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Abstract. Dafermos regularization is a viscous regularization of hyperbolic
conservation laws that preserves solutions of the form u = û(X/T ). A Riemann-
Dafermos solution is a solution of the Dafermos regularization that is close to
a Riemann solution of the conservation law. Using self-similar coordinate
x = X/T , Riemann-Dafermos solutions become stationary. In a suitable Ba-
nach space, we show that the linear variational system around such solution
is sectorial, thus generating an analytic semigroup.

Contents

1. Introduction 193
2. The Middle Region 198
3. The Side Regions 200
4. Matching of solutions in the middle and side regions 203
References 206

1. Introduction

A Riemann solution u = û(X/T ) is a solution to the Riemann problem of the
conservation law

uT + f(u)X = 0, u(X, 0) =

{

uℓ, if X < 0,

ur, if X > 0.

Dafermos regularization [4, 27, 28, 29] is a viscous perturbation to the conservation
law that preserves solutions of the form u = û(X/T ):

uT + f(u)X = ǫTuXX .
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Solutions of the Dafermos regularization that is near a Riemann solution of con-
servation law and assume the form u = û(X/T ) will be called Riemann-Dafermos
solutions. It is known that under some general conditions, any structurally-stable
Riemann solution [23] consisting entirely of shock waves has a nearby Riemann-
Dafermos solution [24]. Szmolyan proved that for small ǫ, structurally-stable, clas-
sical Riemann solutions which consist of n rarefactions and Lax shock waves have
Riemann-Dafermos solutions nearby [26]. The proof of these results uses geometric
singular perturbation theory [8].

Motivated by these results, in this paper, we consider Riemann solutions that
may have shock and rarefaction waves in a bounded region −x̄ < X/T < x̄, and
constant values for |x| > x̄. The nearby Riemann-Dafermos solutions may have
internal layers in |x| < x̄, and are near constants for |x| > x̄.

In the similarity variable x = X/T, t = lnT , the Riemann-Dafermos solution,
denoted by u(x, ǫ) becomes a stationary solution to the Dafermos regularization in
(x, t) coordinates:

(1.1) ut + f(u)x − xux = ǫuxx.

We are interested in the stability of solutions of the Dafermos regularization
with initial conditions close to the stationary solution u(x, ǫ). Spectrum of such
solutions has been studied in [21]. It has been shown that in suitable function
spaces, the essential spectrum is bounded to the left of the line Reλ ≤ δ0 for
some δ0 > 0. Thus, the spectrual stability is determined by eigenvalues. Using
singular perturbation method, asymptotic expansions of eigenvalue/eigenfunctions
have been obtained. Whether or not the spectrual stability implies linear stability
was not addressed in that paper.

Note that for a single viscous shock of the usual regularization

(1.2) uT + f(u)X = uXX ,

Evans function and the related gap lemma [7, 10] have been major tools in studing
the eigenvalues.

Let t = ǫξ, x = ǫξ.

(1.3) uτ + f(u)ξ − ǫξuξ = uξξ.

The linear variational system around uǫ(ξ) = u(ǫξ, ǫ) is

(1.4) Uτ = Uξξ − Df(uǫ)Uξ − (Df(uǫ))ξU + ǫξUξ,

which can be written as

Uτ = AU.

The spectrum problem (A− λ)U = h for (1.4) is

(1.5) Uξξ − Df(uǫ)Uξ − (Df(uǫ))ξU + ǫξUξ = λU + h(ξ).

For any 0 < δ < π/2 and a ∈ R, let

Σδ = {λ : | arg(λ)| ≤ π/2 + δ}, λ 6= 0,

Σδ + a = {λ : | arg(λ − a)| ≤ π/2 + δ}, λ 6= a.

We call a linear operator A in a Banach space X a sectorial operator if it is a
closed, densely defined operator, and there exist some M ≥ 1 and a ∈ R such that

(i) for some 0 < δ < π/2 and a ∈ R, Σδ + a ⊂ ρ(A);
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(ii) there exists a constant M such that

‖(λ − A)−1‖ ≤ M

|λ − a| for λ ∈ Σδ + a, λ 6= a.

