I if the associated first order system uξ = v, vξ = −c(ξ)u
has an exponential dichotomy on I.

We present some lemmas concerning linear variational equations around the 0th
expansions in regular or in singular layers. The notation fu(·) means fu(u

R
0 (x), yR0 (x))

in regular layers and fu(u
S
0 (ξ), yS0 (ξ)) in singular layers.

Using the stretched variable ξ = x/ε in the regular layers, x ∈ [0, x0] and [x0, 1]
corresponds to ξ ∈ [0, x0/ε] and [x0/ε, 1/ε]. Rewrite ε2uxx + fu(x)u = 0 by the ξ
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variable, and convert it into a first order system,

uξ = v,

vξ = −fu(εξ)u.
(5.4)

Lemma 5.1. There exists ε > 0 such that for 0 < ε < ε0, (5.4) has an exponential
dichotomy in [0, x0/ε] and [x0/ε, 1/ε]. The constants K,α are independent of ε. As
ε → 0, the projection Ps(x̄/ε) approaches the spectral projection of an autonomous
system u′ = v, v′ = −fu(x̄)u uniformly for x̄ ∈ [0, x0] or [x0, 1].

Proof. For any fixed x̄ ∈ [0, x0] or [x0, 1], the above autonomous system is hyperbolic,
with n-dimensional stable and unstable subspaces, since fu(x̄) < 0. If we observing
that (5.4) is a slow varying system, then we can use Proposition 1, pp 50 of [6] to
conclude that the nonautomous system also has an exponential dichotomy. The proof
of the rest of the assertions is also in [6]

To compute the expansions in boundary layers, we need the stable subspace (or
unstable subspace) of the boundary layer at x = 0 (respectively at x = 1) to be
transversal to the subspace defined by the Neumann boundary condition.

Lemma 5.2. In each of the two boundary layers, fu(ξ) is a negative constant. The
system

uξ = v,

vξ = −fu(ξ)u, ξ ≥ 0, or ξ ≤ 0,

has an exponential dichotomy on R− or R+ . Moreover,

RPs ⊕ {(u, v)|u ∈ R, v = 0} = R2 ,

RPu ⊕ {(u, v)|u ∈ R, v = 0} = R2 .

Proof. Since (uS0 (ξ), yS0 (ξ)) are constant functions on boundary layers, fu(ξ) is a con-
stant function there, and is negative by A3. The spectral projections for the au-
tonomous system are easy to compute. We will leave the verification of the transver-
sality conditions in the lemma to the readers.

Lemma 5.3. In the internal layer, the homogeneous part of the system

uξ = v,

vξ = −fu(ξ)u+ F ,(5.5)

has an exponential dichotomy on R− and R+ . As ξ → ±∞, the projection Ps(ξ)
approaches the spectral projection of an autonomous system

uξ = v,

vξ = −fu(uR0 (x±0 ), ỹ)u.

Up to constant multipliers, (q̇, q̈) is the only bounded solution on R to (5.5) if F = 0.
The adjoint system

uξ = fu(ξ)v,

vξ = −u,
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has a unique bounded solution ψ = (−q̈, q̇) on R up to constant multipliers. Let
t1 < 0 < t2 and consider (5.5) on [t1, t2]. Let φs ∈ RPs(t1), φu ∈ RPu(t2) be two
given vectors. Let F be continuous on [t1, t2]. With the boundary conditions

Ps(t1)

(
u
v

)
= φs, Pu(t2)

(
u
v

)
= φu,

system (5.5) has a solution in [t1, t2] if and only if

ψ(t1)φ(t1)− ψ(t2)φ(t2) +

∫ t2

t1

q̇(ξ)F(ξ)dξ = 0.

If also < q̇, u > + < q̈, v >= 0, then the solution is unique and satisfies

|u| ≤ C(|φs|+ |φu|+ |F|),

where C does not depend on t1 and t2.

Proof. The existence of exponential dichotomies on R− and R+ follows from [32],
where a Fredholm type condition for the solvability of (5.5), if ξ ∈ R, is also presented.
Generalization to boundary value problems on a finite interval can be found in [22],
from which (5.5) has a solution if and only if

ψ(t1)φ(t1)− ψ(t2)φ(t2) +

∫ t2

t1

< ψ(ξ), (0,F(ξ)) > dξ = 0,

where (0,F) is the forcing term of the system (5.5). Since ψ = (−q̈, q̇), we have
< ψ, (0,F) >= q̇F .

ε1th order expansion

We first look at the ε1th order expansion. The formula obtained here will be used
to compute λ1.

In regular layers, we have

fuu
R
1 + fy(y

R
1 +

k

ω
cos(ωx+ b0)b1) = 0,

yR1xx + guu
R
1 + gyy

R
1 = 0.

Solving uR1 from the first equation and substituting into the second, we have

yR1xx − (guf
−1
u fy − gu)yR1 − guf−1

u fy
k

ω
cos(ωx+ b0)b1 = 0.(5.6)

In singular layers, including i = 0, 1, 2, we have

uSi1ξξ + fuu
Si
1 + fy(y

Si
1 +

k

ω
cos(ωxi + b0)(ωξ + b1)) = 0,(5.7)

ySi1ξ = zSi0 ,

zSi1ξ = −g(qi(ξ), yR0 (xi)),
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where zS = dyS

dx
= dyS

εdξ
. Solving for (ySi1 , z

Si
1 ), we have

ySi1 (ξ) = ySi1 (0) + zR0 (xi)ξ,

zSi1 (ξ) = zSi1 (0)−
∫ ξ

0

g(qi(ξ), yR0 (xi))dξ.

At xi, i = 0, 1, let the inner expansion of the regular layer to the right of xi,
(yR,i+1(x, ε), zR,i+1(x, ε)), be denoted (ỹ+(ξ, ε), z̃+(ξ, ε)). We have

ỹ+
1 (ξ) = yR1 (xi+) + yR0x(x

i+)ξ,

z̃+
1 (ξ) = zR1 (xi+) + zR0x(x

i+)ξ.

If we recall that yR0x(x
i+) = zR0 (xi) and zR0x(x

i+) = −g(qi(∞), yR0 (xi)), then the
matching of (ỹ+

1 , z̃
+
1 ) and (yS1 , z

S
1 ) leads to

yR1 (xi+) = yS1 (0),

zR1 (xi+) = zS1 (0)−
∫ ∞

0

[g(qi(ξ), yR0 (x0))− g(qi(∞), yR0 (x0))]dξ.

Inner expansions (ỹ−, z̃−) for outer solutions to the left of xi, i = 1, 2, satisfy similar
formulas.

At the boundary layers, the boundary conditions (5.3) lead to,

zR1 (0) = zR1 (1) = 0.(5.8)

At the internal layer, we obtain the jumps across x1 = x0,

[yR1 ](x0) = 0,

[zR1 ](x0) = −
∫ ∞

0

(g(q(ξ), yR0 (x0))− g(q(∞), yR0 (x0)))dξ

+

∫ −∞
0

(g(q(ξ), yR0 (x0))− g(q(−∞), yR0 (x0)))dξ.

(5.9)

In the internal layer, since zero is an eigenvalue for equation (5.7), in order to have
a solution uS1

1 ∈ P1(R), we need to impose a Fredholm condition∫ ∞
−∞

q̇(ξ)fy(y
S1
1 (ξ) +

k

ω
cos(ωx0 + b0)(ωξ + b1))dξ = 0.

Observe that yS1
1 (0) = yR1 (x0). If we recall that n =

∫∞
−∞ q̇(ξ)fy(q(ξ), y

R
0 (x0))dξ, we

are led to the following condition on yR1 (x0) and b1:

n · (yR1 (x0) +
k

ω
cos(ωx0 + b0)b1) = −

∫ ∞
−∞

q̇(ξ)fy(z
R
0 (x0) + k cos(ωx0 + b0))ξdξ.

