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Abstract. A complete procedure is given to determine the outer and inner expansions of a singularly
perturbed boundary value problem in I". The validity of such expansions is deduced from a generalized
Shadowing Lemma, where the inner and outer approximations are treated like pseudo-orbits in the classical
dynamical system theory.
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1. Introduction. In the past few years, several people have attempted to bring
some of the methods of dynamical systems to bear on singularly perturbed boundary
value problems, e.g., for centermanifolds see Fenichel [7] and Carr and Pego (unpub-
lished manuscript), for the Lyapunov-Schmidt method see Hale and Sakamoto [12].
The early work of Hoppensteadt [13] also used the idea of dynamical systems.

In this paper we shall use the method developed in the theory of dynamical
systems to study the matched asymptotic expansion for the singularly perturbed
boundary value problem

e =f(x, t, e), a <-- <--_ b,

(1.1) B(x(a),e)=O,

B2(x(b),e)=O.

We shall discuss the following problems. Given a candidate for zero-order
asymptotic approximations of 1.1), is there an exact solution for the full problem that
lies near it? How are the higher-order expansions for the exact solution computed,
and how is the exact solution computed based on the asymptotic expansions, if there
is such an exact solution?

Suppose that to a < t <. < tr= b, [a, b] t_J
i= [ti_, ti] is a partition of[a, hi.

A sequence of C functions {x(t)}7=, each defined on [ti-1, ti], is called a formal
approximation subordinate to the partition if the residuals f( t) e:( t) f(xi( t), t, e)
in [ti_, t], the jumps at common points gi xi(ti)-x+(ti), and the boundary errors
B(x(a), e) and B2(xr(b), e) are small. If (1.1) is solved by the matched asymptotic
expansion method, and the outer and inner approximations (some authors prefer the
terms regular and local approximations) are presented in the fast variable " t! e, the
entire domain [ale, b/e] is then divided into subintervals [’i-, ’i] on which either
the regular or the singular approximation is defined. Truncated at a certain order of
accuracy, these asymptotic solutions are, in fact, formal approximations. We shall also
refer to the piecewise C function x(t), which is equal to xi(t) in ti_, t], as a formal
approximation.

It is well known that a formal approximation is not necessarily close to any true
solution of (1.1); that is, the remainder of the approximation to the exact solution does
not have to be small even when the residual, jump, and boundary errors are small.
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Example 1.1. Consider

e//= uti, -1 <-- 1,

u(-)=a,

u(1) -a,

where a>0 is a constant, u a, -1-<_ t_-<1/2 and u2=-a, 1/2-< t=< 1 are two regular
approximations. Let e" and use for d/dr; then we have u"= uu’, u’= u2/2 + C.
The phase portrait for various C is depicted in Fig. 1.

FIG.

It is clear from the phase portrait that there is a unique heteroclinic solution q(’),
with q(0)=0, q(r)-+/-a as ---> q:oo. Define u(’)=a,-1/e=<r<=l/2e-e-, u(r)=
q(r- 1/2e), 1/2e e t-I -_< r_-< 1/2e + et-, and u(’) -a, 1/2e + e-l-_< ’_-< l/e, where
0 </3 < 1. u(r) is a formal approximation. However, no exact solution is close to u(r)
as e -0, since by symmetry an exact solution u(r, e) must satisfy u(0, e)=0.

Many efforts have been made to give rigorous foundations for methods of matched
asymptotic expansions. Here we must distinguish the work on the matching principles
from the work on the existence of an exact solution and the estimates of the remainder
of the exact solution, to the asymptotic approximations. The matching principles are
a set of auxiliary conditions that ensures the unique solvability of the inner expansions
and the asymptotic matching of the outer and inner expansions so that a composite
expansion can be constructed. The most general methods on this area are: (i) the
method of intermediate variables originated by Kaplun and Lagerstrom; and (ii) the
method of asymptotic matching principle originated by Van Dyke. It is known that in
many cases, the two methods are equivalent (see Eckhaus [5]), and many simple
examples, mostly in R2, have been treated thoroughly by both methods. However, there
does not seem to exist an explicitly stated complete procedure for computing the inner
expansions or boundary expansions for the system (1.1) in [". The auxiliary conditions
on the inner expansions given in this paper are a set of simple growth conditions that
do not depend on the specific outer expansions. However, the matching of the inner
and outer expansions can be proved as a consequence of the growth conditions.