See [6, 9, 20] for reference of the sectorial operators and related analytic semi-
groups.

The main goal of this paper is to show that A is sectorial in a Banach space
of continuous functions with weighted norm. Then classical results imply that A
generates an analytic semigroup T (t). The result obtained in this paper has many
important consequences:
(1) The existence of solutions to the initial value problem (1.3) near uǫ in a suitable
function space can be proved by a standard contraction mapping argument if T (t)
is an analytic semigroup [9]. The function space for the initial data can be the
fractional power of Banach spaces Aα, 0 < α < 1 [9, 20] for semi-linear parabolic
equations, or the intermediate spaces introduced by Da Prato and Grisvard for fully
nonlinear parabolic equations [1, 5, 15].
(2) If Reσ(A) < −a, a > 0, then T (t)U0 ≤ Me−atU0. Thus, linear stability of the
Riemann Dafermos solution is determined by its spectrual stability.

A series of papers by Liu, Zumbrun, and Howard shows that linear stability
implies nonlinear stability [17], [18], [16], [30].

The stability of Riemann-Dafermos solutions is not only of independent interest,
but also closely related to the stability of the Riemann solution of conservation
laws and stability of the viscous shock solution of the usual viscous regularization
(1.2). For a system of two equations, stability conditions of Riemann-Dafermos
solutions near two Lax shocks has been obtained [21]. It has been shown that the
stability condition is precisely the same for the stability of large shocks obtained by
Schochet and Lewicka on hyperbolic conservations laws [12, 25]. Recently, for large
noninteracting shocks, Lewicka showed that the BV and L1 stability conditions for
hyperbolic conservation laws are equivalent to Reλ < 0 and Reλ < 1, respectively,
for the eigenvalues of corresponding Riemann-Dafermos solutions [13].

In the similarity coordinate x = X/T , Dafermos regularization can also be
viewed as an asymptotic approximation to the usual regularization (1.2) for large
T . Using the change of variables x = X/T, t = lnT to (1.2), we obtain

(1.6) ut + (Df(u) − xI)ux = e−tuxx.

If t is large, e−t is small and is slow varying. If we freeze t = t0 and let ǫ = e−t0 ,
then we have (1.1), which is a good approximation in a time interval where e−t

is close to e−t0 . In the self-similar variable x = X/T , Riemann solutions appear
to be asymptotic states of solutions of (1.6). If for small ǫ the Riemann-Dafermos
solution is stable, then by piecing together such solutions on time intervals where
they approximate solutions to (1.6), we have a pseudo orbit – the terminology used
in the classical shadowing lemma. Following the idea that proves the shadowing
lemma, we may be able to show that in the self-similar coordinate x = X/T ,
solutions of (1.6) will approach Riemann solutions as t → ∞.

For the problem at hand, it suffices to show that Uξξ + ǫξUξ is sectorial. The
other terms can be treated as perturbations to the sectorial operator, resulting
another sectorial operator [20]. For completeness, we include the perturbation
terms and show that they can be handled by a contraction mapping defined by
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integral equations. Besides, these detailed computation may offer clues for finding
a better weight function in our future work.

Let E be the Banach space of bounded continuous functions U(ξ) on R with
the weighted norm

‖U‖E = sup
|ξ|≥x̄/ǫ

{|U(ξ)|eǫξ2/4} + sup
|ξ|≤x̄/ǫ

{|U(ξ)|} < ∞.

Theorem 1.1. Let f ∈ C3(R), a bounded function with up to third bounded
derivatives on R. For the Riemann-Dafermos solution uǫ(ξ) = u(ǫξ, ǫ), assume that
there exists x̄ > 0 such that for |ξ| ≤ x̄/ǫ, |uǫ|C2 ≤ C uniformly for all 0 < ǫ < ǫ0
while for |ξ| ≥ x̄/ǫ, |uǫ|C2 = O(ǫ). Consider the spectrum problem (A − λ)U = h
as in (1.5) in the space E. Then A is a sectorial operator in E.

The main tools used in this paper are exponential dichotomies and shadowing
lemmas [3, 19, 2, 14, 22] in the dynamical systems theory developed to study time
stability problems. Recently, it has been found useful on boundary value problems
with one spatial dimension. This paper is one more example.

