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Abstract: Interaction of homoclinic bifurcation and bifurcation on the center manifold
is studied. We show that the occurrence of different types of solutions near the homo-
clinic orbit is determined asymptotically by a reduced system on the center manifold.
The method is applied to cases where the center manifold is one- or two-dimensional.
When the center manifold is one-dimensional, we can obtain all the solutions near the ho-
moclinic orbit. When a Hopf bifurcation occurs on a two-dimensional center manifold,
the system can have infinitely many periodic and aperiodic solutions. These solutions
disappear in a manner predicted by the reduced system when the perturbation term is in-
creased. We prove that certain periodic and aperiodic solutions disappear through inverse
period doubling or saddle-node bifurcation.

1. Introduction

Nonlinear bifurcation phenomena near a homoclinic solution have drawn much attention
following the early work of Silnikov [27, 28], who discovered various periodic and ape-
riodic solutions near a homoclinic solution that is asymptotic to a hyperbolic equilibrium.
Silnikov’s work shows that a solution homoclinic to an equilibrium can produce chaos;
this mechanism is distinct from the better known one studied by Smale, who showed that
a solution homoclinic to a periodic solution can produce chaos. See the books [13] and
[30] for additional references.

Homoclinic bifurcation at a nonhyperbolic equilibrium with center manifold has been
studied by [20], [24, 25], [4], [9], and [18]. As in these papers we shall study a homoclinic
solution g(¢) that approaches an equilibrium exponentially in one direction and is tangent
to its center manifold in the other direction. But we shall develop methods that in principle
apply to center manifolds of arbitrary dimension. The case in which the nonhyperbolic
equilibrium is undergoing a Hopf bifurcation, which was recently studied by Deng and
Sakamoto [10] is particularly interesting and has motivated our work. Perturbations of
such a vector field can exhibit, in addition to Silnikov’s phenomenon, a small periodic
solution whose Poincaré map can have a Smale horseshoe. Moreover, this horseshoe
can degenerate into a tangential intersection of the stable and unstable manifolds of the
periodic solution, a very complicated situation that has been studied by [22], [23]. and
[31]. Thus, the unfolding of the Hopf/homoclinic bifurcation involves at least three of
the most interesting phenomena studied in dynamical systems theory. -
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We now preview in some detail the results of this paper. The equation we treat can be
written as

¥=Agy+ g0y, u, v, u,
u=Au+g (yu v u), (L.1)
v=Av+ ga(y, u, v, p).

Here x = (y,4,v) € R" x R x R™, Aj is an »n x n matrix with Rec(Ap) = 0,
Ay is an £ x £ matrix with Rec(4)) > ag > 0 and Ay is an m x m matrix with
Reo(Az) < —ap <0, pp = (q, pp) is a parameter where u; determines the flow near
(y,u,v) = 0 and uy is related to the distance of W*(u) and W*¥(u). go, g; and &2
are higher order terms when p; = 0. The invariant manifolds near (y, u, v, u) = 0 are
Wir(w) = {v="0}, WiS.(x) = {u =0} and Wi (u) ={u=0, v="0} When =0,
system (1.1) has a homoclinic solution x = g(¢) that approaches x = 0 as t — =o0.
Assume that g(7) € WIOC(O) and g(—7) € WIOC(O) for a large constant 7 > 0. Let the
solution map for y = go(y, 0, 0, ) be ®(t, w, yg).

This paper is divided into two parts. The first part consists of section 2 to section 5,
and the second part consists of section 6 to section 9. In the first part of this paper, we
present a general method to treat homoclinic bifurcation at a nonhyperbolic equilibrium
whose center manifold is weakly expanding and has any finite dimension. Bifurcation
equations for homoclinic, heteroclinic, periodic and aperiodic solutions will be derived by
a method inspired by the Shadowing Lemma from dynamical systems theory ([22]). The
bifurcation equations will then be asymptotically reduced onto the center manifold. Under
some nondegeneracy conditions, that are posed on the reduced system, the bifurcation
equations can be solved, and a one-to-one correspondence between solutions and their
“symbols” can be proved.

We first construct a codlmensmn -one submanifold 3, that is transverse to the orbit of
g(t) at + = 7 and a vector A= (A4, 0, 0) that is transverse to TWi.(0) + TW3, (0). We
show that under some general conditions, for any positive infinite sequence {t; 1%, there
exists a unique piecewise continuous solutmn x(¢) that is orbitally e-near the homoclinic
orbit I'y, and may have jump along A direction each time it hits 2. Moreover, let {{; }ﬁgg
be the time sequence that x({;") € %, then {4, — {; = t;, and x({7) — x(¢H = §,
The unknown sequence {£;}°%,, together with x(f) are continuous functions of {t;}2
and wy both in the uniform and product topologies and {£;}%, is denoted by f, =
Gi({t;}, ), i € Z. To have a genuine solution of (1.1) we need to solve bifurcation
equations

Gi({t;}, ) =0, ieZ. (1.2)

We then show that the bifurcation functions can be asymptotically reduced to the center
manifold. Let p(t, u) = ®(1, u, qy(—7)) where (gqy, gu, g,) are the (y, u, v) coordinates
for g(¢). It is shown that G(u) = W () NW(u) NE is an (n-1)-dimensional smooth
submanifold, so is €(u) = 7 G(w) where 7 is the projection of W¢s (u) onto w§ (g,c)
along the stable fibers. Let d(y, u) be the distance between y € R" to G(u) along A It
is shown that A rh %(w) on R™). Then we show that

Gi({tj}, w) —d(p(—ti+ 27, p), w), i€Z (1.3)
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is a small quantity if |u| — 0 and € — 0. The bifurcation equations have been solved
under some nondegeneracy conditions of the function d(p(~t; + 27, u), u). See Hg) and
H7). The same nondegeneracy conditions also insure the hyperbolicity of the obtained
solutions. Our method also extends to solutions x(r) that are near I'g for {| <t < {5,
where we need to specify x,({|) = ¥ and x,,({3) = @. Here @ = (¥, &), x, and x,, are
the v and w coordinates for x = (w, v) = (y, u, v).

The purpose of the second part of the paper is to treat examples with one and two
dimensional center manifolds by the general method. Examples with one dimensional
center manifolds have been extensively studied, [20], [24, 25], [4], [9]; in a sense, this
paper completes the study. In Figure 2.2, a heteroclinic solution connecting an equilibrium
to a large periodic solution is depicted. Such solutions were overlooked in our previous
work [4]. In this paper, we shall prove that heteroclinic solutions like that in Figure 2.2
always exist regardless of the dimension of the center manifold. (Similar solutions also
exist in homoclinic bifurcation with a hyperbolic equilibrium). Moreover we shall show
that when the center manifold is one dimensional, these heteroclinic solutions plus the
solutions found in our early work are all the solutions that lie in a neighborhood of the
homoclinic solution. The uniqueness of the solutions, which has not been discussed in
previous works, is usually more difficult to prove than the existence of solutions.

The example with two-dimensional center manifold that we shall treat is that of Hopf
bifurcation mentioned earlier. Deng and Sakamoto [10] studied this case by horseshoe
maps. Our bifurcation equation approach allows us to treat some regions in parameter
space that were not studied by them.

Our approach is related to a horseshoe map slightly different from that used by Deng
and Sakamoto. In order to explain the difficulties in studying the Hopf/homoclinic bifurca-
tion, we shall now construct this map. Suppose that in a neighborhood of the equilibrium,
we have in cylindrical coordinates,

i=-gz
F=ur+ard, a>0, u ~0,
6 =1+ br2.

Notice that a Hopf bifurcation occurs as pu; passes 0. We assume that when
# = (p1, p2) = 0, there is a heteroclinic orbit connecting the (r, 6)-plane to the positive
Z-axis.

Let 29 = {z = 1} and Z; = {6 = 0}, both transverse to the flow. Following the flow
backwards in time a small strip oy in 2, which is narrow in z direction, is mapped to
2 and becomes a small spiraling strip . This strip o is narrow in r direction and
circles the z-axis once; see Figure 1.1. The forward flow takes o to meet 2 again, with
the image denoted by U}.

The Poincaré map: 2y — 2 then maps oy to o-}, which is a typical horseshoe map.
Fixed points in o9 N o} correspond to simple periodic solutions of the original ODE,
i.e, periodic solutions that follow the original homoclinic solution once. Suppose the
image a% depends on a second parameter u,, and is moving away from the z-axis as u,
increases. The horseshoe argument works well until 0'% is nearly tangent to og.

The reduced problem on the center manifold that we will derive is asymptotically a
horseshoe map with oy and a} being curves of zero width. The investigation of the
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difficult region relies on estimates on the error term (1.3) and its derivatives up to the
third order.
Figure 1.2 is a bifurcation diagram for simple periodic solutions in the (w, uy)-plane
for u; < 0, where w is the period of the solution. When 0 < u, < u3°, there are
infinitely many simple periodic solutions with the periods shown by the intersections
of the sinusoidal curve with up=constant. When u, > #3°, simple periodic solutions
with large periods disappear and only finitely many of them remain. Specifically, when {
Ho —> w5 from the left, two simple periodic solutions with periods w; > w® and
wy < w° coalesce and disappear at the quadratic turning point (15, w®). We will show |
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that (i) p§ > wS°; (i) 4§ — w3° monotonously as @ — oo. The bifurcation of
homoclinic solutions is not plotted in Figure 1.2, but is related to it. There are two simple
homoclinic solutions connecting the limit cycle r = _LH to itself when 0 < uy < u5°.
At py = u$°, the two homoclinic solutions coalesce and disappear when up > uS°.

When u, passes through pf, much complicated bifurcation may happen. For example,
some aperiodic solutions may coalesce pairwise and disappear, and a diagram like Figure
1.2 will be proved in this paper. We will also show that double periodic solutions disap-
pear into simple periodic solutions by a reverse period doubling bifurcation. The method
in [7] is employed for this purpose. However, the detailed bifurcation structure for other
kind of solutions remains unknown. Related work can be found in [31], [22] and [23].
Recently, Hirschberg and Knobloch [18] have done detailed analytical and numerical
study on a simplified Silnikov-Hopf system where all the error terms are being truncated.
On the contrary, one of the major feature of this paper is to verify that error terms do
not affect the bifurcation diagram.

This paper is organized as follows. In section 2 we will state our main hypotheses
and general existence theorems for solutions that stay near the homoclinic orbit, with
no restriction on the dimension of the center manifold. Theorem 2.1 describes how the
bifurcation equations can be constructed. We then describe how the bifurcation equations
can be asymptotically reduced to the local center manifold with very small errors. The-
orem 2.2 gives estimates on the error terms of the reduction. Theorem 2.3 assures the
existence of nondegenerate solutions, a notion that is related to the transversality condi-
tion required when proving chaos by the horseshoe method, but also applies when there
is no horseshoe, e.g., when the local center manifold is one dimensional. Theorem 2.4
describes all the solutions that stay near a nondegenerate solution as ¢t — +co or as
t — —o0, or even for a finite time. The importance of Theorem 2.4 will be seen when
we treat bifurcation with one-dimensional center manifold in section 6.

We present some basic definitions and technical lemmas in section 3. A technical
problem when working near a nonhyperbolic equilibrium is that the variation of constant
formula does not have a convergence factor e A¢~%)_ A useful method for dealing with
this problem is to subtract a nearby solution on the center manifold from the solution
under consideration and evaluate the difference. See [16], [4], and [9]. This also mo-
tivates the use of the asymptotic projection of local flows to the center manifold. The
error of our projection approaches zero if the time a solution stays near the equilibrium
approaches infinity. Such projection is achieved by an invariant foliation of the local
center-stable manifold using stable fibers, and an invariant foliation of the local center-
unstable manifold using unstable fibers [4]. Invariant foliation has also been used in
[20]. If we could construct a smooth local invariant foliation of which the fibers were
transverse to the local center manifold, we would have constructed the exact projection
of local flows to the local center manifold. Unfortunately such a foliation may not be
C! smooth. Lemma 3.6 is a useful tool for proving the hyperbolicity of periodic solu-
tions constructed by the Shadowing Lemma [14]. It may be further generalized to prove
hyperbolicity of aperiodic solutions near a homoclinic orbit.

The main results in section 2 are proved in section 4. For a given sequence {¢;}%,,
the solution is expressed as the union of sequences of inner and outer solutions. At the
adjacent points, the outer and inner solutions have to match. The bifurcation equations
are derived from that, following the idea of the Shadowing Lemma. The proof of the
existence of a genuine solvtion, Theorem 2.3, uses degree theory on a truncated finite
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system, and also the continuity of bifurcation equations with respect to the sequence
{t;}*% in the product topology.

In section 5 we shall study simple periodic solutions. Theorem 5.1 shows the hyper-
bolicity of nondegenerate simple periodic solutions. The idea here is also borrowed from
the Shadowing Lemma. Theorem 5.2 says that simple periodic solutions form an one
parameter family. Similar results for hyperbolic equilibria are known, cf. [12] and [19].

In section 6 we discuss homoclinic bifurcation with a one-dimensional center manifold
(Theorem 6.1). We will describe all the possible solutions near the homoclinic orbit for
any type of bifurcation on the local center manifold. The novelty comparing to our early
work is a proof that the solutions obtained here are complete.

In section 7, we study the local flows when the equilibrium undergoes a nondegenerate
Hopf bifurcation. From the results in section 2 it is clear that sharp estimates on the
contraction rate of ®(t, u, yo), t < 0 are crucial in our method, We show, in Theorem 7.5,
2), that the global rate of contraction is C|®(t, u, yg)| for + < 0. However there is a
foliation of C3 curves outside (not including) the limit cycle if ) < 0 (or equilibrium if
#1 = 0) such that when y; moves along such a curve, the contraction rate is much sharper
(Theorem 7.5, 3)). These curves are transverse to the flow which is roughly & = 1 in the
polar coordinates. The proof uses the method of averaging followed by a verification that
the truncation of higher order terms does not affect the results. The averaging process
in Lemma 7.2 is nonstandard since the leading coefficients are #-dependent. Notice it
is proved in Lemma 7.3 that the flow for the truncated system is C> conjugate to the
original one.

In section 8 we study the existence of nondegenerate periodic and aperiodic solutions
near ['g. Theorem 8.4 is a general existence theorem for such solutions. Due to the sharper
estimates obtained in section 7 we are able to narrow down L:c degenerate region of u;
that contains w5 to a small strip so that it is clear that simple periodic solutions with
longer periods disappear earlier if u, increases from u; = 0. (Theorem 8.3 and Figure
1.2). Notice that the degenerate strips are densely packed near u$°. This is why all the
estimates in this paper have to be carefully rendered.