(5.10)

εjth order expansion

The εjth, order expansion, j > 1, is similar to that of the ε1th. When working
on the jth order expansion, we assume that all the terms u`, y`, b`, ` < j have been
obtained and are denoted ` · o · t.
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In regular layers, we have

uRj−2,xx + fuu
R
j + fy(y

R
j +

k

ω
cos(ωx+ b0)bj) = ` · o · t,

yRjxx + guu
R
j + gyy

R
j = ` · o · t.

Solving for uRj from the the first equation and substituting into the second, we have

yRjxx − (guf
−1
u fy − gy)yRj − guf−1

u fy
k

ω
cos(ωx+ b0)bj = ` · o · t def= E0j .(5.11)

In singular layers, for i = 0, 1, 2, we have

uSijξξ + fuu
Si
j = fy(y

Si
j +

k

ω
cos(ωxi + b0)bj) = ` · o · t,(5.12)

ySijξ = zSij−1,

zSijξ = ` · o · t.
The solution (ySij , z

Si
j ) is determined by (ySij (0), zSij (0)).

ySij (ξ) = ySij (0) + ` · o · t·,
zSij (ξ) = zSij (0) + ` · o · t · .

The inner expansion of the regular layers to the right or left of xi has the form

ỹ±j (ξ) = yRj (xi±) + (` · o · t)±,
z̃±j (ξ) = zRj (xi±) + (` · o · t)±.

Here the (` · o · t))± is a polynomial of degree j. It was proved in [26] that, as
ξ → ±∞, ySij (ξ) − ỹ±j (ξ) approaches a constant determined by ySij (0). The same

can be said about zSij (ξ) − z̃±j (ξ). In particular, ySij (0) = yRj (x+
0 ) + ` · o · t. As a

consequence, we conclude that, in boundary layers, the boundary conditions (5.3)
and the matching imply that

zRj (0) = ` · o · t def= B0j, zRj (1) = ` · o · t def= B1j .(5.13)

From the matching of outer and inner solutions, at the internal layer, we again
obtain jumps across x0:

[yRj ](x0) = ` · o · t def= E1j ,(5.14)

[zRj ](x0) = ` · o · t def= E2j .(5.15)

We have found the εjth order equation and auxiliary conditions for outer layers.
Nishiura and Fujii [30] pointed out that although the length of the internal layer
approaches zero as ε→ 0, the effect of the internal layer on outer solutions is preserved
as a δ function acting at the layer position. This causes a jump of (yRj , z

R
j ) at x0. Our

scheme of solving the jth order fast-slow system is close to their idea. We will solve
the regular layers with proper jumps determined by the internal layer first and then
use the information on singular layers. The following lemma affirms that the regular
layers can be uniquely determined with jump and boundary conditions.
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Lemma 5.4. Equation (5.11) with jump conditions (5.14), (5.15) and boundary con-
ditions (5.13) has a unique solution yRj .

Proof. Consider the same equation with E0j = 0 andB0j = B1j = E1j = E2j = bj = 0.
From the shooting method, it is easy to see that (yRj (x0), zRj (0)) ∈ Tµ− ∩ Tµ+ . Due

to Lemma 4.1, µ− t µ+ in Π̄. Thus (yRj (x0), zRj (0)) = 0. This proves that the
homogeneous system has only the zero solution. Therefore, the nonhomogeneous
system has a unique solution determined by the input terms.

If we denote the solution given by Lemma 5.4 as a linear functional

yRj = K(B0j , B1j , E1j , E2j, E0j + guf
−1
u fv

k

ω
cos(ωx+ b0)bj),

we have the estimate

|yRj | ≤ C(|B0j|+ |B1j |+ |E1j|+ |E2j |+ |E0j|+
k

ω2
|bj |).(5.16)

Here the k
ω2 term is due to the fast oscillation in (5.11).

Observe that the ` · o · t in (5.12) is in Pj(R). When i = 1, zero is an eigenvalue
of (5.12) in Pj(R). Therefore, equation (5.12) has a unique solution uSj ∈ Pj(R)

that satisfies uSj (0) ⊥ q̇(0) if the Fredholm condition is satisfied:
∫
q̇(ξ)fy(y

Si
j (ξ) +

k
ω

cos(ωxi + b0)bj)dξ = 0. This simplifies to

n · (yRj (x0+) +
k

ω
cos(ωx0 + b0)bj) = ` · o · t def= E3j .(5.17)

Due to (5.16), the left hand side of (5.17) can be written as n k
ω

cos(ωx0+b0)bj+O( k
ω2 )bj

plus terms which are bounded above by linear functions of B0j , B1j , E0j , E1j and E2j .
Since cosφ 6= 0 near a tangential intersection of C and Γ1, Since n 6= 0, from A2, we
can solve bj as a function of B0j , B1j , E0j, E1j , E2j and E3j from (5.17).

It remains to determine uSij in boundary layers. Using Lemma 5.2 of this paper and

Lemma 2.2 of [26], there exists a unique solution uSij ∈ Pj(R±), i = 0, 2 respectively

that satisfies the boundary condition uSijξ(0) = 0.

This completes the εjth order expansion of the formal series solution.
The matching of uj in the singular and regular layers can be proved based on the

growth condition |uSj (ξ)| ≤ C(1+ |ξ|j). Details can be found in [20]. The matching of
(yj, zj) in regular and singular layers is implied in condition (5.14,5.15). For details,
please see [26].

6. Stability of the internal layer solution

The stability of the internal layer solution is determined by the critical eigenvalue
λ(ε) =

∑∞
0 εjλj , λ0 = 0. Nishiura and Fujii [30] justified the SLEP method by

showing that the critical eigenvalue constructed by the SLEP method is the only
eigenvalue in a region Reλ ≥ µ where µ < 0 is a constant. Their argument should
apply to the system considered in this paper with some small change, since our system
is close to theirs when ω is large. For this reason, we will discuss critical eigenvalues
but not the non critical ones.
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We want to formally solve an eigenvalue–eigenfunction problem λ(ε)Ξ(ε) = A(ε)Ξ(ε),
where A is an differential operator and Ξ = (U, Y ) is an eigenfunction corresponding
to λ(ε).

In regular layers, the eigenvalue problem is

λU = ε2Uxx + f εuU + f εyY,

λY = Yxx + gεuU + gεyY.

In singular layers, with ξ = (x− xi)/ε, i = 0, 1, 2, the eigenvalue problem is

λU = Uξξ + f εuU + f εyY,

ε2λY = Yξξ + ε2(gεuU + gεyY ).

In the above, f εu = fu(
∑
εjuj,

∑
εjyj+

k
ω

sin(ωx+
∑
εjbj)), and similarly for f εy, g

ε
u, g

ε
y.

The convention for the arguments of fu, fy, gu, gy follows form that of §5 in the rest
of this section.

Introducing Z = Yx in regular layers and Z = Yξ/ε in singular layers, our goal is
to obtain expansions for λ(ε) =

∑
εjλj and W (ε) =

∑
εjWj where W = U, Y or Z.

Boundary conditions Formal expansion of the Neumann boundary conditions yields:

USi
jξ (0) = 0, i = 0, 2,

Y Si
jξ (0) = ZSi

j (0) = 0, i = 0, 2.