The choice of the weight function w(ξ) = e−ǫξ2/4 used in the space E is aimed
to maximize the smallest eigenvalue in norm as ξ → ±∞. Consider the eigenvalue
µ for the second order system

Uξξ + ǫξUξ = λU + h(ξ),

µ± =
1

2
(−ǫξ ±

√

ǫ2ξ2 + 4λ).

For simplicity, let us think that λ is real and positive. Then µ− < 0 < µ+. The

system has exponential dichotomy with the gap µ+−µ− =
√

ǫ2ξ2 + 4λ ≈ ǫ|ξ| → ∞
as ξ → ±∞. However, as ξ → ∞, µ+ → 0+ and as ξ → −∞, µ− → 0−. When
the eigenvalues get closer to zero, estimate of the solution h → U by exponential
dichotomies gets worse. The weight function w(ξ) shifts the eigenvalues so that
µ− + µ+ = 0 without reducing the gap between positive and negative exponents.
See §3 for details.

Note that for functions in E,

|U(ξ)| = O(e−(
√

ǫξ)2/4) = O(|U(ξ)|e−(x/
√

ǫ)2/4).

The time for the function U to decay to e−1 is 2√
ǫ

in ξ and is 2
√

ǫ in x. We hope

to find better weight functions, like w(ξ) = e−ǫαξ, so that the time scale of decay
will be O(1/ǫ) in ξ and O(1) in x. So far this has not been achieved.

Recall that the real x-axis is divided into three regions

R = {x ≤ −x̄} ∪ {−x̄ ≤ x ≤ x̄} ∪ {x ≥ x̄}.
In §2, we study system (1.5) in the middle region |x| < x̄. Due the the possible
presence of internal layers, the system is not slow-varying. However, we can show
that if |λ| is sufficiently large, the reduced system

Uξξ = λU + h,

has exponential dichotomy with large exponents. Since the coefficient Df(uǫ)− xI
and its ξ-derivative are bounded in this region, if the largeness of the exponents
exceeds the bound of the coefficients, then (1.5) has exponential dichotomy too.
Here the boundedness of |x| by x̄ is important and is not valid in the two side
regions.
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In §3, we study system (1.5) in the two side regions x ≤ −x̄ and x ≥ x̄. There
is no internal layer. The system written in ξ variable is slow-varying. By freezing ξ
and computing eigenvalues of the coefficient matrix, we can show that the system
has exponential dichotomies in the two side regions [3].

In §4, using the exponential dichotomies, solutions of the spectrum problem
(1.5) can be expressed by integral equations in each of the three regions, with
some auxiliary data at their junction points. By the transverse intersection of
stable and unstable subspaces at the junction points, the auxiliary data can be
uniquely determined which yields a matched solution that is smooth in R. The
approach is similar to the shadowing lemma used in classical dynamical systems
theory [19, 14, 22].

We note that if Hilbert space with weighted L2 type norms are used, it is
possible to show that A is m-sectorial in the sense of Kato [11]. Then A is sectorial
as in our definition. Hilbert space method and L2 type of norms are interesting
alternatives to our approach but will not be discussed in this paper.

As a general rule, we always use the main branch of the square root. The
following lemma will be used in both the middle and side regions.

Lemma 1.2. Let s ≥ 0 be any real constant. If λ ∈ Σπ/4, then

(i) |
√

s2 + λ| ≥
√

|λ|/
√

2.
(ii) Consider the main branch of the square root. Then

Re
√

s2 + λ ≥
√

|λ|
3

.

Proof. (i) Let λ = σ + iω. First assume that |σ| ≤ |ω|. Then

|
√

s2 + λ| ≥
√

|ω| ≥
√

|λ|/
√

2.

Next assume that σ > |ω|, then

|
√

s2 + λ| ≥
√

|λ| ≥
√

|λ|/
√

2.

(ii) Let z =
√

s2 + λ = x + iy. Separating the real and imaginary part of
z2 = s2 + λ, we have

x2 − y2 = s2 + σ,

2xy = ω.