In section 9, Theorem 9.1 and 9.2, we study how simple or double periodic solutions as
well as some aperiodic solutions disappear when u; is near u§. As mentioned earlier in
this introduction, these occur in the region of u, where the horseshoe map is degenerate.
Second order derivatives of the bifurcation functions are computed in order to extract
information near that region. The region studied in section 9 overlaps that in section 8
leaving no gap between the two cases. Theorem 9.3 uses the idea of [7] to prove that
double periodic solutions disappear to a simple periodic solution through inverse period
doubling. Care has been taken to show the size of the bifurcation region so that the proof
is some what different from that of [7].

To avoid tedious tracing of different constants, we use the symbol “term 1 < Cterm 2"
in the sense of “there exits a uniform constant C with term 1 < Cterm 27, but not in the
sense that C is always the same constant.

A solution x;(¢) for system (1.1) is said to be orbitally e-near another solution x;(f)
if there exists an € > 0 such that for any t;, we can find #,, such that

lx1(t1) — x2(t2)| < €.
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x1(t) is said to be orbitally approaching x;(t) as t — oo, if for any given € > 0, we can
find T, such that for any ¢} > T, there exists 5, such that

[x1(t1) = x2(t2)| < e.

2. Hypotheses, a Reduction Principle and Basic Existence
Theorems

We study bifurcations near a homoclinic solution x = g(¢), o = 0, of the following
system,

i) = fx(), W 2.1

where f € C°, x € RAMR 4 = (uy, po) with pmp € M, uy € R, where
M is an open set in a Banach space. To simplify the illustration, we assume the
global existence of solutions of (2.1). Let f(0,0) = 0, and D, f(0,0) be nonhyper-
bolic, having ! (m or n) eigenvalues with positive (negative or zero) real parts. Let
(0,0, WS (0,0), Wi (0,0), W} (0,0) and WJ (0, 0) be the local center unsta-

c (]
loc loc loc loc ) loc
ble, center stable, center, unstable and stable manifolds for the augmented system

k= f(x,p)
i (2.2)

near (x, &) = (0, 0). Define a 7 section of these manifolds by Wi (@) = W§%.(0,0) N
{e =@}, etc.. Let T(¢, u, x) be the flow generated by (2.1), we define global invariant
manifolds by
W(u) = U T, pm, W!Cac(nu‘))’
teR

etc. The local invariant manifolds mentioned above are all C>, cf [1], [3], [17], [29] and
[5]. Those locally invariant manifolds may not be unique, but this will not affect our
analysis. Using the spectral projections, we have a coordinate system

y
x=|u| eR" xR xR"
v
where the neutral, unstable and stable eigenspaces are identified with R", R/ and R™.
There exist C5 functions 7; : R x R* x R — R, h; : R x R” x R — R™, and a small
constant g > 0 such that

Wil (w) = {xlu = hi(v, y, w), max{|yl, |v], |ul} < p},
Wi (u) = {xlv=ha(u, y, ), max{|yl, [ul, |u]} < p}.
By a C5 change of variable (y, u, v) = (¥!, u!, v!):
ul =u—hi(v,y, pm),
W=v-— ha(u, y, i),
3 = 3
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we may assume that

foc (1) = {x]u =0},
Wi (w) = {x|lv =0},
W}:ac(y') ={xlu=0, v=0},

for all |u| < p. Here the super-scripts on the new variables are dropped. For the conve-
¥
nience of typing we shall write x = (y, u, v) instead of | u |. We say y, uand v are pro-

v
jections of x to its y, u and v components and shall be denoted by (y, u, v) = (xy, xu, xy).
It is known that W3 (u) is invariantly fibered by C3 submanifolds W* (x, @), and Wi¥ (w)
is invariantly fibered by C> submanifolds W*(x, u). These manifolds pass through x and
depend C% on x, cf. [11] and [4]. Incidentally, W*(0, 0) and W*(0, 0) are the local

strongly stable and unstable manifolds when (x, &) = (0, 0). These fibers have the form:

WS((J’(): 0, 0)5 )u') = {x|)’ = Yo + h'_’-(v! Yo, [.L), u= 0! max{lvl + I#’!} < p}a
W (30,0, 0), p) = {xly = yo + ha(, yo, w), v="0, max{|u| + |ul} < p}.

Here h3(v, yp, ) is C° in v and jointly C* in all the variables while hg(u, yo, W) is
C? in u and jointly C* in all the variables. The function k;, i = 3, 4 is globally defined,
h3(0, y, w) = 0, hy(0, y, u) = 0 and Lip(h;) is O(p). After a C* change of variable
(&, u, v) = (¥, w!, v1), which is implicitly defined by:

U= ul,

v:ul,

y=y'+ 0" ¥, W+ kG, Y, W,

we have that

WS((yO’O7 0): )u') = {XIy =Y0, U= 0}'
W4(50, 0, 0), w) = {x|y = yo, v=0}.

Again the super-scripts are dropped. We then assume that for |u| < up, a small positive
constant, and x € 0, a small neighborhood of 0 € R+ all the invariant manifolds
and the foliations mentioned above exist, and the change of coordinates has been made.
Equation (2.1) can be written in the new coordinates as

y=Apy+ go(y, u, v, u),
u=Awu+g 1y u v u), (1.1)
U= Av+ g2y, u, v, ).

Here Ap is an n x n matrix with Reo(Ag) = 0, Ay is an [ x [ matrix with Reo(A;) >
ap > 0 and A; is an m x m matrix with Rec(A;) < —ap < 0, D,;gi(0,0,0,0)=0, i =
0, 1, 2. Moreover, because WX (u), Wise(), WH((y,0,0), w) and W((y, 0,0), u) are

locally invariant, we have g(y,0,v, u) = 0, g2(y, 4,0, #) = 0, and go(y, 0, 0, u) =
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go(y, 1,0, p) = go(y, 0, v, ) for |yl + lul + [v| + |ul < p. Consequently, we have

g1y, u, v, w) = O(lul),
82()’, u, v, ,LL) = 0(!”')1 (23)
go(y, u, v, p) — go(y, 0,0, u) = O(|ulv]).

The validity of the above estimates are the main reason for the change of variables we

have performed so far. In such coordinates, if (y, u, v) is a solution that stays near the

origin for a long time, then u(7) decays exponentially in backward time and v(r) decays

exponentially in forward time. Consequently, go is almost independent of (1, v). We say

a function x(t) decays (grows) exponentially as ¢ —> oo, if there exists 0 < a < o such

that |x(f)| < Ce™® (or |x(t)] = Ce® > 0) as t — +o0. Here the number « is close to

ag.

The following hypotheses will be used in this paper.

H1) For u = 0, (2.1) has a homoclinic orbit Iy := U{g(»)|t € R}, such that [y is on

W¢ .(0) as t - —o0 and is on W3, (0) as 1 — +oo0.

Let - > 0 be a large constant with g(=7) = (gy(—7), gu(—7), gu(—7)) €

f0c(0) NG and g(7) € W}, (0)NO. Let ®(1, p, y) be the restrictions of T(¢, u, x)

to W§, () ~R™

H2) There is a small neighborhood U of gy (—7) on W¢ .(u) such that for |u| < uo,
Dy®(t, u,y) is a contraction for —7 < t < —f < 0 and y € °U. Here pg > 0 is
a constant. 7 = () is either a large constant or +00, f > 0. There is a function
0 < 8(t], ) < 1 such that [Dy®(t, p, y)| < 8l ) for —7 <1 < —fand y € U.
Assume that 8(j7], ) = C(r(z) + |u|) where r(f) = |®(t, i, y)| and C does not
depend on t, u o1 y.

H3) T, W (@O)N TanWi(0) = span{(¢)}. Here T,W denotes the tangent space of a
manifold W at x € W.

H4) W°(0) and We(0) intersect transversely along I'o.

H5) The flow on W, .(u) depends only on ;.
The linearized equation of (2.1) at = 0, around g(z) is

x(t) — Dxf(gq(®), 0)x(r) = 0. (2.4)
Let (¢) be a nonzero solution of the adjoint equation
x(f) + Dxf*(q(1), 0)x(1) = 0 (2.3)

of (2.4) with $(0) L{T W™ (0) + Ty W* (O}
H6) [%, 4Dy, f(gq(t), 0)dt # 0.

Remark. In H1), it is more natural to assume that the homoclinic orbit [y is tangent to
W¢ .(0) as t = —oo. It can be proved that we can always choose the nonunique Wi,.(0)
to contain I'y. Details will not be given here.

In H2), —f(p) <t < —7 is needed to ensure that T(¢, &, x) stays in a small neigh-
borhood of x = 0. One can see from the example y = p; +y2, T(t, u, x) will leave any
neighborhood of x = 0 if ¢ — —oc for any fixed py > 0.

8(|t|, w) represents the rate of contraction in backward time for initial point y € AU.
In fact for the theorems of this paper to hold, we do not need the entire local center
manifold to be weakly expanding.
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Hypothesis H4) does not depend on the choice of W&(0) and We(0) though those
manifolds are not unique. See [4], Appendix A for a discussion on this matter,

The function g(r) is obviously a solution for the linear equation (2.4). Hypothesis
H4) is equivalent to assuming that §(¢) is the only solution of (2.4), up to a scalar factor,
that does not grow exponentially as t — o0.

We shall see in section 3 that up to a scalar factor (r) is the only solution of (2.5)
that decays exponentially as ¢+ — —oco and does not grow exponentially as t — +oo.
Therefore the integral in H6) converges. To show this, observe that x = 0 is always
an equilibrium of (2.1) for u; = 0, and g(t) — 0 exponentially as — +oo,thus
D, f(q(),0) — Dy5 (0, 0) = 0 exponentially as ¢ — +oo0. Hypothesis H6) is equiva-
lent to saying that the intersection of W¢*(0) and W*(0) breaks transversely as u, moves
away from up = 0. The latter is usually more difficult to verify than H6). See (5.6) for
more details.

To justify H5), we may set M to be the set of all the C5 vector fields which are
defined in a neighborhood of x = 0 and are C? close to the constant vector f(0,0). The
parameter uy can be the distance between W (u) and W*(w). The basic setting in this
paper is to assume that the flow on Wy, (u) is fixed and the bifurcation diagram depends
only on the change of u;.

We will be interested in a solution x(¢) that orbitally stays near T’y and traverses
around I, at least once. We say such solution x(¢) is orbitally near I',,. If in addition
x(t) stays in a é-neighborhood of T, we say x(¢) is orbitally &-near I',. A homoclinic
(heteroclinic, periodic) solution that traverses around I, only once will be called a simple
homoclinic (heteroclinic, periodic) solution. Otherwise it is called a multiple homoclinic
(heteroclinic, periodic) solution.

Let 3 be a codimension-one surface intersecting I', transversely at x = ¢(7). Let the
orbit of x(t) and I, be close to each other. x(f) may hit ¥ infinitely or finitely many
times. Let {t;/2 < i < k} be a sequence of times that x(¢) spent from 2, to 3. If h (or
k) is finite, then x(r) stays in the neighborhood © of x = 0 as t — —co {or +00). We
consider the case h = —oc and k = co first. In such cases the time sequence will be
denoted by {£;}*°, = T (x(-)). We will also assume that x(7) € 2 and ¢, is the first time
T(t, u, x(7)) hit = to fix the phase of x(£). T is well defined, and is continuous in the
sense that T (X(.)) — J(X()) coordinatewise if () — %(1) uniformly in any compact
subset of R,

We then consider the case h and/or k are finite. Let {; = inf{t|x(¢) € X} and/or
{2 = sup{t|x(r) € %}. We have x({; — 27) € Wise(n) andlor x({3) € W (w). In
other words, x(t) satisfies the boundary conditions x,(¢ | —27) = 0 and/or x,({,) = 0.
However, these boundary conditions do not imply that x(¢) will stay in O forr < ;- 27
and/or + > {;. As we will see that given x(¢1 —27) = D and x,({H) = (¥, it), and the
time sequence {r,-}ﬁ‘1 that x(f) spent from X to % for {; <t < {5, there can be only
one such x(¢) for {; — 27 <r < {,. We therefore extend the domain of the mapping J
to a solution x(t), which is close to the orbit of g(t) only for f1—-2r=t<{s.

We define J(x(-)) = {Si}}k;q with the convention that S; = t; € Rt if h < i <
k—1; Sy, = 0 if h is finite and ({1 —21) = 3, S = (§, i) if k=finite and
xw({2) = (§, @#). The definition will be fully justified after we show that T is in fact
one-to-one. It is also clear that for each fixed i, S; is an element of a finite dimensional

Bl eremme sy
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linear space and the set of symbols {Si};‘;_1 is in a linear product space. Uniform and
product topologies can be defined in the product space in the usual way.

However describing the range of J and constructing the inverse ! are not always
easy. Silnikov studied these problems by introducing a sequence of equations satisfied
by {#;}% and p. We shall follow his idea. The bifurcation functions we obtain are some
geometric quantities that can be asymptotically projected to W{, (). Our method also
bears much resemblance to the horseshoe method employed by [10].

Before constructing the bifurcation functions, we will present a heuristic argument
as a motivation. Consider in R? a homoclinic solution g(f) asymptotic to a hyperbolic
equilibrium. The homoclinic s@ytion typically breaks when adding a perturbation u # 0
to the equation. However, let A be a vector transverse to TW + TW* at g(r) and let
us allow solutions to have a jump along A direction after hitting 2. Such a general-
ized homoclinic solution always uniquely exists and depends continuously on . This
is merely the rephrasing of Melnikov’s method, see [13]. However, considering a ho-
moclinic solution as a periodic solution of infinite period, we infer that for each large
period w > 0, and |u| < po, there must be a unique periodic solution x(¢#) with period
w if we allow x(¢) to have a jump along A after hitting 3. We then further infer that
if {Si}ﬁ‘Pl is a sequence of symbols and || < g, there must exﬁt a unique x(f) with
Tx() = {S,-}ﬁ_l provided that we allow x(t) to have a jump &;A each time it hits 3.
Here &, h <i <k is a sequence of real numbers. The generalized solution x(f) as well
as £, h <i <k depend on {S,-}i‘l_1 and w. & =0, h <i < k is the desired bifurcation
equation for x() to be a genuine solution. As a convention if h = —o0 or k = 400, by
h <iori<k, we really mean —co < i or i < 400. All the theorems in the sequel are
phrased for the case h and k are both finite. If h and/or k are —oo and/or +o00, statements
concerning indices i < h and/or i > k should be neglected.