Matching of inner and outer eigenfunctions
Let the inner expansion of a regular layer adjacent to the ith singular layer be

∞∑
0

W̃j(ξ) =
∞∑
0

WR
j (xi + εξ),

where W = U, Y or Z. Similar to the expansion of the formal solution in §5, we
impose the following matching condition:

|USi
j (ξ)− Ũj(ξ)|+ |USi

jξ (ξ)− Ũjξ(ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|,
|Y Si
j (ξ)− Ỹj(ξ)|+ |ZSi

j (ξ)− Z̃j(ξ)| ≤ C(1 + |ξ|j)e−γ|ξ|.

If we observe that W̃j(ξ), W = U, Y, Z, is a jth order polynomial of ξ, then

|USi
j (ξ)|+ |Y Si

j (ξ)|+ |ZSi
j (ξ)| ≤ C(1 + |ξ|j).

The governing equations can be obtained by expanding the eigenvalue–eigenfunction
system in powers of ε.
(1) ε0th order expansion:

First, in regular layers,

fuU0 + fyY0 = 0,

Y0xx + guU0 + gyY0 = 0,

U0 = −f−1
u fyY0,

Y R
0xx − (guf

−1
u fy − gu)Y R

0 = 0.(6.1)
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In singular layers, using λ0 = 0, we have

USi
0ξξ + fuU

Si
0 + fuY

Si
0 = 0,(6.2)

Y Si
0ξ = ZSi

0ξ = 0.(6.3)

We see that Y S
0 and ZS

0 are constant functions. From the matching principle and
ZSi

0 (0) = 0, i = 0, 2, we have the boundary conditions,

ZR
0 (0) = ZR

0 (1) = 0.(6.4)

The matching at x = x0 yields the jump conditions,

[Y R
0 ](x0) = [ZR

0 ](x0) = 0.(6.5)

From Lemma 5.4, equation (6.1) with boundary conditions (6.4) and jump condi-
tion (6.5) admits the unique solution Y R

0 = 0, which implies that Y Si
0 = 0, i = 0, 1, 2

and UR
0 = 0.

In (6.2), substitute Y Si
0 = 0. In boundary layers, due to the boundary condition

US
0ξ(0) = 0, we find that USi

0 = 0 for i = 0, 2. Here we have used Lemma 2.2 from
[26] again.

In the internal layer, i = 1, (6.2) has a unique bounded solution q̇(ξ) up to constant
multiples. Let US1

0 = q̇(ξ). Since q̇i(ξ) = 0, i = 0, 2, and q̇1 = q̇, we have USi
0 =

q̇i(ξ), i = 0, 1, 2. We normalize the eigenfunction so that < q̇, US1
j >= 0, j ≥ 1.

(2) ε1th order expansion:
In regular layers, since λ0U

R
1 + λ1U

R
0 = 0 = λ0Y R

1 + λ1Y
R

0 , we have

fuU
R
1 + fyY

R
1 = 0,

Y R
1xx + guU

R
1 + gyY

R
1 = 0,

UR
1 = −f−1

u fyY
R

1 ,

Y R
1xx − (guf

−1
u fy − gy)Y R

1 = 0.(6.6)

In singular layers, we have

λ1q̇
i(ξ) = USi

1ξξ + fuU
Si
1 + fyY

Si
1(6.7)

+ fuuq̇
iuSi1 + fuyq̇

i[ySi1 +
k

ω
cos(ωx0 + b0)(ωξ + b1)],

Y Si
1ξ = ZSi

0 = 0,

ZSi
1ξ = −guUSi

0 − gyY Si
0 = −guq̇i.

Thus, Y Si
1 (ξ) = Y R

1 (xi) is a constant function, and

ZSi(ξ) = zSi(0)−
∫ ξ

0

guq̇
i(ξ)dξ.

In boundary layers, using q̇i = 0, i = 0, 2, we have ZSi
1 (ξ) = ZSi

1 (0) = 0, i = 0, 2.
From the matching principle, we have

ZR
1 (0) = ZR

1 (1) = 0.(6.8)
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At x = x0, we compute the jumps

[Y R
1 ](x0) = 0,

[ZR
1 ](x0) = −

∫ ∞
−∞

guq̇
i(ξ)dξ = g(qi(−∞), ỹ)− g(qi(∞), ỹ).

(6.9)

From Lemma 5.4, equation (6.6), with boundary conditions (6.8) and jumps (6.9),
has a unique solution (Y R

1 , Z
R
1 ) = (Y c, Zc), which satisfies (4.2).

In order that (6.7) has a solution US1
1 ∈ P1(R), we need a Fredholm condition,

λ1|q̇|2 =< q̇, fyY
S1

1 + fuuq̇u
S1
1 + fuyq̇[· · · ] >,

where [· · · ] are terms in the brackets of (6.7). The above can be simplified using
integration by parts. Observe that

fuuq̇u
S1
1 + fuy q̇[· · · ]

=
∂

∂ξ
(fuu

S1
1 + fy[· · · ])− fuuS1

1ξ − fy(yS1
1ξ (ξ) + k cos(ωx0 + b0))

=− uS1
1ξξξ − fuuS1

1ξ − fy(yS1
1ξ (ξ) + k cos(ωx0 + b0)).

Therefore, < q̇, fuuq̇u
S1
1 + fuyq̇[· · · ] >= − < q̇, fy(y

S1
1ξ + k cos(ωx0 + b0)). If we recall

that Y S1
1 = Y R

1 (x0) = Y c(x0), yS1
1ξ = zR0 (x0) and n =

∫∞
−∞ q̇(ξ)fy(q(ξ), ỹ)dξ, then we

finally arrive at

λ1|q̇|2 = n(Y c(x0)− zR0 (x0)− k cos(ωx0 + b0)).(6.10)

We project out the z-component of Γ1 and C and let the images on the xy-plane be
Γ̃1 and C̃. The slope of Γ̃1 is −k cos(ωx0 + b0) and the slope of C̃ is Y c(x0)− zR0 (x0)
at C ∩ Γ1. For the latter, please refer to Lemma 4.1. If we recall that n < 0, from
A2, then we can summarize our result in the following

Theorem 6.1. For internal layer solutions corresponding to points near the tangen-
tial intersections of C and Γ1,

λ1 = |q̇|−2n(Y c(x0)− zR0 (x0)− k cos(ωx0 + b0)),

where Y c satisfies (4.2). Furthermore,

λ1


< 0, (slope of Γ̃1)>(slope of C̃),

= 0, (slope of Γ̃1)=(slope of C̃),

> 0, (slope of Γ̃1)<(slope of C̃).

The solution US1
1 of (6.7) is unique if < q̇, US1

1 >= 0.
Finally, in boundary layers, q̇i = 0, i = 0, 2. From Lemma 5.2, equation (6.7) has

a unique solution in P1(R±) with USi
1ξ (0) = 0, i = 0, 2.

(3) jth order expansion, j ≥ 2:
Assuming that we have obtained λ`, U`, Y`, Z`, 0 ≤ ` ≤ j − 1, we want to

compute λj, Uj , Yj, Zj . Any term that involves indices 0 ≤ ` ≤ j−1 will be denoted
` · o · t.
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In regular layers, since λ0 = 0 and UR
0 = Y R

0 = 0,

λ0U
R
j + · · ·+ λjU

R
0 = ` · o · t,

λ0Y
R
j + · · ·+ λjY

R
0 = ` · o · t.

The governing equations are

fuU
R
j + fyY

R
j = ` · o · t,

Y R
jxx + guU

R
j + gyY

R
j = ` · o · t,

UR
j = −f−1

u fyY
R
j + ` · o · t,

Y R
jxx − (guf

−1
u fy − gy)Y R

j = ` · o · t.(6.11)

In singular layers, using Y Si
0 = 0, USi

0 = q̇i, we have

λ0U
Si
j + · · ·+ λjU

Si
0 = λj q̇

i + ` · o · t,
λ0Y

Si
j + · · ·+ λjY

Si
0 = ` · o · t.