Canceling y, we have

x4 − (s2 + σ)x2 − (ω/2)2 = 0,

x2 =
1

2
[s2 + σ +

√

(s2 + σ)2 + ω2].

First consider the case σ ≥ 0. Then

x2 ≥ 1

2

√

(s2 + σ)2 + ω2

≥ |λ|/2.

x ≥
√

|λ|/
√

2.

Next consider the case −|ω| ≤ σ < 0. For any ω 6= 0, the function

t → t +
√

t2 + ω2, t ∈ R,
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is strictly monotone. Thus, for a fixed ω 6= 0, the minimum of x2 is reached at the
boundary of Σπ/4 where σ = −|ω| and s2 + σ = s2 − |ω| ≥ −|ω|. Setting t = s2 + σ

and taking the lower limit, because |ω| ≥ |λ|/
√

2, we have

x2 ≥ 1

2
(−|ω| +

√
2ω2)

=

√
2 − 1

2
|ω| ≥ |λ|

9
,

x ≥
√

|λ|
3

.

�

2. The Middle Region

For convenience of notation, let g = h in the middle region |x| < x̄ so that (1.5)
can be written as

(2.1) Wξ = AmidW + BmidW +

(

0
g

)

,

Amid =

(

0 I
λI 0

)

, W =

(

U
V

)

,

Bmid =

(

0 0
D2f(uǫ)uǫξ Df(uǫ) − ǫξI

)

.

The system is a perturbation of (2.2)

(2.2) Wξ = AmidW +

(

0
g

)

The eigenvalues for (2.2) are µ = ±
√

λ. Assume that λ ∈ Σπ/4 − {0}. By

Lemma 1.2, Re
√

λ ≥
√

|λ|/3. System (2.2) has an exponential dichotomy with

n-dimensional stable and unstable subspaces spanned by

(

U

−
√

λU

)

and

(

U√
λU

)

respectively.
The eigenvectors of Amid form a 2n × 2n matrix

Hmid(λ) :=

(

In In

−
√

λIn

√
λIn

)

.

For brevity, we drop the super-script mid on H . The first n columns of H(λ)
are eigenvectors associated to the stable, and the last n columns are eigenvectors
associated to the unstable eigenvalues.

H−1(λ) =

(

1
2I − 1

2
√

λ
I

1
2I 1

2
√

λ
I

)

.

Let P̃ =

(

0 0
0 In

)

. The projection to the space spanned by the unstable

eigenvectors is

Pu(λ, x) = HP̃H−1 =

(

1
2I 1

2
√

λ
I

√
λ

2 I 1
2I

)

.
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Note that Pu is not uniformly bounded with respect to λ. This can be a problem in
the estimate of the solution using exponential dichotomies and integral equations.
In a similar work [21], the unboundedness of Pu was circumvented by showing that

|PsP̃ | + |PuP̃ | ≤ C,

uniformly with respect to λ.
In this paper, realizing that W = (U, Uξ)

⊤ may not be the best variable to
rewrite a second order equation into a first order system, we will use coordinates
on the stable and unstable subspaces as our phase variable.

Let Dmid(λ) := diag(−
√

λIn,
√

λIn), and W = (U, V )⊤. Then Amid = HDmidH−1.
Consider the λ-dependent change of variable W = HY . System (2.1) becomes

(2.3) Yξ = DmidY + H−1BmidHY + H−1

(

0
g

)

.

The differential equation (2.3) is a perturbation of the diagonalized system

(2.4) Yξ = DmidY.

That is, Y ′
j = −

√
λYj , for 1 ≤ j ≤ n, and Y ′

j =
√

λYj , for n + 1 ≤ j ≤ 2n. It is
easily verified that

Bmid = P̃Bmid,

(

0
g

)

= P̃

(

0
g

)

,

|H | ≤ C
√

|λ|, |H−1P̃ | ≤ 1/
√

|λ|.
Therefore,

|H−1BmidH | ≤ C, |H−1

(

0
g

)

| =
C|g|
√

|λ|
.

For brevity, write (2.3) as

Yξ = DmidY + ΘY + G,

where Θ := H−1BmidH, G = H−1

(

0
g

)

.