The following observation is useful throughout this paper. If x(r) is orbitally &-near
T, forall t € R and Tx(-) = {Si}}_,. then S5, = = 0 and S = (5,0). Also if
|| — O and &€ — 0, then § — 0 and f = inf{t; : h <i < k — 1} = oo. On the other
hand, if |u| = 0, § — 0 and { — o0, then x(¢), {1 <t < {3, is orbitally é-near B,
with & — 0. The proof of those facts uses Lemma 3.4 and will be left to the readers.

There are many ways to choose % and A. For our convenience we shall specify the
one to be used in the sequel. Let 7 > 0 be a large constant so that g(—7) € O and
g(r) € 0. Let o be a n — 1 dimensional surface on W{ . (u) transverse to q‘?,(—'r). See
Figure 2.1. The hyperplane 2, = {x + g(—7)lx = (y,»,v), y € O, U € R, v € R™}
intersects I', transversely at g(—7). Let T(27, 4, %) = Z. Assume H4) holds. Then
We(0) N W(0) is a n-dimensional submanifold whose intersection with 3 is a (n-
1)-dimensional submanifold, denoted by @(u). The tangent space of @ () is linearly
independent of TW*(w) at g(7). We will show that assertion for w = 0, then it will be
true for all || < fo. Suppose the assertion were not true for u = 0, i.e. we could find a
NONZEro KG e TWS(O)NTE(0) c TW(0)NTW*(0). From H3), A, = cq(r). Therefore
4(r) € TS. This is a contradiction to % being transverse to I'o. Let II be a projection from
WS () onto Wi, (u) parallel to WS(x, w), x € Wik (u), i.e., II(y, 0, v) = y in the local
coordinates. Let €(u) = I16(u). It can be shown that €(x) is (n-1)-dimensional and is
diffeomorphic to ‘é(,u), based on the property TE(w)NTWS(x, ) = {0}. We then choose
A LT%(0) at y = 0 on Wy, (0). Let A = (A}, 0,0) be a vector in RIFm+n We claim
that A th (TW(0) + TW*(0)) at g(7). If not, we would have A € TW(0) + TW*(0).
Then TW<#(0) N TW®(0) would be at least (n+ 1)-dimensional, since we already know
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We(0) n We2(0)
q(7)
C(u)
I
W*(0) | C(w)
/o 5

Figure 2.1,

that T (w) @ span{g(r)} C TW(0) N\TW*(0). This contradicts H4). Denote plt, p) =
D(t, 1, gy(—1)), 1 < 0.

Theorem 2.1. Assume that H1)-H4) are satisfied. Then there are positive constants
i, 8 71, p and & with the following property. Let {S;}% h.1 be a sequence of symbols as
described before, with T(u) < t; — 21 < f(w), 8(t; — 27, 1) < & and lp(—ti+2r, w)| < p
fh=i<k Sp_1= (D) with |V] < 9 andlor S, = (5, &) with |5 + || < Ty if k
and/or k are finite. Also assume that || < fi. Then there exists a unique piecewise con-
tinuous solution x(t) for (2.1), £} — 21‘ <t £ {; that is orbitally é-near T, and satisfies
Tx() = {S; }}z 1~ x(t) has jumps §,A h =i <k, each occurring when it hits 3. 'I?zaf
is, for each h <i < k there exists 5; € R such that x(s;7) € % and x(s7) — x(s;) = f,
Also, x(s;) = x(s*) Denote

& =Gi({S;}, ), h<i<k

{G; }h is C3 in {S; }h where both are equzpped with the uniform topology. If H5)
is satisfied and ;L] is ﬁxed {G }h is C3 in {Sj}h  and py in the uniform topology.
Moreover, if {S,}}z 1= {S; }h i in the product topology and i, — Hy With ) = [,
fixed, then Gi({S;}, u) — G,({S‘,} ), h =i < kand x(t) > X(t) uniformly with
respect to t in every compact subset of [{| — 27, {4] that does contain Jump points of
X(1). In addition assume that ¥ is such that T(t, i, (7,0, 0)) € ngc(y,) NGO forallt >0,
and v; is such that T(¢, u, (,0,0)) € W,oc(/.c) NG for all |y — gy(—m)| <wvyand: <0,
Also assume that || < Py, |u| < ik and mf{t} > I, with ¥, i small and T large.
Then there exists a unique x(t) with Tx(-) = {5; }‘,l v where 8,1 = 0 and Sy = (3, 0).
The solution x(t) can be defined for t € R and is é-near T, for all t € R. Moreover,

x(t+42) = T, 1, (5,0,0)) as t > +oo.

The bifurcation functions G;({S;}, u), h <i < k are defined by a rather complicated
procedure, therefore it is desirable to find approximations to such functions. To each small
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y € R", there is a unique y; € @(u) such that y; —y = £A;. We define d(y, u) = £. Let
{S,-}f;‘L_1 be a sequence of symbols. Define y; = p(—t; + 27, u), for h <i < k-1 and
yx = ¥, where Sy = (¥, &i). In Theorem 2.2, (2.6) and (2.7) we show that d(y;, p) is a
good approximation for Gi({S;}, p), h <i < k. We give a short geometric explanation
assuming that the y-equation of (1.1), in a neighborhood of x = 0, does not depend on
(4, v). The solution x shall take time ¢; from % to 2 and it will take time 27 from 2 to
.. The rest of the time t; — 27 is spent close to the origin to move from 2, to 2. Now
g goes from p(~t; + 27, p) = g(—7 = (t; — 27)) to g(—7) € 20, when u = 0. Let {s5;}
be the time sequence when x hits 3. If x(s;_;) is on 2 at the starting point 5;_; of the
time interval of length ¢;_;, it will be very close to o when it hits %, due to the strong
contraction in the v-variable. Therefor, x(s;) has to be very close to €(u). On the other
hand, if y(s;y — 27) is near g(—7), y(si;1 — ti+1) must be very close to p(—t; + 27, u)
due to the strong contraction on W¢(0) in backwards time. Therefore, the jump between
x(s;7) to x(si*), along the A direction, is almost equal to the jump between 6(u) to
p(—t; + 27, u). In terms of the definitions made:

&B = y(s7) — y(sT) = d(p(—1; +27), wA; = d(y;, WA,

or & = d(yi, ).
We consider a one-parameter family of symbols indexed by {. Let {Ar,-}ﬁ be a uni-

formly bounded sequence of real numbers. We define ¢/ = 0 and #;({) =; + JAs; b <
i <k Let yi({) = p(—ti({) + 27, p) for h < i < k—1 and yx({) = g(te({)) where
g€ CH(R, R™) with g(0) = J. Let ug({) and v4(Z) be C! functions of ¢ with ranges
in B! and R™ respectively. Let §i({) = t;({), h < i < k—1, §3_1({) = vp({) and
S:(8) = (), ur(L)). Let 15(L), (L) and ¥4 () denote derivatives of corresponding
C! functions. Let Lij=1fori=jand I;; = 0 for i # j. In Theorem 2.2, (2.8), we
compare derivatives of d(y;({), u), ;h <i < k and Gi({S;(D}, p), h =i < k with
respect to {.

Theorem 2.2. Assume that HI)-H4) are satisfied. Let x(t) be the unique piecewise con-
tinuous solution corresponding to a sequence of symbols {.S',-};‘l_1 = Jx(-) as in Theo-
rem 2.1. Let 8; = 8(t; — 27, ) for h <i < k— 1 and 8; = 0 otherwise. Let p; = |y for
h<i<k—1, py =¥, pi =0 otherwise.

Then if [u and 8 in Theorem 2.1 are sufficiently small, we have

IGi({S;}, ) — d(i, )l = C1(8i(pi—1 + pi + pis1 + 1)
+ 8;_(pi—2 + pi-1 + pi + [u1)) (2.6)
+ Cr U w0l + I 1 Bp10] + Lig|B| + 1 -1 6x—1l8]), h < i <k,

9 a
— G5 ___.dO, <C . i L: 1|7 L v ,
}amG;({ it i 0, w) | =Calpi + pi—y + LinlV] + Lkl + |u)) @

h<i<k.
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d d
%Gi({sj({)}- M) = 'éz.‘d()‘i@), )

< C3(8iBiey + B; + Pig1 + 1)) + 8i21Bi—2 + 8= + 8N 1{AL;}]

+C3((@8) im0 + €8 i (D] + I nSalva(DIIAL4] + If,krsk%uk(g")llﬂt(kzl)g)

where 8 = 8(ti({) — 27, 1), B = W@ for h < i < k=17 = In@)l, & =
| 478 ()], and & = sup{(8;).

We shall now consider a one-parameter family of symbols {S,-};‘l_l to be used in H7)
and in Theorem 2.3 that is different from those used in (2.8). Let {Si}fl—l be a sequence
of symbols with §; =, 0 < 7T < 1; < Lh<i<k-1,8.;=71vand Sy = (7, ).
Let t;(0) =t + ¢ for h < i <k, where £;; = 0. Let y;({) = p(—({) + 21, ), h <
i <k—1and y(0) = gtk @)). Let $;(0) = t;(0), h < i < k—1, §,_1(¢) = ¥ and
S, (&)Y = (L), ). The differences are: (i) we now assume At; = 1 for h < i <k, so
that they are not used in the definition of symbols; (i) S;,—;({) does not depend on ¢
now. We make the following hypothesis.

H7) There are positive constants d; and e;, sgp{d,-+e,-} < 09, such that d(y;({;), ) =0

forsome—d,-<§;<e;,hﬁisk.AlsE)far—-d,»<4’<ef,hsisk,

3 e o - - _
a—gd()’i(s“). #)’ > Cy[8i(Pi—y +P; + Pigy + 1) + 8;-1(8i—2 + ;) + 87)]

+ C3(I; p8n19] + I kx|l
_ H7:1)
where C; is the constant in(2.8) and C4 > C3, 6; = sup{6(t—27, )|t € (t;—d;, t;+
e}, h<i<k—1, & =sup{|[yx({); —dr < { < ck}, and p; = sup {|y;({)]}. At
the end points { = —d; and { = ¢;, h < i < k, we have the inequality

1d(i(§), )| > C1{dilpi-1 + pi + piy1 + 1) + 8i_1(pica + pi—1 + pi + 1)
+ L p || + 1 g1 Sl B + 1 8] + I g1 61 18D},
(H7;2)

where §; = 8(t;({) =27, p), i<h<k—1, 8 = |y(D)i and p; = |yi(D)], h<i<
k, all evaluated at / = —d; and { = e;. Also C; is the constant in (2.6).

Theorem 2.3. Let Hl)-H4) and H7) be satisfied. Then if ji, 8, %, and p, as in Theo-
rem 2.1, are small, then there exists a unique sequence {{ :""}i‘I —d; < {{° < e, such
that

Gi({S;¢Nw =0, h<i<k

Hence, we have a unique C' solution x(t) of (2.1) in a neighborhood of the orbit of g,
with

Tx() = {Si¢PNE_,

Hc

thi

Tl
kl

T}
sC
o1
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Solutions whose symbols {S; }f1 | satisfy H7) are called nondegenerate for the reason
that y;(g ) lies on an arc a; = {y;({), { € (—d;, e;)} that intersects ‘G(u) transversely.
{a,} » is called a nondegenerate sequence of arcs.

Theorem 2.4. If {S }h 1 is a given symbol sequence that satisfies H7), and if h < h! <

k' < k, then {S; }h' | is also a sequence of symbols that satisfies H7) provided that
Spi—1 = U1, S = (Y, #1), Uy and @y are sufficiently small and yp = p(—tp + 27, p).
Therefore from a nondegenerate solutzon x(t), we can construct another nondegenerate
solution x (t) with E’T(x (N = {S}hl |- Moreover, Ifkl = 400 (or h! = —o0), then
orbitally x Ly — x(t) as t > 400 (or as t — —cx).

Theorem 2.4, when k! = 400, describes a m-dimensional local stable manifold for
the orbit of x(¢). If 7, = 0, then x'(¢) is a heteroclinic solution connecting Wiy (u) to
the orbit of x(¢). The solution x!(¢) may stay in a neighborhood of © as t — —oo if
its y projection does so. The existence of such a heteroclinic solution is clear in lower
dimensional cases, see Figure 2.2. However such orbits have been overlooked in higher
dimensional cases in our early paper [4]. Results like Theorem 2.4 are also true if the
equilibrium is hyperbolic. )

Theorem 2.4 can also be improved to show the existence of a [ +n — 1 dimensional
unstable manifold for x(¢). To do so, we need a local coordinate near € G(w). See

Figure 2.2.

G

Figure 2.3.
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Figure 2.3. Let y € R” be near j. Define a local coordinate y = (zy, z5), so that z; = 0
implies y € %(u) and z; € R measures the distance of y to (w) along the flow

on Wi (u). We then try to construct a solution x' () corresponding to a given small

(z1, %), leaving z; to be determined by #;({) according to the transversality of a; and
(). Details will not be presented in this paper.

Results in Theorem 2.4 should be compared with Theorem 5.1 where hyperbolicity of
simple periodic solutions will be discussed. Because of the hyperbolicity of the periodic
solution x?(f), we actually have x!(r) — x?(z) in the usual sense, not only orbitally.

3. Preliminaries

Let X(t,s) be the principal matrix solution for the linear equation
x(t) — Dx f(q(t), 0)x(8) = (1) (B.1)

X(t,s) (or equation (3.1)) is said to have an exponential trichotomy on an interval J if
there exist constants —a < v —€ < »+¢€ < B8 and K > 0 and continuous projections
I=P:(6)+ Pu(t) + Ps(t), for all ¢ € J. Furthermore

X(t, 5)Pi(s) = Pi()X(t,5), fori=c,u,sandt,s,inl. A5
And for all 7, s € J, and ¢ > s we have
1X(2, 5)Ps(s)| < Ke™ @9
1X(s, DPu(1)| < Ke P9,
|X (2, 5)Pe(s5)] < KelvtoU—9)
|X (5, DP(D)] < Kelv+e(=5)

(3.3)

The adjoint equation of (3.1) is (2.5) which has a principal matrix solution Y (¢, s) =
(X, 1™ = X(s5, )*. If X(t, 5) has an exponential trichotomy on J, then Y (¢, 5) also has
an exponential trichotomy on J with projections Pj(z), P;(¢) and P%(r), 1 € J. Properties
similar to (3.2) and (3.3) also hold for the adjoint equation, i.e.,

Y(t, )Pf(s) = Pf(OY(t,s), i=c,u,s. (3.2%)
And for t > s,
¥ (s, )P} ()] < Ke™ =9,
Y (t, 5)P}(s)| < Ke PU=9),
¥ (s, HPE()] < KePHO0=9),
Y (2, $)PE(s)| < Kel~+9)E=9),

(3.3%)

Lemma 3.1. (3.1) has an exponential trichotomy on [a, +50) (or (—oo0, a)) whereae R
is any constant. Moreover, let > 0 be so small that if A € o{D;f(0,0)} and —q <
ReA < 7, then ReA = 0. Then we can choose v =0, —a < -1 < —€ < € < n<p
in (3.3), provided that the constant K > 0 is sufficiently large. Furthermore dim P;(f) =
dim W'(0)) where i = u, c, s.