The governing equations are:

λj q̇
i = USi

jξξ + fuU
Si
j + fyY

Si
j + ` · o · t,(6.12)

Y Si
jξ = ZSi

j−1 = ` · o · t,
ZSi
jξ = −guUSi

j−1 − gyY Si
j−1 + ` · o · t = ` · o · t.

Therefore Y Si
j (ξ) = Y Si

j (0) + ` · o · t, ZSi
j (ξ) = ZSi

j (0) + ` · o · t.
From Lemma 3.3, [26], the matching of outer and inner solutions only needs to be

done on constant terms, because the higher order powers of ξ are already matched.
Therefore, we can deduce that

ZR
j (0) = ` · o · t, ZR

j (1) = ` · o · t.(6.13)

We also obtain the jumps at x = x0.

[Y R
j ](x0) = ` · o · t, [ZR

j ](x0) = ` · o · t.(6.14)

Equation (6.11), with boundary condition (6.13) and jumps (6.14), has a unique
solution Y R

j which is now computable.

In boundary layers, using Lemma 2.2, [26], and the boundary condition USi
jξ (0) = 0,

and Lemma 5.2 of this paper, we have a unique solution USi
j ∈ Pj(R±), i = 0, 2, for

(6.12).
In the internal layer, to have a solution of (6.12) in Pj(R), we need a Fredholm

condition:

λj |q̇|2 =< q̇, fyY
S1
j + ` · o · t > .(6.15)

If we recall that Y Si
j (ξ) = Y Si

j (0) + ` · o · t, Y Si
j (0) = Y R

j (x0+) + ` · o · t and that Y R
j

has already been computed, we can then determine λj from (6.15).
The matching of inner and outer solutions for (Yj, Zj) has already been considered

when deriving the boundary and jump condition of (Y R
j , Z

R
j ). The matching of U in

inner and outer layers can be proved based on the growth conditions. Details can be
found in [20, 26].
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7. Existence of exact solutions and eigenvalue-eigenfunctions

The purpose of this section is to verify that the formal expansions of internal
layer solutions and eigenvalue-eigenfunctions are valid. Unless otherwise specified,
the norms are the supremum norms of continuous functions.

We truncate the formal series to form approximations of exact solutions. Let 0 <
β < 1 be a constant. Then εβ is so called an intermediate variable that satisfies ε <<
εβ << 1. Let ai, 0 ≤ i ≤ 5 be a sequence of points that divides [0, 1] into subintervals
I i = {x|ai−1 < x < ai}. Here a0 = 0, a1 = εβ , a2 = x0 − εβ , a3 = x0 + εβ , a4 = 1− εβ
and a5 = 1, where x0 is the switching time in the formal construction. In §5 and §6,
the indices ` = 1, 2 and ` = 0, 1, 2 were used for the regular and singular layers. Both
layers are now uniformly indexed by i with i = 2` for regular and i = 2`+1 for singular
layers. Thus I1, I5 are the boundary layers, I2, I4 are the regular layers, and I3 is
the internal layer. Let ξi = ai/ε. In the stretched variable, I i = {ξ|ξi−1 < ξ < ξi}.
The length of I i approaches infinity as ε → 0, This makes the use of exponential
dichotomies relevant.

Let us suppose that the approximations are given by

λap =
m∑
0

εjλj , bap =
m∑
0

εjbj ,

W i
ap(x, ε) =

m∑
0

εjWR`
j (x), x ∈ I i, i = 2`, ` = 1, 2,

W i
ap(x, ε) =

m∑
0

εjW S`
j ((x− x`)/ε), x ∈ I i, i = 2`+ 1, ` = 0, 1, 2,

where x0 = 0, x1 = x0 and x2 = 1, and W = (u, y) if we are dealing with internal
layer solutions, and W = (U, Y ) if we are dealing with eigenfunctions. Let the exact
critical eigenvalue be λap + λ, the exact parameter be bap + b and the exact solution
to internal layer solution and eigenfunction be Wap + W . Our goal is to find the
correction terms λ, b and W . The linear variational system satisfied by λ, b and W
will be solved first. The nonlinear system will then be solved by contraction mapping
principles. We often need to express Wap and W in the stretched variable ξ = x/ε.
With some abuse of notations, we let W (ξ) = W (x), x = εξ.

In the following, the coefficients in regular layers are f iu = fu(u
R`
0 (x), yR`0 (x) +

k
ω

sin(ωx+ b0)), f iy = fy(u
R`
0 (x), yR`0 (x) + k

ω
sin(ωx+ b0)), i = 2`. Similar definitions

apply to giu(x) and giy(x). If the stretched variable ξ is used in regular layers, x should

be replaced by εξ. In singular layers, The coefficient f iu = f iu(u
S`
0 (ξ − x`/ε), yS`0 (ξ −

x`/ε)+ k
ω

sin(ωx`+b0)), i = 2`+1. Similar definitions apply to f iy(ξ), g
i
u(ξ) and giy(ξ).

If unstretched variable x is used in singular layers, ξ is replaced by x/ε. We will drop
the superscript i if it is clear from the context.

Let si(ξ), 1 ≤ i ≤ 5 be a given continuous and bounded function defined on R.
A6. Assume that ∫ ∞

−∞
q̇(ξ + x0/ε)s

3(ξ)dξ 6= 0.
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Our main tool is the following theorem concerning a linear system with forcing
terms and boundary/jump conditions.

Theorem 7.1. Consider the following system of equations where µ is an undeter-
mined parameter, F i and Gi are continuous, bounded functions on I i. In regular
layers,

Uξξ + f iuU + f iyY = F i(ξ), ξ = x/ε,(7.1)

Yxx + giuU + giyY = Gi(x), i = 2, 4.(7.2)

In singular layers,

Uξξ + f iuU + f iyY + µsi(ξ) = F i(ξ),(7.3)

Yxx = Gi(x), i = 1, 3, 5.(7.4)

The boundary conditions are

U1
ξ (ξ0) = U5

ξ (ξ5) = 0, Y 1
x (a0) = Y 5

x (a5) = 0.(7.5)

The jump conditions for 1 ≤ i ≤ 4 are

U i+1(ξi)− U i(ξi) = J i1, U i+1
ξ (ξi)− U i

ξ(ξ
i) = J i2,

Y i+1(ai)− Y i(ai) = J i3, Y i+1
x (ai)− Y i

x(ai) = J i4.
(7.6)

Then, there exists a unique solution that satisfies (7.1)-(7.6), and there is a positive
constant C such that

|µ|+
5∑
i=1

(|U i|+ |Y i|) ≤ C{
5∑
i=1

(|F i|+ |Gi|L1) +
4∑
i=1

4∑
j=1

|J ij |}.

Remark . If we exam the proof of Theorem 7.1, which uses Lemma 7.5, we find that

|Gi|L1 can be replaced by supc,d∈Ii |
∫ d
c
Gi(x)dx|. This form of estimate is useful in

the proof of Theorem 7.2.

Theorem 7.1 can be directly used to prove the existence of the exact critical eigen-
value and eigenfunctions near the asymptotic expansions obtained in §6. With some
change, see Theorem 7.2, it can be used to prove the existence of exact internal layer
solutions near the asymptotic series. The use of Theorem 7.1 is not limited to prob-
lems in this paper. It can be adapted to internal layer solutions not near bifurcation
points in parameter spaces [26], as well as associated eigenvalue problems. We com-
ment here that asymptotic expansions near and not near bifurcation points are quite
different. A similar version of the methods used here can be adapted for singularly
perturbed first order equations of the type in [21] and should simplify the original
proof.