There exists a constant C, independent of x and λ such that

(2.5) |Θ| ≤ C, |G| =
C|g|
√

|λ|
.

Let Y = (Y1, Y2)
⊤, Θ = (Θ1, Θ2)

⊤ and G = (G1, G2)
⊤. Then

(2.6)
Y1,ξ = −

√
λY1 + Θ1Y + G1,

Y2,ξ =
√

λY2 + Θ2Y + G2.

Let a = −x̄/ǫ, b = x̄/ǫ. Solutions of (2.6) satisfy a system of integral equations:

(2.7)

Y1(ξ) =

∫ ξ

a

e−
√

λ(ξ−ζ)(Θ1Y + G1)dζ + e−
√

λ(ξ−a)Y1(a),

Y2(ξ) =

∫ ξ

b

e
√

λ(ξ−ζ)(Θ2Y + G2)dζ + e
√

λ(ξ−b)Y2(b).

¿From Lemma 1.2, Re
√

λ ≥
√

|λ|/3. We have

|e−
√

λ ξ| = e−
√

|λ| ξ/3, for ξ > 0.
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Assume that (Y1(a), Y2(b)) is given. If
√

|λ| > 6(|Θ1| + |Θ2|), using the con-
traction mapping principle, (2.7) has a unique solution

(G1, G2, Y1(a), Y2(b)) → (Y1, Y2)

that satisfies

|Y1| ≤
3

√

|λ|
(|Θ1Y | + G1|) + |Y1(a)|,

|Y2| ≤
3

√

|λ|
(|Θ2Y | + G2|) + |Y2(b)|.

Combining them, we have

|Y | ≤ C
√

|λ|
(|G1| + |G2|) + |Y1(a)| + |Y2(b)|.

From the estimates for |G1| + |G2|, (2.5), we have

(2.8) |Y | ≤ C|g|
|λ| + |Y1(a)| + |Y2(b)|.

3. The Side Regions

Consider the two side regions x < −x̄ and x > x̄. Let α = ǫ/4. We make the
following change of variables to eliminate the term ǫξUξ in (1.5).

U = e−αξ2

Ū , h = e−αξ2

g,

Uξ = e−αξ2

(Ūξ − 2αξŪ),

Uξξ = e−αξ2

(Ūξξ − 4αξŪξ + (4α2ξ2 − 2α)Ū),

Uξξ + ǫξUξ = e−αξ2

(Ūξξ + (ǫξ − 4αξ)Ūξ + (4α2ξ2 − 2α − 2αǫξ2)Ū)

= e−αξ2

(Ūξξ − (ǫ2ξ2/4 + ǫ/2)Ū).

System (1.5) becomes

(3.1) Ūξξ − (ǫ2ξ2/4 + λ − (ǫξ/2)Df(uǫ) + D2f(uǫ)uǫ ξ + ǫ/2)Ū − Df(uǫ)Ūξ = g.

Write (3.1) as a first order system

(3.2) Wξ = AsdW + BsdW +

(

0
g

)

, W = (Ū , V̄ )⊤,

Asd =

(

0 I
(λ + x2/4)I − (x/2)Df(uǫ) 0

)

,

Bsd =

(

0 0
D2f(uǫ)uǫξ + (ǫ/2)I Df(uǫ)

)

.

If the conservation law is strictly hyperbolic, then for |x| > x̄, the eigenvalues
of Df(uǫ) are real and distinct. In the sequel, we assume that Df(uǫ) has sim-
ple eigenvalues. This can be achieved by adding a small perturbation to Df(uǫ),
without interfering with the proof of A being sectorial. Denote the eigenvalues of
Df(uǫ) by ν1, . . . , νn, and the corresponding eigenvectors by r1, . . . , rn.

The homogeneous part of (3.2) can be viewed as a perturbation of the system

(3.3) Wξ = AsdW.
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System (3.3) is slow-varying. Let µ be an eigenvalue of Asd. It is easily verified
that

det[µ2 − (λ + x2/4)I + (x/2)Df(uǫ)] = 0.

Therefore one of the following equations must hold:

µ2 = λ + x2/4 − (x/2)νj , j = 1, . . . , n.