Proof. See [16] (Lemma 4.3).
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Now that (3. 1) has exponential trichotomies on (—oo, ] and [z, +-00) for any t € R,
we use Pi(t) i = ¢, u,s to indicate projections related to the right or left intervals.
Clearly QR(P () + P (1) = TyyWe™0) or RPF(1) = TynW*(0) if |1} is large so
that g(t) € Wi (0) or Wi, (0). From a construction of [16], the above are valid for
all + € R. From Hj), %(P (t) + P7 (1)) + RPF (1) is of codimension one, and (0) L
(R(P;(0)+ P; () +RPHO)). It fo]lows that (0) € RP;*(0) NR(PT*(0) + P*(0)).
In fact, for each ¢ € Rf+m+" (W (0), Pf(0)$) = 0. Thus, (PF*(0)(0), ¢) = 0. This
implies that (0) € R((PF*(0) + P;*(0)). Similarly, one can show ¢(0) € RP*(0).
Thus, ¥(t) = Y{r, 0¥ (0) € {RP;*(1), t < O} N{RPF*(H) + PL*(1)),t = 0} Moreover
()] < Ce¥" for ¢t < 0 and ¥ (1)] < Ce” for t > 0. Here vy is any constant with
0 <y < a,, a, is known from (1.1) and C depends on y. We have just proved

Lemma 3.2. There exists a unique (up to scalar multiples) solution (1) of the adjoint
equation (2.5) such that ()| < Ce" for t <0 and |y(t)| < Cre” fort > 0. Here
0 <y < a, and C; depends on y. Moreover

YL (TyyWh(O) + TyaW*(©), 1 e R.
Let > 0 be a large fixed constant so that g() € W3,.(0)N0 and g(—7) € W{¥.(0)NG.

Solutions of (2.1) that are near the orbit of ¢(f), —7 < t < 7 shall be considered as
solutions of the boundary value problem

() = f(x, p), —T<t<T
v(—1) = v} (3.4)
w(r) = w!

where x = (y,u,v) = (w,v) and w = (y, u). v e R™, w! € IRH'" are glven small
vectors. Obviously g(¢), ~7 < t < 7 is a solution for (3.4) when v =0, w! =0 and
p=0 Let ¥} = {xlv=v 1} be the initial manifold and ¥; = {x|lw = w 1} be the
terminal manifold. Observe that 7' (27, 0, %) does not intersect ¥, transversely when
v! =0, w! =0 and u = 0. We impose a phase condition at { = —7,

x(—T) € 2. (3.5)
We consider generalized solutions by allowing the solution to have a jump at ¢ =7,
x(r7) - x() =£B, £€R. (3.6)

Here 3, is a codimension-one hyperplane transverse to §(—7), g(—7) € Z,, and A is
transverse to TW(0) + TW*(0) at g(7) and x(77) = limyq, x(2).

Lemma 3.3. There exist i, > 0 and € > 0 such that for |u| < po and lw' |+ ! < e,
the generalized boundary value problem (3.4), (3 8 ) and (3.6) admits a unique solution
x(t) and & Moreover x(t) and ¢ depend C™ on v w and wif f e C". Let x=0,uv)=
(w, v). Denote rhe solution by x(t) = (w« (¢, w!, v! L)+ quwlt), vt wl v, w) +gu(e)
and ¢ = E.(w!, v!, w). Then

max {Iw*(tw V0l + [uet wh, vl )+ £, vh )] < CQwl |+ 10 + D).

—T=<
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Proof. Recall that g,(—7) = 0 and g, (7) = 0. We need to find w, € R*" and v, € R™
so that

TQ27, p, (Wo + qu(—7), v1)) — (W', v, + gu(7)) = £A.

Rewrite it as

X (7, —7)(wo, 0) — (0, vp) — €A
= (w', 0) — X(r, —7)(0, v\) — H(wo, v, w). (3.7)

where H (w,, v', ) = TQ27, i, (wo+qu(—7), v")) —g(r) = X (1, =) (wo, v') = 0(luei +
[wol? + [v![?). Observe that $; = W (0) and &, = W5, .(0) when =0, v' =0 and
w! = 0. Therefore A {Ty(ryF2 + X(7, =1)T g(—n¥1} by our construction of A. The
left hand side of (3.7) is surjective from R™t x R™ x R! onto R*+™+" with the kernel
spanned by (o, Vo, £) = (du(~7), 4u(r), 0), since X(r, —r)g(~7) = 4(r), du(~7) = 0
and 4, (r) = 0. Since 2, is transverse to §(—7) = (§u(—7), 0), clearly the linearized
equation of (3.7) has a unique solution if we require that (w,, vl) € 2,. The rest of the
proof follows from the implicit function theorem. O

As pointed out in the introduction, we normally cannot fully project local flows to the
local center manifold, i.e., go in (1.1) will depend on (v, v). However, we can choose
a coordinate system so that the first equation in (1.1) depends very little on (u, v). See
(2.3). In such coordinates, we expect that each solution that stays in a neighborhood of
the equilibrium for a long time is very close to a solution on the local center manifold in
their y-coordinates. This will be proved in Lemma 3.4. Let G be a small neighborhood
of x = 0 where all the local invariant manifolds and invariant foliations as described in
section 2 exist. Assume that the desired change of coordinates as in section 2 has been
made so that (2.3) is valid. " 2t ap be the constant introduced after (1.1).

Lemma 3.4,

1) Let B and o) be constants with 0 < 8 < a) < ag. Then we can always choose © to
be sufficiently small so that the following property is valid. Let —T be the first time
(p(t, u}, 0, 0) hits the boundary of O. There is a small neighborhood @ of the orbit
of (p(t, ), 0,0), =T <t < 0 such that each solution x(t) of (1.1), —t, <t < 0,
that stays in O’ can be written in the form

X0 = 0@+ 0, ¥ 0, W), 1<t <0,

Here y () = (2, p, xy(0)); y$(0) =0; and t, <T. Moreover
FolR=e g

b (1) < ce™,
[ ()] < Cem i+,

where C = C(3, Q') is independent of u and t, if |u| < u, is satisfied.

ii) There exist positive ,, €, and T such that for || < po and |ve|+|usl+|vo] < €,, the

solution x(t), —t, <t <0, as described in i) exists, with y.(0) = qay(—7)+¥o, u(0) =
up and v(—ty) = vy, provided that f < t, < T (possibly T = +c0). Furthermore,
¥ (6), ub(t) and v3(r) are C™"? functions of (to, t, Yo. Ug, Vo) if f € C". Moreover,
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let v be a multi-index with 0 < |v| < r — 2, D” be the differentiation with respect to
(to, 1. Yo. up. vp). Suppose 0 < B < oy — |v|B — B. Then

|Dvy$(t)i < Ce_alio—(ll)H'])Bf’
D13 (1)) < Ce™,
1P STt

Proof. 1) The proof of the estimates on u’ (0) and v*(¢) uses integral equations, Gronwall’s
inequality and (2.3). Details will not be given here. The exponential estimate on the center
component y*(t) looks surprising at first sight, but it relies on the choice y3(0) = 0.
Assume that the estimates on |u® ()] and |v* ()| are valid, then from (1.1) and (2.3), we
have

t
Ol =| fo 0= {go(ye(s) + Y3 (5), u3(s), V(). 1) — 0 (ye(s), 0, O, o)) d]

t
<cyl fo ePEDI2(L8(5)] + Clud ()19 ()1} dsl.

Here C; depends on 8 > 0, L is the Lipschitz number of g,. Using Gronwall’s inequality
on

t
(H2530) < ol [ LBy + Cebrrmant) g,
0

we obtain the estimate on |y® (7)) provided that C)L < B/2. The latter can be achieved
if the neighborhood O is sufficiently small. The proof of (i) uses the contraction the
mapping principle in weighted Banach spaces and can be found in [4].

Corollary 3.5. For each |p| < o, (Yol + luol + |val < €, let x(t) =
(@), u(r), v(1)), —ty <t <0, be the unique solution of (1.1) with the boundary condi-
tions y(0) = qy(—7) + yo, u(0) = up and v(—t,) = vy, Then u(—tp), y(—tp) and v(0)
are C3 Junctions of (1o, 1o, Yo, Ug, Vo) if f € cs. Moreover, for 0 < |v| < 3,

|D¥ (y(—to) — gy(—7 —t0))| < C8(ty, W)
ID¥u(—1,)| < Ce™%e
|D¥v(0)| < Ce™te

provided that 8(t,, p) > Cel~0+4B)o,

Remark. We need to consider up to the third order derivatives of (u(), v(®), y()).
Denote o = a; — 4. Then, for example, |y$(—to)| < Ce™%%_ For each given constant
C, we can choose f, large enough such that 6"(z,, u) > Ce™®>, y = 1,2. This will
be useful in proving Theorem 2.2, (2.8), in section 4. A brief proof goes like this. Let
y(O) = ®(t, , y(0)), —tg <t < 0. Let n(2) = y(—tg+1), 0 <t < t,. Then

7' = Aon+ 80(1. 0,0, w)
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with |ggl < clul 4 €ln]. Here € is small if |x| and |7| are small. Since Reo(Ag) = 0,
for any B > 0, using the variation of constant formula,

1
In(0)| <Ce¥in(0)] + € /0 P49 (n(s), 0, 0, wlds

t
<CeP ()] +C fo €249 (|4l + elm()ds.

Using Gronwall’s inequality on

C !
()] < Cin)] + Gl + Ce /0 &S (s)\ds.
we find that
C
e Pl < (Cin©)] + El#l)e“’-

It In(¢g)| is uniformly bounded away from zero, then

e CEHR <Cy(In(0)] + ul)
<C28(ty, ).
The desired result follows if 2(ce + B) < a.

The solution of the boundary value problem in Corollary 3.5 shall be denoted by
x*(t, to, Wo, Vo, ) = (W*(t, Lo, Wo, Vo, 1), V¥ (t, to, Wo, Vo, k) Where w = (y, u).
Consider a Banach space Z which splits into 2 linear subspaces

Z=UeVW

Let A : Z — Z be a linear bounded operator. Let A~! be uniquely defined at least on U
(i.e. for any u € U, there exits a unique u; € Z such that Au; = ), and A~ : U — Z
be bounded. Assume that A:V — Z and A~! : U — Z are contractions with

|Av| < Aly], for vev,
|A7' | < Alul,  for ueU.

where the constant 0 < A < 1. Let Py be the projection with the range being U and the
kernel being V. Let P, = I — P,. Assume that max{|P,|, |Py|} < M.

Lemma 3.6. If 4M2A*> < 1, then there exist invariant subspaces U and V under A™!
and A respectively, i.e.
i) AU cUand AV C V.

Moreover,

i) |AY| < 8MA[Y| for T € V and |A~'0| < 8MA|T| for @ e U;

i) U=(I+S)U and V = (I + S,)V, where Sy : U — Z and Sy : V — Z with
1Sy < 2MA? and |S,] < 2MAZ.

iv) Let P, be the projection with the range U and the kernel V. Let Py = I — P,. Then

Py= (I +S)Pull + SuPu + SyPy)~},
Py = (I + S)Py(I + SuPy + SyPy)~!




Homoclinic Bifurcations with Weakly Expanding Center Manifolds 119

and

max{|[Pal, [Pul} < M(1 +2MAH)(1 — aM2A%)~ L.

Proof. For each linear operator S: V= Z, |5 = -2-1‘,7 let S; : V — Z be defined as

S, = —A" P, (I + 5P,y 'A. (3.8)
Obviously |5;| < 2M 2 < 2—314- Also, the map § — S is an contraction with the
rate 4MZA2 < 1. Therefore, there exists a unique fixed point, denoted by Sy, with

1S,] < 2M A2,
Let (I +S,)V =V.ForeachveV,let

vy = (Iy + PySy) | PyAv.

where I, is the identity: V — V and (I + PySy)y 1V — V.
Obviously v, € V. We shall show that

A+ Sy)v = (I + Sy)v1. 3.9

To this end, first observe that

Pull + SuPy) ™ = Uy + PuS) ™' Pu.
Applying (I + §y) to both sides, we have

[ = Py(I +SuPy) ™" = T+ Sy + PuSy)™ P

Applying both sides to Av, we obtain

Av — Pu(I + SyPy) "t Av = (I + Sy)vy.
From (3.8), the l_eft hind side is precisely A(J + So)v. (3.9) has been proved. Based on
(3.9) we have AV C V. This proves half of ).

|AU + Su)vl < 1T+ Sullugl
< 2lvy| < 2@MA)|v]|
< 4MA - 2|(I + Sy))
= SMA|(I + Sy

This proves half of ii).
Similarly, we can define Sy as the fixed point for the equation

s BT R A

where S : U — Z and |§] < 57 Let U = (I + Su)U. A~1 on U is well defined. It
is understood that for u € U, A™ (I + Suu = A~y + A-18,u, while A71S, = —Py
I+ SuPu)"lA”!. We can show

AT+ Spu = (I + Swuy,

where u; = (Iu + PuSy) ' P,A™ u and 1, is the identity: U — U. The rest of the proof
follows from those for V and S,. This proves i)-iii). iv) can be verified directly. It is easy
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to see RP, = (I +5,)U. Let v € V., We can show;Pu(I+SU)v =_02. Det_a.ils are left as an
exercise. Thus V C Kernel Py. Similarly U C ker P,,. Therefore P, = P, (I — P,) = P,.
O

Definition 3.7. The angle ®, 0 < 0 < 3’- between two linear subspaces U and V is
defined as follows

sin ® = inf{dist(w, V), dist(v, U)lue U, veV, |ul = |v| = 1}.

It can be shown that M < C®~'. This is very useful in proving Lemma 5.4,

4. Proof of the Main Results in 2.

Proof of Theorem 2.1. The proof is given only for the case where both h and k are finite.
Obvious changes can be made for the cases where h and/or k are —co and/or +o0. For
example, if h = —oc and k = 400, & < i < k—1 should be changed to ~00 < i < 400,
and any statement concerning { = —co and i = 400 should be ignored.