To make the theorem more useful, we summarize basic assumptions without direct
reference to A1-A5. Assume that the homogeneous linear part of the U equation
(7.1) or (7.3) has an exponential dichotomy in I i, i = 1, 2, 4, 5, and that in I3,(7.3)
has an exponential dichotomy in each half of the interval [ξ2, x0/ε] or [x0/ε, ξ

3]. Also
at each ξi, 1 ≤ i ≤ 4, RP i

u(ξ
i)⊕RP i+1

s (ξi) = R2 , at ξ = x0/ε, RP 3
u (ξ−) = RP 3

s (ξ+),
and at ξ0 and ξ5, the subspace defined by the boundary condition Uξ = 0 intersects
RP 1

s (ξ0) or RP 5
u (ξ5) transversely.
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The conditions on the Y equation on two regular layers are the following. Consider
the reduced flow on [0, x0] and [x0, 1],

Yxx − (gu(fu)
−1fy − gy)Y = 0.

With Neumann boundary conditions at x = 0, 1 and jump conditions

Y (x+
0 )− Y (x−0 ) = 0, Yx(x

+
0 )− Yx(x−0 ) = 0,

the reduced Y equation has a unique solution on [0, x0] and [x0, 1].
With these conditions and A6, the conclusions of Theorem 7.1 are valid.
The proof of Theorem 7.1 is divided into three lemmas, Lemmas 7.5-7.7, and is

deferred to the end of this section. We comment here that solving regular layers first
while using information form singular layers as δ input function play a very important
role in the analysis, see Lemma 7.6 and the proof of Lemma 7.7. The ideas also is
used in [30].

To prove that the asymptotic expansions of layer solutions are valid, we need The-
orem 7.2. Comparing to the systems in Theorem 7.1, the function fy

k
ω

cos(ωx` + b0)b

replaces µsi(ξ) in singular layers, but an extra term fy
k
ω

cos(ωx + b0)b is added to
regular layers which has no counter part in Theorem 7.1.

Theorem 7.2. Consider the following system of equations where F i and Gi are con-
tinuous, bounded functions on I i. In regular layers,

Uξξ + f iuU + f iyY + f iy
k

ω
cos(ωx+ b0)b = F i(ξ),(7.7)

Yxx + giuU + giyY = Gi(x), i = 2, 4.(7.8)

In singular layers,

Uξξ + f iuU + f iyY + f iy
k

ω
cos(ωx` + b0)b = F i(ξ),(7.9)

Yxx = Gi(x), i = 1, 3, 5.(7.10)

With the boundary and jump conditions (7.5) and (7.6), there exists a unique solution
that satisfies (7.7)-(7.10). Moreover, there is a positive constant C, independent of ε
and ω, such that

|b/ω|+
5∑
i=1

(|U i|+ |Y i|) ≤ C{
5∑
i=1

(|F i|+ |Gi|L1) +
4∑
i=1

4∑
j=1

|J ij |}.

The proof of Theorem 7.2 uses Theorem 7.1 and is deferred to the end of this
section.

Theorem 7.3. For any integer m ≥ 0, let (uap, yap) be the approximation of an
internal layer solution and bap be an approximation of the parameter as constructed
at the beginning of this section. In a small neighborhood of (uap, yap, bap), there exists
a unique triplet (uexact, yexact, bexact) such that (uexact, yexact) is an exact internal layer
solution with the parameter bexact. Moreover, if the approximation is obtained by the
truncation to εmth terms, then

|uexact − uap|+ |yexact − yap|+ |bexact − bap| ≤ Cεβ(m+1), 0 < β < 1.
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Proof. Let (−F i,−Gi) be the residual error of the approximation in I i.

ε2uap,xx + f(uap, yap +
k

ω
sin(ωx+ bap)) = −F i, i = 2, 4,

yap,xx + g(uap, yap) = −Gi, i = 2, 4,

uap,ξξ + f(uap, yap +
k

ω
sin(ωεξ + bap)) = −F i, i = 1, 3, 5,

yap,xx + g(uap, yap) = −Gi, i = 1, 3, 5.

It is easy to verify that |F i| + |Gi| = O(εm+1), i = 2, 4. Since the width of singular
layers are O(εβ−1) and the Taylor expansion of f and g involves polynomial growth
terms of ξ, the residual error |F i| = O((εξ)m+1) = O(εβ(m+1)). Recall that, in singular
layers, we used yξ = εz, zξ = −εg to do expansions. Only the εm−1th order expansion
of g is used when computing the εmth expansion of y. Therefore, Gi = O(εmβ), i =
1, 3, 5. However, since the width of singular layers are O(εβ) in the x scale, |Gi|L1 =
O(εβ(m+1)). In conclusion,

|F i|+ |Gi|L1 ≤ Cεβ(m+1).(7.11)

We need estimates on jump errors due to truncation. Consider a singular layer
uiap, i = 1, 3 and the next regular layer ui+1

ap (x). Let ũi+1(ξ) be the inner expansion of
regular layers used in §5 for matching of inner and outer layers. Write

ui+1
ap (ai+)− uiap(ξi−) = [ui+1

ap (ai+)− ũi+1(εβ−1)]1 + [ũi+1(εβ−1)− uiap(ξi−)]2.

The first term [· · · ]1 = O(εβ(m+1)) due to the error of Taylor expansion when com-

puting ũi+1. The second term [· · · ]2 is O(e−αε
β−1

(1 + εβ−1)m) = O(εβ(m+1)) due to the
exponential matching. The same can be said to jumps to the left of singular layers
and to uξ, y, yx. If we denote

ui+1
ap (ξi)− uiap(ξi) = −J i1, ui+1

ap,ξ(ξ
i)− uiap,ξ(ξi) = −J i2,

yi+1
ap (ai)− yiap(ai) = −J i3, yi+1

ap,ξ(a
i)− yiap,ξ(ai) = −J i4,

then we have
4∑
i=1

4∑
j=1

|J ij | ≤ Cεβ(m+1).(7.12)

If we let (uap+u, yap+y) be the exact solution with parameter bap+b, then (u, y, b)
must cancel all the residual and jump errors. The functions (u, y) satisfy the following
linear variational equations. In regular layers,

uξξ + f iuu+ f iyy + f iy
k

ω
cos(ωx+ b0)b = F i(ξ) +M i(u, y, b, ε),

yxx + giuu+ giyy = Gi(x) +N i(u, y, ε), i = 2, 4.

In singular layers,

uξξ + f iuu+ f iyy + f iy
k

ω
cos(ωx` + b0)b = F i(ξ) +M i(u, y, b, ε),

yxx = Gi(x) +N i(u, y, ε), i = 1, 3, 5.
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We comment that a straight forward linearization of the y equation yields

yxx + giuu+ giyy = Gi +N i,

in singular layers. But since the length of the domain is O(εβ), the L1 norm of
giuu+ giyy is of O(εβ(|u|+ |y|)) and is moved to N i.

The nonlinear terms satisfy,

|M i| ≤ C(|ui|2 + |yi|2 + |b|2 + εβ(|ui|+ |yi|+ |b|)),
|N i|L1 ≤ C(|ui|2 + |yi|2 + εβ(|ui|+ |yi|)).

The boundary and jump conditions for (ui, yi) are

u1
ξ(ξ

0) = u5
ξ(ξ

5) = 0, y1
x(a

0) = y5
x(a

5) = 0,

ui+1(ξi)− ui(ξi) = J i1, ui+1
ξ (ξi)− uiξ(ξi) = J i2,

yi+1(ai)− yi(ai) = J i3, yi+1
x (ai)− yix(ai) = J i4.