The correctness of the asymptotic expansion obtained by various matching prin-
ciples cannot be justified by the asymptotic analysis itself. At this stage the small
parameter e has to be fixed and the increasing of the order of truncation does not
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help either. Here we face the problems of the existence of an exact solution close to
the formal expansion solution and how to compute the exact solution for a small but
fixed e. There are two major schools working in this direction. The first uses the
maximum principle and various comparison theorems (see Chang and Howes [3],
Angenent, Mallet-Paret, and Peletier [1], and Nagumo [16]). The second uses the
contraction principle, the Inverse Function Theorem, Newton’s method, or the like
(see Eckhaus [5] and van Harten [14]). In the application of the latter methods, we
must frequently investigate the inversion of certain linear operators, obtained from
linearizing the whole boundary value problem (1.1). The method developed in this
paper uses a modification of the classical Shadowing Lemma (see Guckenheimer,
Moser, and Newhouse [11] for a proof of the classical Shadowing Lemma). The
extended version used in this paper seems to be new and its application to singular
perturbations is close to the Inverse Function Theorem or Newton’s method. By virtue
of the Shadowing Lemma, the investigation is reduced to the study of local solutions
of the linear variational equations of the outer and inner approximations. This is much
easier than the global inversion of the linear operators mentioned above. From a
computational point ofview, the justification ofthe validity ofthe asymptotic expansion
automatically leads to a numerical scheme of obtaining an arbitrarily accurate solution
based on that approximation. One of the major characteristics of classical singular
perturbation methods is to treat the outer and inner layers separately and then use
some form of matching. Therefore it seems natural to extend the application of the
Shadowing Lemma to singular perturbation problems, which allows the inversion of
the linear variational equations in the outer and inner regions separately.

We state our hypotheses and results in 2, which also includes some examples
that have been treated in previously published articles and that can be shown to fit
our hypotheses. Basic definitions and lemmas concerning exponential dichotomies and
Fredholm operators induced by the linearization around the formal approximations
are given in 3. The perturbation of angles between the stable and unstable manifolds
is studied in Lemma 3.10, which is crucial in studying the interior transition layers.
The Shadowing Lemmas are given in 4. It is first proved for a system on the whole
real axis (Theorem 4.3) and then applied to the boundary value problem (Theorem
4.4) and the periodic system (Theorem 4.5). In 5, we give the complete procedure
for the construction ofinner and outer expansions. The major features of our expansions
are given in Theorems 5.5 and 5.6. The proof of the validity of the formal solutions
obtained in 5 is given in 6. The most unpleasant fact about exponential dichotomy
on finite intervals is that the stable and unstable spaces are not uniquely defined. We
have to extend the equations to the whole real axis such that it is compatible with the
change of e. This makes the proof very technical.

The general references for the singular perturbation problem are so extensive that
we mention only a few that happened to catch our attention. The books of O’Malley
[15], Eckhaus [5], and Wasow [18] offer comprehensive descriptions of the method
and the theory, as well as many references. The work we present is closely related to
the early work of Fife [8], [9]. The conditions we imposed on the boundary points
are geometry-oriented and also have appeared in Hoppensteadt [13]. Hale and
Sakamato [12] use the Lyapunov-Schmidt method and bifurcation theory to obtain a
necessary and sufficient condition for the existence of the transition layers in a
second-order problem in the neighborhood of a given approximation. The matching
of the outer and inner expansions is a consequence of the method when we use the
Shadowing Lemma. The method of Hale and Sakamoto [12] also gives the stability
of the solution as an equilibrium point of a parabolic PDE. Exponential dichotomies
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are employed by Battelli and Lazzari [2] in their paper studying singular perturbation
problems.