We are given a sequence of symbols {S,'}l";ﬁ1 and are seeking for a solution whose
orbit is the union of those of

xh(f), xh(t), kit xl'(t)v xi(t)# Ty xk‘—l(r)’ xk(‘)

where xi(t), —t;4+27 <t <0, h <i < k—11is in © and shall be called the inner solution
and x;(f), —7 <t < 7, h < i < k is orbitally near g(¢), and shall be called the outer
solution. These solutions are described by the boundary value problems as in Lemma 3.3
and Corollary 3.5. In particular, the boundary value problem that describes inner solutions
is sometimes called Silnikov’s problem [8] and the_leoundary value problem that describes
outer solutions admits a jump x;(77) — x;(7) = &; A and is related to Melnikov’s function
which measures the gap between W () and W*(u). Also a phase condition x;(—7) € 3,
applies. Let w{ and v{ be the w and v components of x*(0)—g(~7) and x'(—t;427)—g(7)
respectively. Let w,-1 and v} be the w and v components of x;(7)~q(r) and x;(—=7)~g(—7)
respectively. We then have

)y = x*(@, t; - 27, w?, v, w)
X = x(t, wl, v}, W+ q0).

The outer and inner solutions have to match at common points. This leads to the
following system

wi1 = w*(—t; + 27, ti— 2T, w,'o, U?, M), (4.1)
iy =0, 1 — 27, wf, of, ), “.2)
wf = we(—7, whyy, vl W), 4.3)

W =valr, w), v, w), (4.4)
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Figure 4.1.

where h < i < k— 1, x* = (w*, v*) and x, = (wy, vs). wi = (y, &) and v}! = § are
given boundary conditions. Also a phase condition

(=7, wh, v}, Weo, h<i<k,
must be satisfied. However such a constraint is implied in the construction of the functions
wy and vy, see Lemma 3.3.
To continue the proof of Theorem 2.1, We need the following lemma.

Lemma 4.1. System (4 1)-(4.4) with wk = (¥, i) and v‘h = ¥ admits a unique solution
{w ; 11+1’ 2 uo} Lif 15l < 4y, lal+19) < 172 and inf{t;} > 7, p, 8, and p are small
and [ is large. The solution depends C3 on {5; ]h | and py in the uniform topology. It
also depends continuously on {S,}h 1 and p in the product topology if h = —oo and/or

k = +o0.

Proof. We are looking for &; = {w |+1’ wl, W}, h <i < k-1 Let O(e;, €3) =

{%;] Iw | + |”;+1| <ep, Wi+ <€, h<i= k — 1}. The right hand 31de of (4.1)-

(4.4) maps {&i}}" to the left hand side, denoted by F{%;} = (T;} = (@}, B}, |, W7, V).
Let vh =17 and wk = (¥, &) so that & preserves the boundary conditions. Since w1 =

0, v = 0 and w = O imply that w, = 0 and v, = 0, see Lemma 3.3, we have

[w? I+I5"I < Ci(f+e) if |91 +1al+19] < €1, |u1] < 2 and {Z;}5~! € O(ey, €). From

Corollary 3.5, where the ume tg is large because f is large, also from (4.1) and (4.2), if
8(1; — 27, p) < b, then |@ H— I”:-H] <Ca(p+8), h<i<k—1.The system

Ci(i+e)) <&,
C2p+8) <€y,
has many solutions if 2, p and & are small. Also €1 and €; can be arbitrarily small. For

such €; and &7, & maps O(e), €p) into itself. We show that #? is contractive uniformly
with respect to {S; }k , and w. To this end, let {SE} ! and {‘?f,]h ! be in O(e, €).
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Let {A%:};~" = (% — )i ~" and (AL ()}~! = P/~ — FHZE )L, j = 0. For
brevity, let §; = 8(¢; — 2, u). We can choose 7 sufficiently large so that §; > e~ %, as
in Corollary 3.5 holds. From (4.1), (4.2) and Corollary 3.5, we have estimate (4.5) for
alh<i<k-—1.

Aw! ()] + 1AvL, , (1)] < C8:(|Aw?| + |A]). @.5)

From Lemma 3.3, the derivatives of w, and v, are uniformly bounded. We can then
derive (4.6) from (4.3) and (4.4).

[Awf ()] + [AW(D)| < C(IAw], | + |Av),, | + [Aw! | + |Av) ). 4.6)

— = — :l . .
Here Aw} = w} —, and Avy =7}, —7), are given from the boundary conditions. Repeat
the same argument once more, for h <i <k —1,

lAw! ()] + 180}, ()] < C8(1Aw]| + 1AV} | + [Awhy |+ 1AVL, D, @.7)

where again Aw}( and Av}l are given. The estimate for |[Aw{(2)| + |Av?(2)| is not so easy
to obtain due to the complexity of the right hand side of (4.6). From (4.5), if i # h or
k — 1, we have

[Awjy; (D] < C8i4y (|Aw, | + |AV2, ),
|Av] ()] < C8i_y (1AW | + |AY, ).

Those estimates, together with (4.5), allow us to derive from (4.6),

|Aw? )] + 1A ()] < C{8;(1Aw]) + |Av]]) + Sy (JAwE, | + |AVE, )

+ 81 (AW + 1A D)+ I lAvh + Iy fAwh), 4O
if i#hork—1.1f i = h, then [Av}(1)| = Av}. If i = k — 1, then [Aw), ()] = Aw].
All these cases can be unified into (4.8) by letting 8; = 8,_; =0, Iij=1ifi= j and
Iij=0if i # j.

Let 4 be small, so that C 8; < % forall A < i < k—1. Then %2 is a uniform contraction
in O(ey, €2) and admits a unique fixed point {#5°}¥~1, denoted by {%;({Si}, B
which is also the unique fixed point for %, and is €2 in {S;}ﬁ_l and w; in the supremum
norm if the vector field is €7,

We now derive Lemma 4.2 which will be used to show that {¥;}5~! depends on
{8} _, continuously in the product topology.

Let ¥; = (w}, v}, ), h < i < k— 1. Define (@}k! = YT by W =
@}, i}+11), where (W], 3., }5=! is the first 2 components of {w), By, W0, W
= F{w!, U}H, w?, v2}=1 here w?, v{ can be any vectors so that {w], v;, |, w?, y?}¥~!
€ O(ey, €). From (4.1) and (4.2), %; depends on (w?(l), v?(l)). The latter, from
(4.3) and (4.4), depends only on (w}, v}, Wi, 1, vty ). Thus %; does not depend on
{w?, W)k~ and of is well defined. From (4.7), & is a contraction with the fixed
point {YX}-1 = [yloo, v/2}%=1, The fixed point can be obtained by an iteration
scheme starting from any (¥;(0)}}~" = {w} (0), v}, (0)}5~! with |w!(0)] + v}, (O] <
€. Let (M,(NI = /{Y;(0)}f~!_We now use (4.7) to derive an estimate on
[Yi(7) — Wi(j + 1)I. Let &; = Y;(0), %; = Y;(1). Then from (4.7), if i # hor k — 1,
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then

Ui () = Wi + DI < 1wf 2)) — w} @)+ D + vl 2)) — vy, 2] +2)]
< Ciflw] (2)) — w} (2 = 2 + v}, 2)) — vy, (25 — 2)]
+lwlyy 2)) — w24~ 21+ v} @)) — v} @) - D)),

Therefore, for h <i<k -1,
i+1
() = UG+ DI<C8 D 1U,() — W — D).
v=i-—1

The above is valid for { = h and i = k — 1 if the conventions §; = 0, and %;(j) — Y;(j —
1) =0 fori ¢ [k, k — 1] are made.

It is an unfortunate fact that the right hand side of the above contains different indices
v. Further iteration of the above will increase the indices set if j increases. We can prove,
by induction that

i+
%) = WG+ DI < D Tal, j, »)¥, 1) — Y, (0),

v=i—j

where C = 3C, & = sup §; and

a(i, j, i)=&,
afi, j,v) = (8- 8,8, if v
a(i, j,v) = (- 8,, )8 ifv<i.
Here the conventions 8; = 0 and ¥;(j) — %;(j — 1) = 0 for i ¢ [, k — 1] are assumed.

The assertion is certainly true for j = 1. If it is true for the index j > 1, then for the
index j + 1, we have

i+1
Ui+ D =Y+ <C8& Y 1) — Ve + 1))
£=i—1
i+l ) .
<C& Y 1Y, Talt j»)I%a1) - Y0

§=i=1 v={—j

i+l

< Y, 2, 8ia(£, j, »)|%y(1) — Y, (0)]}.
y=i—j=-1 i—1<é<i+l and v—j<E<v4j

For a fixed », the summation inside the braces contains at most three terms corresponding
to £ =i—1, iand i + 1. In all the three cases, one can verify directly that

dia(¢, j,v) <a(i, j+1,v).

Replacing 8;a(£, j, ») in the summation by a(i, j + 1, ») at most three times and let
3C = C, the assertion for the index j + 1 then follows easily. This completes the
induction argument.

Adding from j =0 to co, we have proved
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Lemma 4.2. If C8 < | then

| (0) — Y° Ca ZC(S Biy=1) 1Yy (1) = Vit O)]

+ Z T Byt ) Vigs (1) = Vi O)]
r=—1

+ | (1) — Y (01}
forh<i<k—1. Here §; =0 and Y;(1) —Y;(0) =0 for i ¢ [h, k — 1].

It follows immediately from Lemma 4.2 that if |Y;(0) — ¥;(1)| — O for each & <
i<k—1,then |¥;(0) — Y| -~ Oforeach h <i<k—1

We now prove the last part of Lemma 4.1. First, let 7 be fixed and let {Si}ﬁ_l —
{S;}¢_, in the product topology, we show

X:({S;), ® — Zi({S;}, @, forall h<i<k-1 4.9)

Let {Z;({S;}, @)}, be the fixed point of F{%;} = {&;} corresponding to {S;}¥_, and
.

Let us consider &;(0) = %;({S;}, &) as a zero-th apprommatlon for Z;({S J,} o).
Using (4.1)—(4.4), it is not hard to show %;(2) — &;(0) — 0 as {S; }h 1 {S }h  for
h <i<k—1, where {£;2)}7! = F2{%;(0)}5~!. We like to remind the readers that
here the mapping % is defined using the symbols {5 }h_1 but not {S; }k_ Let the first
two components of %;(0) be ¥;(0). Wc then have ¥;(1) — ¥;(0) — 0, h <i<k-1.
From Lemma 4.2, we have (w}(0), v}, ;(0)) — (w1°° vl®) h < i < k — 1. This proves
(4.9). Observe that if u) = Iy is ﬁxed

S'-FP|%:’({S;‘}1 ) — Zi({S;}, ®)| < Clpg — 1,

where C does not depend on {S;}§_,, since sup | | is bounded uniformly with respect

to {S;}k #—1 and p. The proof of Lemma 4.1 has been completed.

To prove Theorem 2.1, observe that G;({S;}, u) = f*(w ! ), cf. Lemma 3.3,
Therefore {G; } 5 s C3in{S J}h ; and g5 in the uniform topology Also (G;)* » s continuous
in {Si}h ; and w; in the product topology since {w‘ ) Y 1} is.

We now provc the last part of Theorem 2.1. If h # —co and/or k # +o0, solve (4.1)-
(4.4) with vh = 0 and/or wk (¥, 0) where ¥ satisfies the condition in Theorem 2.1.
Our solution depends continuously on &, ¥ and {; }k LIf=0and t; = +oo for
h <i< k-1, one can verify that %; = 0, h < i < k — 1 is the solution to (4.1)-
(4.4). Thus if |§| < #;, |pl < & and inf{y;} > 7, with 7y, i small and 7 large, we
have that |%;|, » < i < k — 1 is small. Therefore |y}| < »; where v, is the constant
in Theorem 2.1. We then define x~(t) = T(t, u, (w}, 0) + g(~7)) for ¢+ < 0 and/or

xt@) =T, 1, (5,0, vk)—i-q('r)) t > 0. The solution x* () is on W3 (u), and x* (z) =
T(t, i, (3,0,0)) as t = +oo exponentially since x*(0) € W¥((#, 0, 0), u). Since |yh] <
vy, X(1) = T(t, ., (yh,O 0)+4g(—m) € WIGC(,U«) N @O for ¢t < 0. Now the choice of
our coordinate system guarantees that ¥(0) and x~(0) belong to the same unstable fiber,
therefore, x™ (f) approaches %(t) exponentially as — —oo. We then define x(t), t € R,
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orbitally as the union of x~(¢), x4(1), X, -, xp (1), xT(1). The proof of Theorem 2.1
has been completed.

Proof of Theorem 2.2. Like in the proof of Theorem 2.1, let ¥; = {w}, ”11+1‘ wi, Wl
Let (%O}~ = (0}~ (i)Y~ = F(&( — DY, j > 1, where % is defined by
the right hand side of (4.1)-(4.4). It is also understood that v}:(j) = D and w}((j) = (§, @)
for all j > 0. The proof of Theorem 2.2 is based on a very simple idea. Since u, &; and
p; are small, the first iterate {Sﬁi(l)}ﬁ‘l must be an excellent approximation for the fixed
point {ZX}=1 of F.

Let 75(i) = [w§(0)—wf (1)|+[2? (0)~ v (1)] and 7 G) = [} (0) —w! (1) + vl (©)
v§+1(1)|, h<i<k-—1,and n(Q)=0fori < handi> k. Let I;j=1fori= jand
=0 for i # j. Substitute #;(0) = 0 into the right hand side of (4.1) to (4.4). Since w
and v, are C! bounded, from (4.3) and (4.4), No()) = [wf| + V)| = O(u) if i # h or
k—1.1fi=hork—1, then vy = % or w} = . Thus

No() < CQpl + I pl0] + I gy 10)).
Using Lemma 3.4, from (4.1) and (4.2),
710 = 1w}l + v}, = [w*| + |v*|
< Ye(—ti +27) + ¥ (=t; + 20| + 1w (=1; + 27)| + [V (0)).