Thus, there are two eigenvalues of Asd for each j:

µ±
j = ±

√

x2/4 − (x/2)νj + λ

= ±
√

(x − νj)2/4 − ν2
j /4 + λ,

with corresponding eigenvectors

(rj , µ
±
j rj)

⊤.

Without the loss of generality, assume that |x̄| > 2|νj|. Then (x − νj)
2/4 −

ν2
j /4 = x(x − 2νj)/4 > 0 for |x| ≥ x̄. Let

rj :=
√

(x − νj)2/4 − ν2
j /4 > 0.

If λ ∈ Σπ/4, then from Lemma 1.2,

µ±
j = ±

√

r2
j + λ, |Reµ±

j | ≥
√

|λ|/3.

Let R = (r1 . . . rn) and M(λ, x) = diag(µ+
1 . . . µ+

n ) be n × n matrices. The
eigenvectors of A form a 2n × 2n matrix

Hsd(λ, x) :=

(

R 0
0 R

)(

In In

−M M

)

.

For brevity, we will drop the super-script sd in this section. The first n columns of
H are eigenvectors (rj , µ

−
j rj)

⊤ for the corresponding µ−
j , and the last n columns

are eigenvectors (rj , µ
+
j rj)

⊤ for the corresponding µ+
j .

H−1 =

(

1
2I − 1

2M−1

1
2I 1

2M−1

)(

R−1 0
0 R−1

)

.

Let P̃ =

(

0 0
0 In

)

. The projection to the space spanned by the unstable

eigenvectors is

Pu(λ, x) = HP̃H−1 =

(

R 0
0 R

)(

1
2I 1

2M−1

1
2M 1

2I

)(

R−1 0
0 R−1

)

.

Note that as |x| and λ can go to infinity, |Pu(λ, x)| is not uniformly bounded
with respect to |x| and λ due to the entry 1

2M. Geometrically, this is due to the
small angle between the stable and unstable subspace if M is large. Similar to §2,
we will make the change of variables so that the coordinates (Z1, Z2) on stable and
unstable subspaces will be the phase variable.

Let Dsd(λ, x) := diag(−M,M) and W = (U, V )⊤. Then Asd = HDsdH−1.
Consider the (λ, x)-dependent change of variables W = HZ. System (3.2) becomes

(3.4) Zξ = DsdZ + (H−1BsdH − H−1Hξ)Z + H−1

(

0
g

)

.
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The differential equation (3.4) is a perturbation of the diagonalized system

(3.5) Zξ = DsdZ.

That is, Z ′
j = µ−

j Zj , if 1 ≤ j ≤ n, and Z ′
j = µ+

j−nZj, if n + 1 ≤ j ≤ 2n. System

(3.5) has an exponential dichotomy with projection P̃ and a large spectral gap if
x > x̄, λ ∈ Σπ/4 and |λ| is sufficiently large. It is easily verified that

B = P̃B,

(

0
g

)

= P̃

(

0
g

)

,

|H−1P̃ | ≤ C|M−1|, |H | ≤ C|M|,

|M| ≤ C
√

max
j

{|r2
j + λ|},

|M−1| ≤ C/
√

min
j

{|r2
j + λ|}.

Therefore,

|H−1BsdH | ≤ C, |H−1

(

0
g

)

| =
C

√

minj{|r2
j + λ|}

|g|.

It is easily verified that there is a constant C such that |H−1| ≤ C uniformly
with respect to (λ, x). Moreover, using x = ǫξ, we have

∂µj/∂ξ =
ǫ(x − νj)

4
√

(x − νj)2/4 − ν2
j /4 + λ

= O(ǫ)

for all (j, λ, x). Therefore, H−1Hξ = O(ǫ).
System (3.4) can be written as

Zξ = DsdZ + NZ + G,

where N := H−1BsdH − H−1Hξ, G = H−1

(

0
g

)

.

We have shown that there exists a constant C, independent of x and λ such that

(3.6) |N | ≤ C, |G| =
C
√

|λ|
|g|.