We use. to denote d/dt and’ to denote d/dr, where r (t 6)/e is a fast variable
(stretched variable). Partial derivatives shall be denoted by D, etc., where il is a
multi-index. In the notation yj, both and j are indices unless the contrary is specified.

and 9’ are used for the range and kernel of linear operators.

2. Assumptions and main results. We assume that f:R" x[a, b]xR+-->[" is C
with bounded derivatives, to a < t <. < tr-1 < tr b is a partition of [a, b]. Let
p,(t), 1,..., r, be a C function on [ti_l, ti] such that

(2.1)i f(pi( t), t, O) O, t,-1 <= <= ti.

We introduce.a new variable r (t 6)/e at the neighborhood of each 6, 0 <- r. We
assume that a function q,(r) is defined for z R, 1 -< -< r- 1 and r /, 0, z E-,

r such that

(2.2), q(r) =f(q,(r), ti, 0)

in the domain of definition of q,(z), and q,(r) - Pi(6) as z -> -c, 1 =< r and qi(7") -->

p,+l(ti) as 7"-->+, O<=i<=r-1. We assume that qo(z) and qr(Z) satisfy the boundary
conditions B1 (qo(0), 0) 0 and B2(qr(0), O) O.

We shall need some hyperbolicity assumptions on p,(t) and qi(7"). We assume
there is an ao> 0 and an integer d+ such that for 1 =<i -< r,

(Hi) r{f(p(t), t, 0)} f’l {iRe h]<-_ a0} =, and the dimension of the unstable
space of fx(P,(t), t, 0) is d+

for each fixed E 6-1, 6]. The dimension of the stable spaces of fx is d- n d/. We
assume that B1 :" x +--> Ra- is C, rank Blx(qo(0), 0) d_ and B2: " x" --> d+ is
C, rank B2x(qr(O), O)= d/. The linear homogeneous equation

(2.3)i

and the adjoint equation

(2.4)i

qg’(’r) f(qi(’r), 6, 0)q(7")=0

.i’(7")+fx(qi(7"), ti, 0)1//(7")--0

are important in our investigations. Let Pl(r), z + be any nontrivial bounded solution
of (2.3)0 and p(r), z- be any nontrivial bounded solution of (2.3); then

Blx(qo(O), 0)" qg,(O) 0, B(q(O), O)p(O) O.(H2)

It should be clear that ql(r), r, 1 <-i<=r 1, is a nontrivial solution for (2.3)i.
Assume that ql(z), 1 _-< i-<_ r-1, is the only bounded solution for (2.3) up to a scalar
factor; then from the general theory of exponential dichotomy and Fredholm alternative
(see Lemma 4.2 in Palmer [17] and 3 of this paper), there exists a unique bounded
solution I]/i("/’), 7", l<=i<-_r-1, of (2.4), up to a scalar factor. Moreover, pi(z)-> 0
exponentially as ’--> +/-. The following generic assumption will be crucial for our
investigation"

(H3) f_b*(r)f(qi(z),t,O)d’O, l<=i<--r-1.

We now state our main results as follows.
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THEOREM 2.1. Suppose {p,(t)}, 1 < <- r, {qi(r)}, 0<= i<= r, satisfy (2.1),, (2.2),, and
(H 1), (H2), (H3) are satisfied. Then there exist formal power series:

Y eJxj( t), X( t) p,( t), 1 <= <= r,
j=0

f rR, li<=r-1,

eJy(’r), y(’r) q,(r) with l r R+, O,
j=O z R-, i= r,

0e rj, O - r, "rj=’rj=0 and for all j - O
j=0

with thefunctions Xj and constants rj computable by a system ofrecursive linear algebraic
equations, yj computable by a system of recursive linear nonhomogeneous differential
equations such that, for any

m_->0, 0</3<1,

the function

eJXj(t), t[ti_l+e,ti-e], l<=i<r,

x(t,e)=

yj( -1oe r-Ee t[6-eo, 6+eo][a,b], r=(t-t)/e, Oir
(j=0 j=

is a formal approximation of (1.1) with residuals andjumps as O(e(m+l)) and boundary
errors O(em+) uniformly for [a, b] and O r.