Since |yc(—tj +27)| = |p(—t; + 27, w)| = lyil = pi, and [u¥| + |v¥| + |y¥] < Ce—ato
(Lemma 3.4), and since e~ % < &; = C(p; + |u|), cf. H2), we have

Mm@ 2 Clpi+6) 2Clpi+ph), h=i<k-1
From (4.5), we have
lw} (1) = w{ @) + lvjy; (1) = v} (D] < CEmoli), h<i<k—1.
From (4.7)
lwi (@) — w!G) + v}, ) — v 3] < C8ilm G — 1) +mG) + 7+ D],
forh <i<k—1.Thus

lw} (1) —w! )+ o} (D = v}y B < C8ilpimt +pitpigy + Ll B+ gy ]+ 2l).
(4.10)
Here, when i = k — 1, the term || = |J| 4 |ii] = px + || and can be replaced by |i].
Let ¥;(0) = {w] (1), v}y, (D}, h <i <k~ 1. Then Y;(1) = {w}(3), v}, (3)}. From the
proof of Lemma 4.1, sup; |%;(0) — ¥;(1)| < 2¢,. We infer, from Lemma 4.2 that
1
1-Cés
+T8 > 19,0) — Yy ()] + T 8i(8i-1 + 5i41)

fy—il=1

|V;(0) — ¥ < (1%:(0) — %;(1)|
di (4.11)

1-Cé8
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The last term of (4.11) comes from adding up terms in Lemma 4.2 with indices [v—i| > 2.
Combining this with (4.10), we find that

lw} (1) = w!®|+ vl () = v} | < Cilpicy + pi + pigy + Linl¥] + i gl + | ).
(4.12)
We explain how the right hand side of (4.12) dominates all the terms in (4.11). Due to
the fact that 8, < C(p, + |pl), ¥ =i—1, i+ 1, the last term in (4.11) is bounded by
C8i(pi—1 + piy1 + lul). From (4.10), [¥,(0) — Y ()| < €8y, v =i — 1, i+ 1. Thus,
& Y 1%,(0) — Y(1)| < C8;(8;—y + 8;+1). Those terms can be added to the right

ly—il=1

hand side of (4.10) that dominates |%;(0) — ¥;(1)|. We now have

GillS;), #) = Ex(]™, v, p)
= £l ), v, )+ Y 0wyt + Py + Pyr1 + 1)
v=i,i—1

+ Oi k0] + 1, 1 Op1 0] + Li k@] + I g—1 8k—1 @)
Recall the constant f introduced in Lemma 4.1. Choosing f so large that e~ < C&;(p; +
lul), we have, for h+1 <i <k, |9} ()] = |v*(©0, 1;_; — 27, 0, 0, p)| < Ce~%-1 <
C8i_1(pi—1 + |ul). Similarly, |u} (1)] < C8i(pi + |p)) and y} (1) = p(—t; + 27, p) +
0(8;(p; + |u])), h <i < k— 1. Therefore,

£x(w! (1), v}, @) = £ 0,0, 1) + 0(8i(p; + |1tl) + 8y (piz1 + 11D)
+ 0T o0 + L pl@il), A=ZiZk

Hence

Gl({Sj]v ,U-) = f*(yfs 01 01 ru')
+08i(pi=1 + pi + pir1 + 1)) + 8im1(pi—z + pi1 + pi + 1))
+ 0, 51 3] + T; g1 O 0] + I | + 1 g1 8k —11])

Lemma 4.3. £.(y,0,0, ) = d(y, p).

Proof. Consider the boundary value problem (3.4) with v; = 0, w; = (y,0). Since
vy =0, x(—7) € WX (u). It is also required that x(—7) € 2. Thus x(—7) € Wik (u)n
3, and x(r7) € W¥*(u)NZ. Now x(r) = (y, 0, 7) where ¥ is a vector in R™, and x(77)—
x(7) = (&4 - A1, 0,0) where A; € R" is given in section 2 right before Theorem 2.1. It
is now clear that x(77) is in W (u) N W& () and x(r7) € W) N WS () N=% =
(). Finally the projection IT kills the vector 3, thus £,A; is the vector between y and

B(u) on Wi, (n). In fact,
& =TI (x(77) — x(1)) = (x(77)) — y = d(y, w),

since II(x(77)) € B(u). 0
Estimate (2.6) follows from Lemma 4.3,
As in Lemma 4.2, let ¥; = (w}, v}, ). Since

ow* av*
dw? gv?

av*

ow?

dw™*

-BF <Cé;, h<i<k-1,

+ + =
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and since 3~ =0, 3” =0, cf. H2), from (4.1) and (4.2) we have

av?
|Dp,%il = C8; (I—I+I ’ I)
But from Lemma 4.1, |D,, ¥{°| < C. Therefore IDmf’yf.”i <Cé,forh<i<k-—1 We
can now write
dé.w!, o), p) _ 06w}, v}, )
dy I

+ 0(8; + 8i-1)

forkh < z < k. Here (wl, ,)15 used for (w *} in Lemma 4.1. Since |w 1+|”.+1| <
lw} —w) (1)I+Iv,+1 vl (D]+|w] (1)I+|v,+1(1)i using (4.12) and 9, (i) < C(pi+|ul),
also using 6; < C(p;j + |u]), we have

lw + vkl < Cloi+ ul), h<i<k—1. (4.12a)
We then have
0éx(wl, v}, w)  9£,(0,0, w) _ _
e 2 +00p; + picy + Ll 0] + I || + [g2]).
dun oua

Here |v}1| = || or |w}<E = |@#| + pi is included in the right hand side if i = h or i = k.
The proof of (2.7) has been completed.

Before proving (2.8), we will derive estimate (4.16) for future use. Let {Ar;} be defined
as before Theorem 2.2. Let {%;}%~! be the fixed point of (4.1)~(4.4) corresponding to a
symbol sequence {S;({ ) - Differentiating (4.1)-(4.4) with respect to ¢, we have for
h<i<k-—1.

%=—EA:,- a A +3w* w?  dw* %,
3¢ or qw? ag a2 o o
3"';+1 v b av* Bwf v* vi '
o AT ' aw? AL P AL’
dwf  dws Bwly, | Bw, vy,
o awl, o e,
i (4.14)

av Bv* aw + Bv* Bv
3{ 3wr 3( 3(

Here 2 and & are used as 9, and 8, in the functions w* and v*

After substituting (4.14) into (4.13), the right hapd sqie of (4. 13) defines a mapping
PR {%; },’,‘1 ! into the left hand side, where %; = {—Q—L —a—"‘—} Fixed pomt of R, denoted
by {3‘”}" !, can be sought by an iteration schcmc, starting with {%; (0)} = {0}. Let
{ZOY = BHZ 0} Then

i+1
|%:()) — &i(j + )| < C§; Z 1%, () — & (= DI,

v=i—1

where 8; = 8(t;({) —27, w) is evaluated at £, and %;(j) —%;(j—1) = 0 fori ¢ [h, k—1].
We now have a system similar to the one in Lemma 4.2. We can derive, analogously,




i

——
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the following estimate

1250 = 1% — Zi(0)] <

ks {Zc @i+ Bigw—1)1Zirr (1) — Zigs (0]
B (4.15)
+ 3 TG B )| Zi (D) — 2y O)]

+1Zi(1) — Z:(O1},

for h <i <k — 1, provided that Cé < 1. Here C = 3C, & = sup§;.
Recall that %;(0) = 0, h < i < k — 1, therefore, from (4.13) and (4.14), for h <i <
k—1,

ow* dw* ov*
%:(1) = {—%Afj + —w—AI,‘, '

== ﬁmi} + O wBhl B + 1 ey Bpy (D)D)

z+1

The boundary terms are included since when i = hor k—1, -3? = uk(g) or —gf— o= wk(g’)
is given by the definition of the symbols {S;({ )} |- Substituting the above into (4.15),
we have the estimate (4.16) showing how the effect of At;y, decays as |v| = oo.

Bw
+ r+l s g{tx)
agl o o | =I1Zi|
<C{ZC (8'“‘6r+v 1)6,+,,AI;+;,+ Z C (‘S 1+v+1)51+yAfr+p
v=1 r=-1
+3;Ati

—i—1

+ TG BB+ T @i Br2) Bk [0

- _ - TENaAy
+[(5i"'5i+j)+(3i"'5i—j)}—l—_”{z,—g—j}”}, h<i<k-—1.

(4.16)
Recall in Theorem 2.2, we define &§; = |3-g(t)| and yi({) = g(lAty). Therefore,
|9%(&)] < BklAz]. This allows us'to drop the term involving |y ()| in |wk(§’)| when
deriving (4.16). By adjusting the constant C outside the {- - - }-bracket, such term is either
absorbed by the first term in the {---) if i + j = k, or by the last term in the {---} if
i+ j < k. From (4.16), by letting j — oo, we can easily derive that for h <i <k — 1,
dw] a”il+1

a ol

Substituting into (4.14), we have for h <i <k —1

< CEIALY 4 B upD] + €3 (D).

ow? n?
R < C((Bi_y + 8 + 8 )AL + @B M (D] + CHF g (O
Substituting into (4.13), we have for A <i <k —1,
dw!  dw*  w v, vt
|_55*L - (ﬁ - —)At |T=t,)-27,1=—T +1 a:g = EITA”'T:I,»({)—ZTJ:O @.17)

< CB{(Bi—1 + 8; + i )AL + €8 Mun (D] + CO* i (D)1}
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If iﬁf{r,-({ )} is large, we have Ce™ " < 5?. See the Remark following Corollary 3.5. Now
that w} = (ye(—t:(0) + 27, 1) + Y$(=1:(0) + 27), w*(—1i(¢) + 2r)), from Lemma 3.4,

i v
oT

Bys

oT

o
ot

ou*

8y$
aT

= <Ce™ <3, h<i<k—1  (418)

+

Observe that also,

9 : 9 e s pifsfs
é?[fl’(—r;({) + 27, w, YO + gy(—=7)) — p(—1:({) + 27, p)] 419
< CBi(@; + i1 + 1D
This is because the left hand side is bounded by
gﬂ((b(_tl(g) + 27; My )’?(f) + q)'(_‘r)): 0, 0! )u’) - SO(P(—f:(f) + 27. ,Uf)a 0! O: )u’)

See (1.1). Also gp is ¢! and ® — p is bounded by C&ly{({)|, (condition H2). From
(4.3) and (4.12a), we also have

2O < Clwhyl + Wit + 1) < €@ + Pigy + 11D
The desired estimate follows easily. We now derive, for h <i <k,

og (w}, vl ) _ 3], v, @) D
W o
+ O0((8i(Pi-1 + P + P + 1D + 8im1 (Bia + 8im + B)IMALHD
+0(C& 193D + (€O i (D)D)

(4.20)
Consider
3¢ (w}, v}, B¢, dw! 8. BV}
Bistrs o 0 B T, BEe B @.21)
o ow! o ' ou] o
Observe that &, is C! bounded. We only need to simplify ?%'!- and %—? We obtain

i * -
estimates for |3”r{f — Ay, | and |+ Ar| from (4.17) and (4.18). They are all bounded
1
by the error terms in (4.20). Thus we can drop %’L in (4.21). For the similar reason, we
1 o
can also drop %— from (4.21). From (4.17) again, also using &; < C(p; + |ui), we have

%);—3 e (%: s %:)Ar,--k- .., with an error term bounded by the error terms in (4.20). From
Lemma 3.4, y* = Y+ D(=1;(0) + 27, 1, Y9 ({) + gy(—7)). Now that the derivatives of
y$ are small, and @ is independent of T, we can replace (4.21) by %(%An) with an
error bounded by the error terms in (4.20). Using (4.19), we further replace %At; by
UL ) Ay O(5;(P; + Pig + |uD)IAL). However, LI Ay, — D0,

1
From here (4.20) follows easily. We now replace the argument in B (w} v} ) to obtain

3. (3:(0).0.0.) oy will introduce an error term C(Ju! |+ v} |+ |y} —y,-({)Iy)IQL(QI. Using
F] ; i) il i i a7

(4.12a), |vi(0)| <p; for h <i <k, and I—%—f—l < Cé;|At;], we find that the error term is

negligible for A < i < k. Extra terms have to be introduced in the estimate when i = h

and i = k, since ux({) and vy({) are given boundary conditions. But |y ({)| is bounded
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by P, and does not need to be listed separately.

3. (w}, v}, w) _ 3:0i0),0,0, ) i)
o ay F)S
+ O([8:(Biy + B + Pig1 + 1)) + 81 (Biz + B;—1 + B)1II{Ar; 1)
+0(CH ™ Mup ] + €O i (D) + I pBplva (D)) | At
+ I; gk xlug ()] 188k )

Estimate (2.8) then follows from Lemma 4.3. O

Proof of Theorem 2.3. For any integer N > 0, let {; = 0 for |i| > N and solve the finite
system

Gi({S;({plhw) =0, —N<i<N (4.22)

We show that (4.22) has at least one solution {{f}ﬁ'N with —d; < ¢j<ej, —N <i <
N. To this end, we infer that from (H+7;2) and (2.6),

Gi({S;({} m) # 0,

for {; = —d; or ¢;, —N < i < N. Thus, G; changes sign when {; moves from —d; to
¢;. Assume that G; moves from negative to positive, otherwise consider ~G; = 0. The
mapping defined by the left hand side of (4.22)

G =dee) <> BAH

is homotopic to the identity map and the image of the boundary of TV n{(—di, &) does
not intersect 0 € RZ2V*! in the homotopy process. From the standard theory of degree,
see [26], there exists at least one solution {¢V}V, to (4.22).

Since sup;{d; + ¢;} < co, a subsequence of {{}V }f! can be found which approaches
{£e }i as N — oo in the product topology. Since {Gi}f{ is continuous in {S; (55)};(14 in
the product topology, we have G,-({Sj(g“?")}, my=0forh<i<k.

We now show that the solution is unique. If not, assume that there are two solutions,
{¢0), v = 1,2, with G;({S;()}, w) = 0. Let Aty = {}—¢). Thenforeach h < i<k,
there exists 0 < { = {; < 1 such that

-E%Gi({sjq} + £A), ) =0,

From (2.8), we would have

|8—‘Zd(y,-(£,-), WAY] < the ths. of (28), h<i<k

where {; = {,-' + £At;. Observe that v4({) = 0 and &, ({) = 0 in the r.h.s. of (2.8), since
Sp-1({) = vp({) = v and S ({) = (yk({), #). But from (H7;1) we have

C
|Ar| < Ei‘ AL HI,

This is a contradiction unless [[{At;}|| = 0. a

Proof of Theorem 2.4. The existence of such a solution x1(t) is obvious by virtue of
Theorem 2.3. Assuming that k = k' = 400, we show that orbitally x!() — x(z) as
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t — 4o00. To this end, suppose that x”(r), » = 1, 2 are two solutions corresponding to
{Si(¢N52, where —d; < {7 < e, v =1,2. §i({7) = t;({?) for i = h. Sy_1 (&) = vu(D)
with v, (0) = 9!, va(1) = %, {}_, =0and {3_| = L. Let Aty = {? — ¢} and £i(¢) =
(E + £At;. For each h < i < k there exists 0 < { = {; < 1 such that

d
'&Gi({sj(fi(f))}a #) =0.