The system for (u, y, b) is exactly as in Theorem 7.2, except the presence of M i, N i

terms. Let the solution of Theorem 7.2 be denoted

({U i}5
1, {Y i}5

1, b) = F({F i}5
1, {Gi}5

1, {J ij}4
i,j=1).

We are led to the equation,

({ui}5
1, {yi}5

1, b) = F({F i +M i}5
1, {Gi +N i}5

1, {J ij}4
i,j=1).(7.13)

Let Oδ = {({ui}5
1, {yi}5

1, b) :
∑

(|ui|+ |yi|+ |b| ≤ δ}. If ({ui}5
1, {yi}5

1, b) ∈ Oδ, then

|F i +M i|+ |Gi +N i|L1 ≤ C(εβδ + δ2).

We first choose a small δ and then a sufficiently small ε, so that the right side of (7.13)
is in Oδ and F is a contraction mapping in Oδ. Therefore, there exists a unique fixed
point for (7.13). The estimates of the solutions follows from (7.11), (7.12) and the
estimates in Theorem 7.2.

Theorem 7.4. Let (Uap, Yap) be the approximation of eigenfunctions and λap be the
approximation of the critical eigenvalue as constructed at the beginning of this sec-
tion. Then, in a small neighborhood of (Uap, Yap, λap), there exists a unique triplet
(Uexact, Yexact, λexact) such that λexact is the exact critical eigenvalue corresponding to
the eigenfunctions (Uexact, Yexact). Moreover, if the approximation is obtained by the
truncation to εmth terms, then

|Uexact − Uap|+ |Yexact − Yap|+ |λexact − λap| ≤ Cεβ(m+1).

Proof. Let (−F i,−Gi) be the residual error of the approximation of the eigenvalue
problem in I i.

− λapUap + ε2Uap,xx + f iu(exact)U + f iy(exact)Y = −F i,

− λapYap + Yap,xx + giu(exact)U + giy(exact)Y = −Gi, 1 ≤ i ≤ 5.
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Here f iu(exact) = fu(uexact, yexact + k
ω

sin(ωx+ bexact)) in regular layers, etc.. One can

verify that |F i|+ |Gi|L1 ≤ Cεβ(m+1). The jump errors

U i+1
ap (ξi)− U i

ap(ξ
i) = −J i1, U i+1

ap,ξ(ξ
i)− U i

ap,ξ(ξ
i) = −J i2,

Y i+1
ap (ai)− Y i

ap(a
i) = −J i3, Y i+1

ap,x(ai)− Y i
ap,x(a

i) = −J i4,

satisfy
∑4

i=1

∑4
j=1 |J ij | ≤ Cεβ(m+1) just as in the proof of Theorem 7.3.

Let (Uap + U, Yap + Y ) be the exact eigenfunction corresponding to the eigenvalue
λap + λ. Then the variational equations for (U, Y, λ) are the following. In regular
layers,

Uξξ + f iuU + f iyY = F i(ξ) +M i(U, Y, λ, ε),

Yxx + giuU + giyY = Gi(x) +N i(U, Y, λ, ε), i = 2, 4.

In singular layers,

Uξξ + f iuU + f iyY − λq̇`(x`/ε+ ξ) = F i(ξ) +M i(U, Y, λ, ε),

Yxx = Gi(x) +N i(U, Y, λ, ε), i = 1, 3, 5.

The U equation in singular layers has an extra term q̇` since this is the leading
term of the expansion of eigenfunctions, while the leading term of the expansion of
eigenfunctions is zero elsewhere. The nonlinear terms satisfy,

|M i|+ |N i|L1 ≤ C((|U i|2 + |Y i|2 + |λ|2 + εβ(|U i|+ |Y i|+ |λ|)).
Recall also q̇` = 0, ` = 0, 2 and q̇` 6= 0, ` = 1.

The boundary and jump conditions for (U i, Y i) are

U1
ξ (ξ0) = U5

ξ (ξ5) = 0, Y 1
x (a0) = Y 5

x (a5) = 0,

U i+1(ξi)− U i(ξi) = J i1, U i+1
ξ (ξi)− U i

ξ(ξ
i) = J i2,

Y i+1(ai)− Y i(ai) = J i3, Y i+1
x (ai)− Y i

x(ai) = J i4.

With si = q̇`, i = 2`+ 1 and µ = λ, all the hypotheses in Theorem 7.1 are satisfied.
We have to solve a fixed point problem

({U i}5
i=1, {Y i}5

i=1, λ) = F({F i +M i}5
i=1, {Gi +N i}5

i=1, {J ij}4
i,j=1),

where F is the solution map for the problem in Theorem 7.1. Details follow those in
the proof of Theorem 7.3 and will be omitted.

We now present the proof of Theorem 7.1. By the superposition principle, the proof
can be divided into three parts, Lemma 7.5–Lemma 7.7. Since the linearized system
is so close to the formal asymptotic expansions in section 5, we would like to follow
closely the method used in that section. With ε 6= 0, the u-equation in the regular
layers is not an algebraic equation. Solving u algebraically and then substitute into
the y equation, as we did in the formal expansions, is not possible. However, we
still can approximately diagonalize the system by introducing the change of variable
U = V + (−f−1

u fyY ), where V is a correction term. Geometrically, this corresponds
to decomposing U into two components: One at the tangential direction of the slow
manifold, the other at the direction of stable and unstable fibers.
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Lemma 7.5. Consider the system (7.1)–(7.4) with no boundary or jump conditions
imposed. Then there exists a (non unique) solution on each I i and a positive constant
C, independent of ε, such that

|U i|+ |Y i| ≤ C(|F i|+ |Gi|L1),(7.14)

|µ| ≤ C(|F 3|+ |G3|L1).(7.15)

Proof. In singular layers, let Y i(x) =
∫ x
ai

(x − t)Gi(t)dt, i = 1, 3, 5. We have |Y i| ≤
C|Gi|L1 , i = 1, 3, 5.

Next, extend the domains of F i and Y i to ξ ∈ R by constants outside I i.
Observe that when i = 3, λ = 0 is a simple eigenvalue of Uξξ + f iuU = 0 in L∞. In

order that (7.3) is solvable in L∞, we need the Fredholm condition∫ ∞
−∞

q̇(ξ + x0/ε){F i(ξ)− f iyY i(ξ)− µs3(ξ)}dξ = 0.

From A6,this uniquely determines µ. If an additional condition < q̇(0), U3(x0/ε) >=
0 is imposed, then the solution U3 is unique and satisfies (7.14) and (7.15). In
boundary layers, using Lemma 5.2 of this paper and Lemma 2.3 of [24], there exists
a unique solution of (7.3) that satisfies the boundary condition Uξ(0) = 0 and (7.14).

The lemma has been proved for i = 1, 3, 5. Consider the regular layers, I i, i = 2, 4.
A severe difficulty occurs because the system is not decoupled. We use a change
of variable that almost decouples the system and the final solution comes from an
iteration scheme.

The homogeneous linear part of the equation Vξξ + f iuV = F i has an exponential
dichotomy on I2, I4. Using Lemma 5.1, the above has a solution V i that satisfies
|V i| ≤ C|F i|. Let U = V i − f−1

u fyY . We now write (7.2) in the form,

Yxx + giuV
i − (giu(f

i
u)
−1f iy − giy)Y = Gi(x).

The above has a unique solution Ȳ i if an additional condition (Y (ai), Yx(a
i)) = (0, 0)

is imposed. The solution satisfies |Ȳ i| ≤ C(|V i| + |Gi|L1) ≤ C(|F i| + |Gi|L1). The
function Ū i = V i − f−1

u fyȲ
i satisfies

Ū i
ξξ + fuŪ

i + fyȲ
i = V i

ξξ − (f−1
u fyȲ

i)ξξ + fuV
i = F i − (f−1

u fyȲ
i)ξξ.