Observe that x(t, e) has two values at common points t e, but that does not
affect the conclusion. For the convenience, we shall tolerate that ambiguity.

Let the inner expansion of the outer approximation be

j=0 0 j=O

2 EJx+1
ti + E T + E

j=o =o j=o

as in (5.24) of 5. Define the composite expansion 2(t, e) as follows:

X(t, e) 2 eXj(t)+ 2 eJY --1 2 ETjJ i-,

=0 =0 8 =0

j=O E j=O

E Xj,
E j=O

EJ
j=0 8 j=0

or @ t_ t], l r.
THEOREM 2.2. Let x(t, ) be the formal approximation as in eorem 2.1, corre-

sponding to some m O. en there exists o 0 and o 0 such that there exists a unique
exact solution xt(t, ) of the boundary problem (1.1) with ]x(t, ) Xet(t, )[ o if
0 0. e remainder x(t, ) Xet(t, ) is 0(+)) for any with 0 1.
e composite expansion g(t, ) is uniformly valid for [a, b] with g(t, )- Xet(t, )
being 0(+).



SHADOWING LEMMA AND SINGULAR PERTURBATIONS 31

Results similar to Theorem 2.1 and 2.2 are also valid for periodic systems. Consider
a periodic system

(2.6) e:(t)=f(x(t), t, e)

where f(x, t, e) f(x, + to, e) is C" R" x R x --> ". Let [0, to U i= ti-,, ti ], and
let pi(t), 1 <-iN r, be a C function on [ti-1, ti], satisfying (2.1). Assume that (HI) is
satisfied. In the fast variable 7.=(t-ti)/e, assume that a heteroclinic solution qi(7.),
O<-i<-r, of (2.2) is given, with qo(Z)=qr(Z), qi(z)-pi(t) as r--> --c for l<=i<=r and
q(r)-->pi+(ti) as z-->+ for O<-i<-r-1.

Assume that the linear variational equation (2.3)i has the unique bounded solution
q’i(r) and the formal adjoint equation (2.4) has a unique bounded solution q,(7.),
7. , 0 <- -< r, up to a scalar factor. We shall also assume the generic assumption (H3).

THEOREM 2.3. For the periodic system (2.6), suppose {p(t)}, l<-_i<=r, {q(r)},
0 <- <- r, satisfy (2.1)i, (2.2) with qo(7.) qr(7.), a =0, b to, and (HI), (H3) are satisfied
for 1 <-_ <= r. Then there exist formal power series:

eXj(t), Xo(t)=pi(t), l<-i<=r,
j=O

2 eJY(7"), y(z) qi(7"), 7" , 0 <- <-- r,
j=O

e 7"j,
j=O

with thefunctions Xj and constants 7" computable by a system ofrecursive linear algebraic
equations, yj computable by a system of recursive linear nonhomogeneous differential
equations. Moreover, for any m >-O, 0 < fl < 1, if x( t, e) and g( t, e) are defined as in
Theorems 2.1 and 2.2 for [0, to and are periodic with period to for , then x (t, e)
is a formal approximation of (2.6) with residuals andjumps as O(e(m+l)). There exists
a unique exact periodic solution Xexact(t, E) ofperiod to in a small neighborhood ofx(t, e)
provided that 0 < e <- So. The remainder x(t, e) Xexact(t, e) is O(eE(m+ 1)). The composite
expansion (t, e) is uniformly valid with (t, e)--Xexact(t, e) being O(e’+).

Example 2.4. Consider

e25i f(x, t), a <- <- b,

Boundary conditions at a and b

where x n and f:n _> ,. If y :, we have

(2.7) e y, ef f(x, t),

which is a system in R2n. Suppose f(p( t), t)=0 for tJc[a, b], then (p(t), e(t)) is
a regular approximation for (2.7) in J, with residual O(e2). Suppose that Dxf(p(t), t)
has positive eigenvalues A(t),.. ",An(t), min.i<_,A(t)_-->Ao>0 for each tJ. The
Jacobian for the 2n-system (2.7) is A= (, o). It is easy to show that det (AI-A)=
Hj_- (A2-A) Thus (HI) is satisfied, with d-=d+=n for each tJ.