From (2.8) and H7) we have

CaBi(Bi_y + Pi + Pigpr + 1) + 8,1 (Biy + 81 + 8))|As]
< C3(8i(Pimy + Pi + Piyy + |1l) + =1 Bima + 8i-1 + 8)1N{AL; )
+ C3((C oD + 1 p8h va () Aty )

For any n > 0, with (C3 + 1)/C4 < 1 there is a large integer N > 0 such that for
i>h+N,

CalAti] = (C3 +m) [{ALH

Thus, |At;| < 938:—’1 l{Az;})] if i > h 4 N. The process can be repeated infinitely often,
therefore |At;| — 0 as i — o0. il @
We now use (4.16) to conclude that |—w§$£, + —'5;,— — 0forall0 < ¢ <1 as

i — 00. In fact, for any given € > 0, we can choose j so large that the last term in (4.16),

= 5 = & CTBAG e rap
(@i - -0ipj) + (8- 8i )=z < g- Let ] be fixed. Let &; = sup{|Atiy, | : || <
J}. Then €; — 0 as i — oco. Thus 1? i is sufficiently large,

J —J
vl = = €
S TG Bty < <.
+ (6; i+ Al < P

rv=1 wv=-1

Also 8;At; < %- The term involving the index & does not appear (k = 00). Thus the right
hand side of (4.16) approaches zero as i — oco. Therefore ]w‘-1 0) — wil(l)l + ]v,.l+l(0) —
v}+1(1)| — 0 as i — oo. The assertion xl(t) — xz(r) as  — +oo orbitally then
follows from Lemmas 3.3 and 3.4. In fact, let the orbit of x/(¢), j = 1, 2 be the union
of those of x*(t), x, (1), i=h, h+1, .-, where x]"(t), —t! +27 <t <0 is the inner
solution and x;'* (t), —7 <t < 7 is the outer solution as in the proof of Theorem 2.1. %
For the outer solutions, the boundary conditions are v} (j) at t = —7 and wi‘ (Hatt=r. ' 
Thus, by Lemma 3.3, |x} (t) — x4 (#)] — O uniformly as i — oc. The inner solutions £
also depend continuously on the boundary conditions and on the length of the domains,
by Lemma 3.4, therefore, ixi]"‘(t) — x!-z* ()] — O uniformly in their common domain of ¢
as i — oo. For ¢ not in the common domain, the variation of x}*(t) or x?*(t) is small if

]t} - t[-zl is small. Finally the case # = —oo can be proved similarly.
5. Simple Periodic Solutions
The notation {S;,---, Sy}p is used to denote a periodic symbol {S;}*%,, with Siy, =

§;, i € Z. Theorems 5.1 and 5.2 concern some general properties of simple periodic
solutions.
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Theorem 5.1. (Hyperbolicity of nondegenerate simple periodic solutions). Assume that
{52, and w satisfy the hypotheses of Theorem 2.3 and S; = i = 1o, d;i=d,and e; =
e, for all i € Z. Then S;({;) = ti({}) = w for all i € Z, and x(t), with Tx = {w}p, is
a simple periodic solution with period w. Moreover, if the constant Cy as in (Hy,y) is
sufficiently large, then the periodic solution x(1) is hyperbolic with [ + n — 1 unstable

characteristic values and m stable characteristic values.

Simple periodic solutions degenerate or not, form a one parameter connected family of
periodic solutions. This was first observed by Glendining and Sparrow [12] in a simplified
model. A proof for the case that the equilibrium is hyperbolic is given in [19]. We will
show the same result for nonhyperbolic equilibria.

Theorem 5.2. Assume that H1)-H6), are satisfied. Then for each € > 0, there exist
positive constants i, fi2, 8, Fand p such that if |p| < . f < 0 <7, |p(—w+21, w)| <
p, 6w — 27, 1) < 5, then there exists a unique py = pp(w, (), [p2l < o, such that
(2.1) has a unique simple periodic solution x(t) of period w, which is orbitally é-near
I. Moreover u, is a C* function of w.

Theorems 5.1 a_:ld 5.2 really do not rely on Hy) since Hy) is only used to construct
the special % and A which are used in Theorem 2.2.

Definition 5.3. We say a linear operator A : X; — X is a contraction modulo a vector
a if we can find { € R such that

[Ax+Z{a| < Ax], 0<A< 1.

Here X; C X are Banach spaces and A is the rate of contraction (mod a).

Proof of Theorem 5.1. Let J(x(-)) = {w}% for all i € Z. Then T (x(- + w)) = {w}%,.
It follows from the uniqueness part of Theorem 2.1 that x(- + w) = x(-). Therefore x(r)
is of period w. :

Let 7 be the time when x(7) € . We shall linearize the equation around x(f), 7 <
! < 7+ w. As in section 4, we assume that the orbit of x(¢) is the union of those
of x*(), —w+ 27 <t <0 and x.(f), =7 <t < 7, ie, x(t) = x*({ ~w+7) for
r<t<w-—-7and x(t) = (¢ —w) forw—7 <t < w+ 7. Let T(t,5) with
T<s<t<w+r T, s) with —w+2r <s <t <0and T, (t,s) with -7 <s <t <7
be the principal matrix solutions for z(t) = Dxf(x(t), w)z(t), 2(t) = Dxf (x* (), p)z(t)
and z(t) = Dy f(x.(£), w)z(t) respectively. Obviously we have

T(r+w,7) = Ty(r, =7) - T*(0, —0 + 27)

The proof is then based on Lemma 3.6. Roughly speaking, the unstable space U and
the stable space V are almost TW<(u) and TW¥(u) except for vectors that are too close
to span {x(r)}. More precisely, we have the following result.

Lemma 5.4. Let x(f) be a nondegenerate simple periodic solution with period w. Then
there exist subspaces mw; and Ty4r such that

Tr B Totr ® span{i(7)} = RN

e

Pr

*
u

on

to
27

| % |

Ti

W
Ax

He;
II. .

T’i

Del
|
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The projections defined by the above splitting are bounded by C~1(|p(—w + 27, W) +
[)) =~ where C is proportional to the constant Cy in (H7.1). Moreover, T(w+7, T, is
a contraction modulo x(t) with the rate denoted by Ar. T(r, w+ T)ar,,. IS a contraction
modulo x(7) with the rate denoted by Avtr Ar + Aptr < C18(w — 27, ).

Remark. The norms of the projections above are very large if 8(w — 27, ) is small.
This is the major reason why the constants in Lemma 3.6 have to be evaluated carefully.

Proof of Lemma 5.4. Let the solution map of (2.1) be T(t, u, x). Let y, = 50) ty=
x;(0) and v, = x¥(—w + 27). For any given vectors Ay,, Au, and Av,, consider a
one-parameter boundary value problem as in Corollary 3.5 with the boundary data being
Yo+ {Ayo, up + {Au, and v, + Ay, ¢ € R, Using the solution map, we have

T(w =27, p{w*(—w +27; @ — 27, wo + {Aw,, v, + ¢Av,, M), Yo + LAv,))
T = (wo + {Aws, v*(0; w — 27, w, + ¢Aw,, Vo + {Auy, w)).
Here w* = (%, u*), wo+ {Awo = (yo + £ Ay, up+ {'Au,). Differentiating with respect

to { at { = 0 and observing that D, T(t, u, (x(s) + 20 = T(t+s,s) and T*(0, —w +
27) = T(w — 7, 1), we have

ay*(— 2 v (— 2 *(—
T*(D,—w+2fr)( y (8w+ T)Aya+ V¥ (—w+ T)Auo—!-ay( m+27)Auo,

Yo duy v,

ou*(—w + ZT)A " ou* (~w + 21‘)A 1 ™ (—w +27)

370 Yo i Uy TAUO, Avy)
3v*(0) v*(0) v*(0)
= A
(Ayﬂa Up, 8}’0 A}’D + aua Aug + Bva Avg)
(6.1

L Let Ay, =0, Av, = 0. Recall that T*(—w + 27, 0) = [T*(0, —w + 2771,

8 * 0 *r o 2 *e o
T* (—w + 27, 0)(0, Auy, vgu( )_,_mo)= (ay (ac:+ T)Aug, Bu*( w+2r)Auo’0)_
0 0

Uo
Define 7#(0) = { (0, Au,, @a}:&ﬁ\uo)mua € R’}. The subspace 7#(0) is close to

TWio 0, p) = {0, Aup, 0)|Au, € R!}, since
Ax € 74(0),

W' .
——'%' < Ce™™“. Moreover, for

IT*(—w + 27, 0)Ax| < Ce™ ™ |Au,| < Ce™“|Ax|,

Here estimates for a%;(‘?) A , \L?L(E:Z +20) | and | & (E;‘::HT) are based on Lemma 3.4.
IL. Let Au, = 0, Av, = 0. We then have

au* e *p_
T*(~w+ 27, 0)(Ay,, 0, 2 (O)Aya): (By ( w+2T)Ay0, ™( ‘”+2")Ay,,, 0)
Yo Yo Yo

Define 7¥(0) = {(Ays,, 0, a‘é;(ao) Ayo)|AyoLgy(—7)). Since 31;;(00) < Ce ™, the space
77(0) is close to {(Ay,, 0, 0)|Ay, Lg »(=7)}, a codimension-one subspace of TW¢ 0, w).

!
Moreover, for any Ax € 77(0), *

IT*(—w + 27, 0)Ax| < Cé(w, MIAys| < C8(w, w)|Ax]|.
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The estimate_s for derivatives come from Corollary 3.5. Here H2) is involved and —o +
27 € (—1, —T1) is required.
III. Let Ay, = 0, Au, = 0. We have
I (—w +27) u*(—w + 27)
Avy,
v, vy

= ©,0, a” O vy

AUO, Avg)

T*(0, —a + 27)(
(5.2)

‘We shall show in Proposition 5.5 that |x§(—m + 27)| is uniformly bounded below with

respect to w and pu.

Define 7'(~w + 2r) = {(LGEEDpy, HEID Ay, Avy)|Av, Lik(—w + 27)).
7V (—w+27) is close to a subspace of TWM(O p.) {(0, 0, Avg) |Avy Lx¥ (—w+27)). If

Ax € m'(—w + 27), then

IT*(0, —w + 27)Ax| < Ce™**|Ax|.
IV. Denote x*(r) by (y(t), u(2), v(r)) and x*(¢) by (Ay(t), Au(r), Av(r)). We now need
the following proposition.

Proposition 5.5. There is a constant C| > 0, independent of @ and u, such that

|Av(—ew + 27)| = Cy,
|Ay(0)] = Cy,
[(0)] + |Au(0)| + |v(—w + 27)| + |Av(—w + 27)| < C;‘l.

Moreover, if 8(w — 21, ) is small and w is large, then there exists C > 0 such that

82 (w — 27, w)|Ay(—w + 27)| > Ce™*@|Ay(0)|.

Proof. From (4.12), 8; < C(p; + |ul) and 1;()) < C(p; + |ul), we have |w}| + |v}| <
C(p; + pi—1 + |u|). Here of course p; = p for all i € Z. Therefore |x(—7) — g(—7)| +
|x(7) — g(r)] < C(p+ |u|). Since x*(—w + 27) = x(7) and x*(0) = x(—7), we have

|x*(—e +27) — g(1)] + |x*(0) — g(—7)| < Clp + |ul),
|£* (= + 27) — g(T)] + [£*(0) — ¢(—7)| < C(p + |ul).

The second estimate above is obtained by equation (2.1) and the first estimate. Now that
g(—7) = (gy(—7), qu(—7), 0) and g(7) = (0, 0, g,(7)), we obtain the upper bound

()] + |[v(—w 4+ 27)| < Clp+ {uD) + lgu(—=7)| + |gu(1)],
[Au(O)| + [Av(—w 4+ 27)| < Clp + | ) + [gu(=7)] + |gu (7).

Suppose now C(p + |ul) < %Iq'y(—f)l + |gy(7)|, then we have the lower bound

1
|Ay(0)] = 1gy(—7} — C(p + D) = Slgy(—7)I,

1
[av(~e+2n)| = [gu(n)] — Clo + ) 2 S14u(7).
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Let to = w — 27. Consider the linear variational equation for Ay(r),

d dgo ago dgo
% ¥(1) oy (?) + 3y y() + ™ Au(t) + = Av(r).

Here gg = go(y(t), u(t), v(t), p). Therefore for —ty < t+ < 0 we have an integral
equation

t
By() = M ny—rg) + [

—Ip

a
eA"(’_‘T)(—gQAy(s) +---)ds.
dy

Using the estimates of |u(£)] and |v(#)] from Lemma 3.4, we obtain [Au(t)| < Clu(0)|e™
and |Av()| < Clu(—tp)|e~2H) | since g1 = O(lul) an%l g2 = O(|v]), cf. (2.3). Since
30()% 01 0’ ,LL) = gﬂ(yw u, O, nu’) = g(}(yr 0: v, [.L), we have _angU = 0('”') and %BLTO = O(lul)-
We then have the integral inequality

1
Ay()] < CePU+HD|Ay(—10)] + f

ﬁv[n

t
CePC=IL|Ay(s)|ds + f Clu(0)||v(—tg) e~ M ds.
—t,

Here B8 > 0 is a small constant, L is the Lipschitz number for gg which can be arbitrarily
small if the neighborhood O and |u| are small. Using Gronwall’s inequality, we have

|AY(0)] < CeBHEDI|AY(—10)] + Clu(0)]|u(—tg)|eB=2)e,

If 1y is sufficiently large, the last term is bounded by %lAy(O)[.(Recall [Ay(0)| = C). If
also CL < B3, then

[Ay(0)| < Ce*Pre|Ay(—tg)|.

Choose now fq large so that ¢®#=® < C82(t, p). The last inequality of the proposition
follows from this.

We then use the following obvious property,

T*(0, —w + 27) (Ay(—w + 27), Au(—w + 27), Av(—w+27)) = (Ay(0), Au(0), Av(0)).

. . (5.3)
Let Ax = (Ay(~w+27) - LEEEIDAY(—0+27), Au(-w+27) - BEOIDAY gy
27), 0). We then have

T*(0, —w + 27)Ax
aw*(0)
du,

= (Ay(0), Au(0), Av(0) —

Av(—w + 27)). (54)
Here we have employed (5.2), Define an one-dimensional space

7 (—w + 27) = span{Ax).

o (—w+27)
3,

Notice that lay ‘('é::*hj + < Ce™?%. Also from the proposition, |Au(—w +
27)| < Ce™*“|Au(0)) Ce‘““’ley(O)l, and [Av(—w + 27)| < C|Ay(0)].
Ce*|Ay(0)|/|Ay(—w + 27)| < C(8(w, p))?, therefore 7¥(~w + 27) is close to
span{(Ay(—w + 27), 0, 0)}, if w is large and |u| is small. The error terms are bounded
by C6%(w, u).
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We claim that T*(0, —® + 27)|zr(—w+2+) is contractive modulo i*(0). To this end,
subtracting (5.3) from (5.4), we have

IT*(0, —aw + 27)Ax — X (0)] < m
o

< Ce *™|Av(—w + 27)|

< Ce™™|Ay(0)]

< C8 (w, wAy(—w +27)|
< Co(w, p)|Ax|

(0, 0, 3’;* O kvt 27)) ‘

Therefore, the rate of contraction modulo x*(0) is bounded by Cé(w, u).
We have constructed (cf. the lower bounds for ij(—w + 27) and ij(~w + 27) in
Proposition 5.5),

(=@ + 27) ~ (0,0, Avp) | Avy L% (—w + 27)} & 7V (—w + 27),

¥ (—ew + 27) == span{(Ay(—w + 27), 0, ))|Ay(—w + 27)

= £} (—0+ 20} TP (—w+27),

7(0) = {(0, Aup, 0)|Au, € R} & 74(0),

7(0) = ((Ayo, 0, 0)lAy, Ly (-7} E7(0).
Here “~~"" means that the two spaces are arbitrarily close if @ > w, is large and |u| < p,
is small, i.e., any unit vector in one space corresponds to another one in another space
with an error of O(8%(w, w)).