Equation (7.1) is not precisely satisfied by Ū i. The L1 norm of the residual error
F̄ i ≡ (f−1fyȲ

i)ξξ satisfies

|F̄ i|L1(ξi−1,ξi) = |ε(f−1
u fyȲ

i)xx|L1(ai−1,ai) ≤ Cε(|F i|+ |Gi|L1(ai−1,ai)).

We now solve (7.1), (7.2) with F i replaced by F̄ i and Gi replaced by zero. Using
the same process, we can find an approximation of the solution, denoted (Ũ i, Ỹ i), i =
2, 4, such that the residual error for the U equation in the L1(ξi−1, ξi) norm is
O(ε|F̄ i|L1(ξi−1,ξi)). The proof is almost identical to the previous case, except that the
L1 norm of F̄ i is used instead the supremum norm of F i. Since |V i| ≤ C|F̄ i|L1(ξi−1,ξi),
using the L1 norms will not affect the proof.

By the superposition principle, (U i, Y i) = (Ū i+ Ũ i, Ȳ i+ Ỹ i) is a better approxima-
tion than (Ū i, Ȳ i). The error in L1 norm is reduced by a factor of O(ε). The process
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can be repeated so that the residual error in the L1 norm is reduced by a factor of ε at
each iteration. The iteration process converges to a true solution of the system.

Lemma 7.6. In regular layers I i, i = 2, 4, there exists a unique solution to the fol-
lowing system of equations with auxiliary boundary and jump conditions:

Y i
xx − (giu(f

i
u)
−1f iy − giy)Y i = 0,(7.16)

Y 2
x (a1) = B1, Y 4

x (a4) = B2,

Y 4(a3)− Y 2(a2) = H1,

Y 4
x (a3)− Y 2

x (a2) = H2.

Moreover, we have

|Y 2|C1 + |Y 4|C1 ≤ C(|H1|+ |H2|+ |B1|+ |B2|).

Proof. It suffices to show that if H1 = H2 = B1 = B2 = 0, then the system has only
the unique zero solution. Convert (7.16) into a first order system

Y i
x = Zi, Zi

x = (guf
−1
u fy − gy)Y i.

Let the solution map be Φi on each I i. Let S̄ = {(Y, Z)|Z = 0}. If a1 = 0, a2 = a3 =
x0 and a4 = 1, then from Lemma 4.1,

Φ2(a2, a1)S̄ ⊕ Φ4(a3, a4)S̄ = R2 .

By the continuous dependence of Φi(t, s) on t and s, we conclude that the direct sum
splitting is true if εβ is sufficiently small and therefore a2 and a3 are sufficiently near
x0. Therefore, the solution is zero if H1 = H2 = B1 = B2 = 0.

Lemma 7.7. Consider the system (7.1)–(7.4) with F i = Gi = 0 for all 1 ≤ i ≤ 5,
and the boundary and jump conditions (7.5) and (7.6). Then, there exists a unique
solution that satisfies (7.1)-(7.4) and the boundary and jump conditions. Moreover,

|µ|+
5∑
i=1

(|U i|+ |Y i|) ≤ C
4∑
i=1

4∑
j=1

|J ij |.

Proof. Following the idea of [30], we first solve the Y equation approximately and use
the information to solve the U equation. If we write (7.4) as Yx = Z, Zx = 0, then we
immediately see that Z1 = Z5 = 0 and Z3 is a constant. Therefore, Z4(a3)−Z2(a2) =
J2

4 +J3
4 . It is also clear that Y 1 and Y 5 are constant solutions. Since εβ → 0 as ε→ 0,

the change of Y 3(x) across the interval I3 is small.
We first approximate Y i, i = 2, 4 in regular layers. If we let H1 = J2

3 + J3
3 , H2 =

J2
4 + J3

4 and impose the boundary conditions Y 2
x (a1) = J1

4 , Y
4
x (a4) = −J4

4 , then,
due to Lemma 7.6, equation (7.16) has a unique solution Ȳ i on I i, i = 2, 4. Let
Z̄i = Ȳ i

x , i = 2, 4. Let Z̄1 = Z̄5 = 0. Let Z̄3(x) = Z̄2(a2) + J2
4 or equivalently

Z̄4(a3) − J3
4 . It is easy to verify that all the boundary and jump conditions for

Z̄i, 1 ≤ i ≤ 5 are satisfied.
Let Ȳ 1(x) = Ȳ 2(a1) − J1

3 , Ȳ
5(x) = Ȳ 4(a4) + J4

3 . From Yx = Z, let Ȳ 3(x) =
Ȳ 2(a2) + J2

3 + (x − a2)Z̄3. It is easy to verify that the jumps of Ȳ i are satisfied at
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a1, a2 and a4. But at a3, Ȳ 4(a3)− Ȳ 3(a3) = J3
3 + (a3 − a2)Z̄3. The jump error at a3

is of O(εβ|Z̄3|).
From Lemmas 5.1 and 5.2, the homogeneous part of the systems (7.1) and (7.3) has

an exponential dichotomy on I i, i = 1, 2, 4, 5. From Lemma 5.3, the homogeneous part
of system (7.3) has an exponential dichotomy on [ξ2, x0/ε] and [x0/ε, ξ

3] respectively.
Let the projections on I i be denoted P i

s , P
i
u. At each ξi, 1 ≤ i ≤ 4, RP i

u(ξ
i) ⊕

RP i+1
s (ξi) = R2 . Define φis ∈ RP i+1

s (ξi), 0 ≤ i ≤ 4, and φiu ∈ RP i
u(ξi), 1 ≤ i ≤ 5 by

φ0
s = φ5

u = 0,

φis − φiu = (J i1, J
i
2)τ , 1 ≤ i ≤ 4.

Let Ū3 be a solution of (7.3) in I3 satisfying

P 3
s (ξ2)

(
U
Uξ

)
= φ2

s, P 3
u (ξ3)

(
U
Uξ

)
= φ3

u.

From Lemma 5.3, such Ū3 uniquely exists if q̇(0)U(0) + q̈(0)Uξ(0) = 0 and

ψ(ξ2)φ2
s − ψ(ξ3)φ3

u +

∫ ξ3

ξ2

q̇(ξ + x0/ε){f 3
y Ȳ

3 + µs3(ξ)}dξ = 0,

where ψ(ξ − x0/ε) = (−q̈(ξ), q̇(ξ)). Since
∫
q̇(ξ + x0/ε)s

3(ξ)dξ 6= 0, µ is uniquely
determined. Also

|µ|+ |Ū3| ≤ C(|φ2
s|+ |φ3

u|+ |Ȳ 3|) ≤ C
4∑
i=1

4∑
j=1

(|J ij |+ |J ij |).

Note that the homogeneous part of (7.1) or (7.3) has an exponential dichotomy on
I i, i = 1, 2, 4, 5. With Y i = Ȳ i and P i

s(ξ
i−1)U i(ξi−1) = φi−1

s , P i
u(ξ

i)U i(ξi) = φiu, and
µ, (7.1) or (7.3) has a unique solution for i = 1, 2, 4, 5, denoted by Ū i.

In regular layers, i = 2, 4, let V i = Ū i + (f iu)−1f iyȲ
i. With the x variable, we show

that |V i|L1(ai−1,ai) ≤ Cε
∑4

i=1

∑4
j=1(|J ij |+ |J ij |). In fact,

Vξξ + fuV − (f−1
u fyȲ

i)ξξ = 0.