Let Z = (Z1, Z2)
⊤ and G = (G1, G2)

⊤. Then

(3.7)
Z1,ξ = −MZ1 + N1Z + G1,

Z2,ξ = MZ2 + N2Z + G2.

Based on this and the exponential dichotomies for (3.5) for |x| > x̄, we will
show that if (Z2(a), Z1(b)) is given, there is a unique solution Z to (3.7) in the two
side regions.

For definitiveness, we consider the interval x ≥ x̄, since the interval x ≤ −x̄
can be handled similarly.
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In (b,∞), solutions of (3.7) can be expressed as a system of integral equations:

(3.8)

Z1(ξ) =

∫ ξ

b

e−
R

ξ

ζ
M(τ)dτ (N1Z + G1)dζ + e−

R

ξ

b
M(τ)dτZ1(b),

Z2(ξ) =

∫ ξ

∞
e

R

ξ

ζ
M(τ)dτ (N2Z + G2)dζ.

Using |Reµ±
j | >

√

|λ|/3, we have

|e−
R

ξ

ζ
M(τ)dτ | ≤ e−

√
|λ||ξ−ζ|/3, ξ > ζ.

Assume that Z1(b) is given. If
√

|λ| > 6(|N1| + |N2|), the fixed point problem
(3.8) has a unique solution

(G1, G2, Z1(b)) → (Z1, Z2)

that satisfies

|Z1| ≤
3

√

|λ|
(|N1Z + G1|) + |Z1(b)|,

|Z2| ≤
3

√

|λ|
(|N2Z + G2|).

Combining them, we have

|Z| ≤ C
√

|λ|
(|G1| + |G2|) + |Z1(b)|.

From the estimates for |G1| + |G2|, (3.6), we have

(3.9) |Z| ≤ C|g|
|λ| + |Z1(b)|.

Similarly, in the region (−∞, a), assume that Z2(a) is given, then if
√

|λ| >
6(|N1| + |N2|), there exists a unique solution

(G1, G2, Z2(a)) → (Z1, Z2)

to (3.7) such that

(3.10) |Z| ≤ C|g|
|λ| + |Z2(a)|.

4. Matching of solutions in the middle and side regions

The purpose of this section is to combine solutions in the middle and side
regions and to complete the proof of Theorem 1.1.

Recall that the three regions are separated by

−∞ < a < b < ∞, a = −x̄/ǫ, b = x̄/ǫ.

In order to have a smooth solution defined in R, we need to match W = (U, V )⊤

in the side and middle regions at the junction points ξ = a and b. Using a± and
b± to distinguish the side and middle regions, we have

W |a+ = W |a−, W |b+ = W |b−.
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Recall that

Wmid =

(

I I

−
√

λI
√

λI

)(

Y1

Y2

)

=

(

Y1 + Y2√
λ(Y2 − Y1)

)

,

W sd =

(

R 0
0 R

)(

I I
−M M

)(

Z1

Z2

)

=

(

R(Z1 + Z2)
RM(Z2 − Z1)

)

.

We must have

R(Z1 + Z2)(a−) = (Y1 + Y2)(a+), RM(Z2 − Z1)(a−) =
√

λ(Y2 − Y1)(a+),

R(Z1 + Z2)(b+) = (Y1 + Y2)(b−), RM(Z2 − Z1)(b+) =
√

λ(Y2 − Y1)(b−).

Setting M/
√

λ = M̄, R−1Yj = Ȳj , j = 1, 2, we have

Z2(a−) − Ȳ1(a+) = −Z1(a−) + Ȳ2(a+),

M̄Z2(a−) + Ȳ1(a+) = M̄Z1(a−) + Ȳ2(a+),

Z1(b+) − Ȳ2(b−) = −Z2(b+) + Ȳ1(b−),

M̄Z1(b+) + Ȳ2(b−) = M̄Z2(b+) + Ȳ1(b−).