We have shown that T*(0, —w + 27) : 7' (—@ +27) B 77 (—w + 27) — RIFMH 4o 5
contraction modulo #*(—w + 27) and T*(—w + 27, 0) : 7%(0) ® #*(0) is a contraction.
The rate of contractions is bounded by Cé(w, w).

Define 7y = 7' (—w + 27) ® 7Y (—w + 27) and wyyr = Ty (7, —7){7*(0) & 7= (0)}.
It is easy to prove that they have the desired contraction properties under T(w + 7, 7)
and 7(7, @ + 7) respectively. In fact, T(w + 7, 7) = Ty (7, —1)T*(0, —w + 27). Since
T*(0, —ew 4+ 27) is a contraction on 7% (—w +27) @ 7Y (—w + 27), and |Tx(7, —7)| < C,
thus T(w + 7, 7) is a contraction on 7. Also since T,(r, —7) is a homeomorphism
m(0) ® 7V (0) — Twir, let X € myyr. then there exists x! € 74(0) ® w¥(0), Clx| <
Ix!] < C71x] with x = T(r, —1)xL.

IT(w+ 7, x| = |T*(—w + 27, 0)x}|
< C8(~w + 27, wix'|
< Cé(—w+ 27, u)|x|.
Consider the solution of the boundary value problem from Corollary 3.5, with wy =
0, vg=0. Let

w) = w(~w+ 27,0 -27,0,0, x),
v =v"(0, w —27,0,0, w).

It can be verified that wy = (p(—w + 27, w), 0) and v; = 0. Using the notation in
the proof of Lemma 2.2, w; = w[-l(l) and v; = v}(l). Let X(¢) be the solution of the

ra
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generalized boundary value problem (3.4)-(3.6) with v; = 0, w) = (p(—w + 27, u), 0).
Let x(f) be the solution of (3.4)-(3.6) with the boundary values (w!*®, v!*°). From
(4.12), we have

[%(r) — x(r)| < C8(w — 27, w)(p + |ul) < Clp+ |u))?,

Due to the continuous dependence of solutions of the boundary value problems,
Lemma 3.3. Let T(r, —7) be the solution map, from — to 7, of the linearized equation
around X(1),

(1) =Dxf(x®), wz(t), —-rT<t=T
Since solution maps depend C' on the vector fields, we have
\T(r, =) = Tu(7, =) < Clp + )™,
We shall give an estimate of the projections corresponding to the splitting
1 ® Tuwrr @ span{x(r)} = R+,

Observe that the estimates on the projections are equivalent to the estimates on the lower
bound of angles between any subspace in the above to the sum of the other two subspaces.
See the remark after Definition 3.7. We will show that those projections are bounded by
O(p+|ul). Since we have proved that the angles between 7V (—w+27) and 7 (—w+27),
T(r, —7)7*(0) and T (7, —7)7*(0), etc. are bounded below by O((p + |x|)?), it suffices
to prove that

T (~0 +27) @ 7 (~w + 27)} & {T(r, —7)(7*(0) & 7 (0)))

@ span{x* (—w + 27)} = RH+m+7,
and the projections associated to the splitting are bounded by C(p + |u!)~!. Also,
span{x*(—w + 27)} can be replaced by span{(0, 0, Av)}, since |Au(—w + 27)| is small
(see Proposition 5.5 for an estimate on |Au(0)|, then use Lemma 3.4), and (Ay(—w +
27), 0, 0) € 7 (—w + 27). _

Let Au), 1 < j < I be an orthonormal basis for R! and Avl, 1 < j=<m-—1be
an orthonormal basis for a codimension one subspace of R™ with Av) Lx,(7), 1 < j <
m— 1. Here we point out that x(7) = x*(—w+27), as seen in the beginning of the proof
of Theorem 5.1. Therefore, the nonzeroness of *}(—w + 27) (Proposition 5.5) implies
that %,(r) #£ 0. Let Ay}, 1 < j < n — 1 be an orthonormal basis for a codimension one
subspace of R* with Ay}Lgy(—r). Consider a matrix

% = (UYyVz).

The column vectors of each block are as follows,

U= (T(r,~7)(0, Au), 0) |1 < j < I};
V={0,0Av])1<j<m—1, AviLAv(—w + 27)};
Y = (T(r, -1)(Ay}, 0,0)| 1 < j < n— 1, Ayl Lgy(—m)};
y = {(Ay(—w +27)/|Ay(—w +27)(1, 0, 0));

z= (0,0, Av(—w + 27))/||Av(—w + 27)].
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In the above, Ay(—w+ 27) # 0 and Av(—w + 27) 3 0 (Proposition 5.5).
To prove Lemma 5.4, one needs to show |det®] > C(p + |u|).
We claim that there is a unique (I +n — 1) x ({ + n — 1) matrix % such that

UY)B = (U;Y)).

Here Y, is an (I + m + n) x (n — 1) matrix whose columns form an orthonormal
basis of T(W™(u) NZ) NTWE (1) = T%(w), where TG (u) is defined in section 2.
Uy is an (I + m + n) x [ matrix whose column vectors form an orthonormal basis of
(TWE (W]" = TW}, (1),

In fact, the column vectors of (UY) span the tangent space of (W(u) NX.). We also
claim that |det®~!| > C > 0 uniformly with respect to . First recall that 7% (0) L7 (0)
and T(r, —7) is a homeomorphism when & = 0. Thus, |detB~!| > Cy > 0. When M
is near zero, T(r, —7) and hence (UY) depend continuously on u. Also the solution %
of the matrix equation depends continuously on g. Finally, the inverse %! depends
continuously on . Therefore |det®~!| > %Cg if w is small. We then only need to show
that

det(U; Y1 yV2)| = C(p + |ul).

Observe that the vectors in (Vz) form an orthonormal basis for TWi,.(0, ). Therefore
to compute the determinant, we can project span{Y;} to the subspace {(y, u, v)|lu =
0, v = 0} along TW3, (0, 1). However the projection of T€(x) yields T%(w). Both of
these spaces are defined in section 2. We need an estimate on the angle of the subspaces

span{y} and T%(u). Replacing ”—ﬁ}%% by

p(—w+ 27, u)
lp(—w+ 27, W’

we find the error is 0(e™*“/|p(—w + 27, w)]). Using Proposition 5.5, we find that the
error is negligible in proving the lemma.

The distance of the vector p(—w+ 27, u)/|p(—w+ 27, u)| to the linear space TG(u)
is | g5d(p(—w + 27, ), wl/|p(~w + 27, w| = Cyl8(w - 27, w(Ip(~w + 27, )| +
D)/ 1p(—w + 27, w)|, from (H7,). Here &; in H7) can be replaced by 8(w — 27, ).
Since |p(—w+27, p)| < Co(w—27, w)|p(0, w), cf. H2), and | p(0, )] is bounded above
uniformly with respect to small u, the angle between p/|p| and T(x) is bounded below
by C(|p| + |uxl). This proves Lemma 5.4.

Let X = 7; @ mu+r. For each z € X, there are unique ¢ (z) and £,(z) € R such that

T(r+ o, 1Dz + {1(Dx(7) € X,
Tir, 7+ w)z+ LHx() e X

Define Az =T(r+ @, 7)z + {1(2)x(r) and A~z = T(7, 7+ w)z + {2 (z) (7). Since the
angle between X and span{i(7)} is bounded below from zero, it follows that A : 7, — X
and A™! : 744+, — X are also contractions with the rates bounded by C8(w — 27, w).
Details shall be left to the readers. We can now use Lemma 3.6 with U = T wtrs
V=m:, M=C " |p(—w+27, w)| + |ul]™! and A = C)8(w — 27, ). Recall that C is
proportional to Cj, thus 4M2)? < 1 if C; is sufficiently large. Observe that dimr, = m
and dim7 447 = [+ n — 1. The proof of Theorem 5.1 has been completed.
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Proof of Theorem 5.2. From Theorem 2.1, for each |u| < f, there is a unique piecewise
continuous solution to (2'111 denoted by x(t, u), such that xy(—7, u) =0 xp(r, u) =0
and x(77, p)—x(7, 1) = €A Here £ = £, (w, v, ) withw =0, v =0 and £,(0,0, w) =
d(0, u). Let l,[f(T) be defined in section 2, cf. (2.5) and H6). It is known if ¢(¢) is a solution
for (2.4), then £ 5 < Y@, @) >= 0. Thus from t;'/(O).L{Tq(O)WC“(O} + T4oW* (O},
we have Y1) LT gy WH(0) + T 4nW*(0)}. Since A ¢ {Tq{T)W “O)+TynW (O}, <
w(r), A ># (0 and without loss of generality, < (1), A >= 1. Thus,

E=<y(r), x(r7, p) —x(1, p) >
= [ gwoxt i+ [ S0

—00
where w; = 0 is fixed. Here we have used the fact that (f)x(r, u) — 0 as ¢ — Foo.
Therefore, if u; =0,

T o0
- ( / 0 / ) {—@(D)Dx f(q(e), 0)x(t, p) + @r(e) f(x(t, ), p)}dr.
%x(t, i) satisfies the equation

(9 d
» (é}:x(h #)) = Dy f(x(t, ), f&)@x(r, M) + Dy f(x(t, ), p) (G))

Since x(r, ) € W,,(0), we have x,(t, p) = 0, and £ xy, (s, ) = 0, forall 1 > 7.
Moreover, from (2.3), Dpgi(0, 0, v, ) = 0 for i =0, 1. Thus, for ¢t > 7, we only need
to solve g%x,,(t, u), denote it by T(¢), in (5.5). The function U(¢), t > 7 satisfies the
equation

1
7(r) = MY 5(r) + f e'20=)D,25(0,0, x,(5), p)ds

! T
+ / "2, g1 (0, 0, xy(s), w)T(s)ds.
T

Since D, f (x(t, 1), u) — 0 exponentially fast as ¢+ — +o0, therefore, we can use the
decaying property of ¢*2¢~5) and Gronwall’s inequality to show that a—x(t uy — 0
exponentially fast as t — +oco. Details will be left to the readers. Smularly we can show
that Iﬁx(t w)| < Ce™" for t < —7, where 0 < y < a,. We can change the order of

e and the integrations to obtain

a & o9 ]
atlro= ([ _+ [ w007 a0, 055

0
+¥(ODxf (1), 005 =50, 1) + YD f (g(1), O}t
= f (D2 f(q(0), O)dt.
—00
By H6), we have
a d
35 20 ) mg = 56400, |, #0. (5.6)
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For each w and g with sup(|u; [, [12]) < &, p(—w+27, 1) < p and 8(w—12r, w) < 8,
there ex1sts a unique piecewise continuous w-periodic solution x(¢, u, w) of (2.1) with
a Jump ER = x(r~ ) - x(r) See Theorem 2.1 again. The size of jump is G(w, u) =
§*(m,,v,,,u) with w —w and v —vg for all i € Z. Since

lwil+ v} < Cp,
£, v}, vl )]y < CB+ L1 .
Now (5.6) implies that

0
|z—&x(wi, v}, )| > B> 0
Bty
for some fixed B, > 0 if p and f are small. Let = (u;, us).
€], v}, (u1, £2) = Ex(w], o, (1, 0)] 2 Bof.

Thus, if C(p + 1)) < Boft, §,,,(wr, vJ » (1, £4)) changes sign. Thus, there exists a
unique |u;| < A such that §*(w,, i (M1, 2)) = 0. We can show that us is a CK
function of w by using the implicit function theorem locally. The proof of Theorem 5.2
has been completed.

6. Bifurcations of Homoclinic Solutions with One-Dimensional
Local Center Manifolds

When the local center manifold is one-dimensional, we are able to give a complete
description of all the solutions of system (1.1) that are orbitally near I'y. Here no=
(1, #42) is a parameter. u&; is from a Banach space that determines the vector field
near x = (. Typical cxamples are u; € R! and go(y, 0,0, ) = M1 + y? (saddle-node),
go(y, 0,0, ) = 1y +y° (pitch-fork), and go(y,0, 0, ) = pyy + y? (transcritical) on

Wi, (u). We assume that u, does not affect the flow on W () if wy is fixed. In fact,
all we need to know about the flow on W§ . (w) is whether there is no equilibrium or
there is at least one equilibrium on Wi ().

When u = 0 and v = 0, we write the first equation of (1.1) as

¥ =200, 0,0, p) = ag(w) + ay (W)y + az (W)y* + . .. 6.1)

with ag(0) = a;(0) = 0. Assume go(»,0,0,0) > 0 for 0 < y < P. Assume that 7 > 0
is sufficiently large so that 0 < gy(—7) < p. Here Wi (1) = {lyl < B). Then it is
clear that for |u| < wp, we can find a neighborhood WU of qy( 7) on_Wj (u) and
7(u) > t(u) so that O(r, u, ),y € U, is contractive for —F < ¢ < —1, see H,). If
there is at least one equilibrium on Wi (1), let the one that is closest to gy(—T) be
y = E(u). Then y(r) = ®(t, u, y) — E(u) as t — —oo and we set 7(u) = +00. If there
is no equilibrium on iac(fu’) then ®(r, «, ¥) will leave Wlac(p,) as t — —oo0, and the
restriction —f(u) < ¢ < f(u) is used to ensure that ®(;, M, Y) stays in Wloc(lu’}

We derive estimates on 8(jt|, u). Since 7(0) 0 for # =0, |y(0)] is bounded away
from zero. From the definition in section 2, H2), 8(¢|, u) = |"®/$(0)| < C|3()|. From

(6.1) 1y = c(p + |ul), where p = |y(1)|, therefore 8()t|, u) < c(p + |u|) and H,) is
valid.
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