Let Φ be the principal matrix solution for the associated first order system

Vξ = V1, V1ξ = −fuV + (f−1
u fyȲ

i)ξξ, i = 2, 4,

which has an exponential dichotomy on I i. See Lemma 5.1. The solution can be
expressed by an integral equation

(V, Vξ)(ξ) = Φ(ξ, ξi−1)Ps(ξ
i−1)(V, Vξ)(ξ

i−1) + Φ(ξ, ξi)Pu(ξ
i)(V, Vξ)(ξ

i)

+

∫ ξ

ξi−1

Φ(ξ, s)Ps(s)(0, (f
−1
u fyȲ

i)ξξ(s))ds+

∫ ξ

ξi
Φ(ξ, s)Pu(s)(0, (f

−1
u fyȲ

i)ξξ(s))ds.

Since Ȳ i
xx can be expressed by Ȳ i from the second order equation that defines Ȳ i, we

have (f−1
u fyȲ

i)ξξ = O(ε2|Ȳ i|C1) and

|V (ξ)| = O(ε2|Ȳ i|C1) + |(V, Vξ)(ξi−1)|e−γ(ξ−ξi−1) + |(V, Vξ)(ξi)|e−γ(ξi−ξ), i = 2, 4.
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We have |V i|L1(ξi−1,ξi) ≤ C(ε|Ȳ i|C1 + |(V, Vξ)(ξi−1)| + |(V, Vξ)(ξi)|). However, from
V i = Ū i + f−1

u fyȲ
i, |(V, Vξ)| ≤ C(|Ū i|C1 + |Ȳ i|C1) at ξi, 1 ≤ i ≤ 4. If we observe that

on the x scale, the L1 norm of V i gets a factor ε, the estimate for the L1 norm of V i

on the interval (ai−1, ai) follows.
We rewrite (7.2) as

Yxx − (guf
−1
u fy − gy)Y + guV = 0.

It is now clear that Ȳ i, i = 2, 4 does not satisfy (7.2). The residual error |guV i| is of
O(ε) in L1 norm. Using Lemma 7.5, there exists (Ũ i, Ỹ i), i = 2, 4 that satisfies (7.1)
and (7.2), and |Ũ − Ū |+ |Ỹ − Ȳ | = O(ε).

With the solutions (Ū i, Ȳ i), i = 1, 3, 5, and (Ũ i, Ỹ i), i = 2, 4, the residual errors of
(7.1)–(7.4) are zero but the jump errors are of O(εβ

∑
|J ij |).

The procedure described above can be repeated indefinitely, each time reducing the
jump error by a factor of εβ . The iteration converges to a true solution of the system
(7.1)-(7.4) that satisfies all of the boundary and jump conditions.

Proof of Theorem 7.2. Let {(U i
1, Y

i
1 )}5

i=1 and b1 be a solution to the following system.
In regular layers,

Uξξ + f iuU + f iyY = F i(ξ),

Yxx + giuU + giyY = Gi(x), i = 2, 4.

In singular layers,

Uξξ + f iuU + f iyY + f iy
k

ω
cos(ωx` + b0)b1 = F i(ξ),

Yxx = Gi(x), i = 1, 3, 5.

The boundary and jump conditions are (7.5) and (7.6). Observe that∫
q̇(ξ)fy(q(ξ), ỹ)dξ 6= 0. If (x0, b0) is near to the tangential intersection of C and Γ1,

then cos(ωx0 + b0) 6= 0. With s3 = f 3
yk cos(ωx0 + b0), A6 is satisfied. Based on

Theorem 7.1, the solution is unique and satisfies

|b1/ω|+
5∑
i=1

(|U i
1|+ |Y i

1 |) ≤ C{
5∑
i=1

(|F i|+ |Gi|L1) +
4∑
i=1

4∑
j=1

|J ij |}.

Next let {(U i
2, Y

i
2 )}5

i=1 and b2 be a solution to the following system. In regular
layers,

Uξξ + f iuU + f iyY = 0,

Yxx + giuU + giyY = giu(f
i
u)
−1f iy

k

ω
cos(ωx+ b0)b1, i = 2, 4.

In singular layers,

Uξξ + f iuU + f iyY + f iy
k

ω
cos(ωx` + b0)b2 = 0,

Yxx = 0, i = 1, 3, 5.
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The boundary conditions (7.5) and zero jump conditions, i.e. (7.6) with J ij = 0 for
all i, j, are imposed. Again, from Theorem 7.1, the solution is unique. Using the
Remark following Theorem 7.1, the solution satisfies

|b2/ω|+
5∑
i=1

(|U i
2|+|Y i

2 |) ≤ C
∑
i=2,4

sup
c,d∈Ii
{|
∫ d

c

giu(f
i
u)
−1f iy

k

ω
cos(ωx+b0)b1dx|} ≤ C

k

ω2
|b1|.

Let U = U1 + U2 − f−1
u fy

k
ω

cos(ωx + b0)b1 in regular layers, and let U i = U i
1 + U i

2

in singular layers. Let Y i = Y i
1 + Y i

2 and b = b1 + b2. One readily verifies that, with
such (U, Y ) and b, (7.8)-(7.10) are satisfied. The residual error for (7.7) is

E = −[f−1
u fy

k

ω
cos(ωx+ b0)b1]ξξ + fy

k

ω
cos(ωx+ b0)b2 = O((ε2ω2 + ω−1)|b1/ω|).

If ω is sufficiently large and εω is sufficiently small, |E| << |b1/ω|.
All of the boundary and jump conditions on Y and Yx are satisfied. The jumps of

the U variable are not satisfied due to the addition of the term−f−1
u fy

k
ω

cos(ωx+b0)b1.
Denote the jump in the U variable by

J̃ iu = U i+1(ξi)− U i(ξi) = O(|b1/ω|), 1 ≤ i ≤ 4,

which is not small. Let U i
3, 1 ≤ i ≤ 5 and b3 be a solution to the following system

Uξξ + f iuU = 0, i = 2, 4,

Uξξ + f iuU + f iy
k

ω
cos(ωx` + b0)b3 = 0,

U1
ξ (0) = U5

ξ (ξ5) = 0,

U i+1(ξi)− U i(ξi) = −J̃ iu.

Such U3 and b3 uniquely exist. In fact, it is a special case of Theorem 7.1 with
Y = 0, giu = giy = 0 and Gi = 0. Moreover, one can show that

|U i
3(ξ)| ≤ C(e−α(ξ−ξi−1) + e−α(ξi−ξ))

4∑
i=1

|J̃ iu|,

|b3/ω| ≤ Ce−αε
β−1

4∑
i=1

|J̃ iu| ≤ Cε2|b1/ω|.

This is based the decay of the influence of jumps toward the interior of the intervals.
Cf. [22].

Now let U = U1 + U2 + U3 − f−1
u fy

k
ω

cos(ωx + b0)b1 in regular layers, and let
U = U1 + U2 + U3 in singular layers. Let Y = Y1 + Y2 and b = b1 + b2 + b3. The
jump conditions in U and Y are all satisfied. The residual error in the U equations
are increased by O(|b3/ω|) = O(ε2|b1/ω|. The residual error in the Y equations are
increased by O(|guU |L1) = O(ε|b1/ω|). The residuals error with supremum norm
in the U equation and L1 norm in the Y equation are reduced by a small factor,
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O(ε2ω2 + ω−1), of the same norms of the input

{
5∑
i=1

(|F i|+ |Gi|L1) +
4∑
i=1

4∑
j=1

|J ij |}.

It is clear that the process can be repeated to further reduce the residual error and
the iteration converges to a unique true solution (U, Y ) and b.
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