Solving for (Z2(a−), Ȳ1(a+), Z1(b+), Ȳ2(b−)), we have

(4.1)

Z2(a−) = (M̄ + I)−1[(M̄ − I)Z1(a−) + 2Ȳ2(a+)],

Ȳ1(a+) = (M̄ + I)−1[2M̄Z1(a−) + (I − M̄)Ȳ2(a+)],

Z1(b+) = (M̄ + I)−1[(M̄ − I)Z2(b+) + 2Ȳ1(b−)],

Ȳ2(b−) = (M̄ + I)−1[2M̄Z2(b+) + (I − M̄)Ȳ1(b−)].

Based on (2.8), (3.9) and (3.10), the right hand sides of (4.1) also depend on

(Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+)).

Written as an abstract equation,

(Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+)) = F((Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+), g),

system (4.1) can be viewed as a fixed point problem. We show that the right hand
side is a contraction mapping with respect to (Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+)).

Using Lemma 1.2, (i), we have

|(M̄ + I)−1| ≤ C,

|(M̄ + I)−1M̄| = |I − (M̄ + I)−1| ≤ C.

From this, we have

|F((Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+), g)| ≤ C(|Z1(a−)|+|Ȳ2(a+)|+|Ȳ1(b−)|+|Z2(b+)|).
For any δ > 0, there exists λM > 0 such that if |λ| ≥ λM , then from (3.8), (3.9)

and (3.6), we have

|Z2(b+)| ≤ δ|Z1(b+)| + C|g|
|λ| .

Similarly if λM is sufficiently large, for |λ| ≥ λM ,

|Z1(a−)| ≤ δ|Z2(a−)| + C|g|
|λ| .
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For any δ > 0, if ǫ is sufficiently small so that b − a is sufficiently large, and if
|λ| is sufficiently large, from (2.7), (2.8) and (2.5), we have

|Ȳ1(b−)| + |Ȳ2(a+)| ≤ δ(|Ȳ1(a+)| + |Ȳ2(b−)|) +
C|g|
|λ| .

Therefore,

|F((Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+), g)|

≤Cδ(|Z2(a−)| + |Ȳ1(a+)| + |Ȳ2(b−)| + |Z1(b+)|) +
C|g|
|λ| .

Thus if δ is sufficiently small, then F is a contraction and there exists a unique
fixed point for (4.1). Moreover,

|(Z2(a−), Ȳ1(a+), Ȳ2(b−), Z1(b+))| ≤ C|g|
|λ| .

Substituting into (2.8), (3.9) and (3.10), we have

|Y | ≤ C|g|
|λ| in the middle region and

|Z| ≤ C|g|
|λ| in the side regions.

Recall that U is the first row of W = (U, V )⊤. In the middle region,

U =
(

In×n 0
)

HmidY = (Y1 + Y2).

Therefore, we have

(4.2) |U | ≤ C|Y | ≤ C|g|
|λ| ≤ C|h|

|λ| .

In the two side regions, we have

Ū =
(

In×n 0
)

HsdZ = R(Z1 + Z2).

Therefore, we have

|Ū | ≤ C|Z| ≤ C|g|
|λ| .

Recall that U = e−αξ2

Ū and h = e−αξ2

g defined at the beginning of §3. We
have in the side regions

(4.3) sup
|ξ|≥x̄/ǫ

|U(ξ)|eǫξ2/4 ≤ C|g|
|λ| ≤ C

|λ| sup
|ξ|≥x̄/ǫ

|h(ξ)|eǫξ2/4.

Combining estimates (4.2) and (4.3), we have shown that there exists λM > 0
such that if λ ∈ Σπ/4 and if |λ| ≥ λM > 0, then λ ∈ ρ(A). Moreover, U ∈ E and

‖U‖E ≤ C‖h‖E/|λ|.
The proof of the following lemma is elementary and will not be rendered here.

Lemma 4.1. Assume that for some λM > 0, the set

S = {λ|λ ∈ Σπ/4 ∩ |λ| ≥ λM}
is in ρ(A), and

‖(λ −A)−1‖ ≤ M/|λ|, λ ∈ S.
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Then

Σπ/4 +
√

2λM ⊂ ρ(A)

with

‖(λ −A)−1‖ ≤
√

2M

|λ −
√

2λM |
, λ ∈ Σπ/4 +

√
2λM .

Based on Lemma 4.1, A is sectorial in the function space E.
The proof of Theorem 1.1 has been completed.
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