Suppose pl(t), [a, t] and p2(t), Its, b] are such regular approximations. Let
(q(r), q2(r))’, qin, i= 1,2 be a heteroclinic solution for

(2.8) x’= y, y’ =f(x, tl),
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which satisfies all the conditions preceding Theorem 2.1. Let (qq(-r), q2(r))’, $iRn,
1, 2 be the unique nontrivial bounded solution (up to a scalar factor) for the formal

adjoint system of the linear variational equation of (2.8). Condition (H3) reduces to

2*(7")ft(ql(7")’ t,) d" O.

An often studied case is n 1. It is easy to verify that 02(’) q(’) up to a scalar
factor. We can write (H3) as

P2(tl)
(2.9) f(x, t,) dx O.

pl(tl)

Condition (2.9) can be found in Fife [8], [9]. Angenent, Mallet-Paret, and Peletier [1]
studied the scalar boundary value problem

e2Un+f(u, t)=0, u,(0) u,() 0,

where f(u, t)=u(l-u)(u-a(t)), a CI([0, 1]) and 0<a(t)<l. If 0<tl<l is such
that a(q) 1/2, a’(t) 0. Then there exists a heteroclinic solution connecting u 0 and
u 1, and (2.9) is satisfied.

Dirichlet boundary conditions can be found in Fife [9], although they have been
treated in early papers. It is of interest to point out that condition (2.5) in his paper
implies (H2), which can easily be justified by a phase portrait analysis.

We remark here that there are several obvious generalizations of Theorem 2.2.
For example, [a, b] may be replaced by [a, +) or (-, hi, and in each case one of
the boundary conditions is missing and a global boundedness condition is imposed.
We can also consider (-o, +c) with no boundary condition at all. Moreover, the
number of subintervals does not have to be finite. In some sense, the boundary value
problem and initial value problem need not be treated separately. However, in the
semistable case, only part of the initial conditions should be specified as follows from
our general theory easily.

3. Preliminaries. We first present some properties of the exponential dichotomies
of the linear nonautonomous equations and the application to the linear variational
equation of the heteroclinic solution qi(’). We refer to Coppel [4] and Palmer [17]
for proofs of the following results.

Consider a linear ODE in n
(3.1) ( t) A( t)x( t) h( t), J

where A(t), J is a continuous and uniformly bounded matrix-valued function. Let
T(t, s) be the solution map for the linear homogeneous equation.

DEFiNiTiON 3.1. We say that (3.1), or T(t, s), has an exponential dichotomy in J
if there exist projections P(t) and P,(t)= I-P(t), J, such that

T(t,s)P(s)=P(t)T(t,s), t>-s in J,

IT(t,s)P(s)l<=Ke-’-), t>s= in J,

[T(t,s)P,(s)l<=Ke--’, s>t= in J

where K and a are positive constants.
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LEMMA 3.2 (roughness of exponential dichotomies). Suppose the linear equation
(3.1) has an expoential dichotomy on +. If, su.p+ IB(t)l < a/4g2

then p(t) [A(t) + B(t)]y(t) 0 also has an exponential dichotomy in +, with the
constants K and t determined by K, t, and 8. Let the projections be P( t) and P,( t);
then [13<t)-Ps<t)l= 0(8) uniformly in t+, Ic-al= O(8 and is bounded.

LEMMA 3.3. Assume that IA(t)[ <_ Mfor all J, and A( t) has d--eigenvalues with
realpart <=-a < 0 and d/ n d- eigenvalues with realpart >= a > 0for all J. Assume
that for any 0 < e < a, there exists 0 < 8 8(M, a, e) such that if IA( t) A( tl)l <-- ; for
Its-tl<= h, where h > 0 is a fixed number not greater than the length of J. Then (3.1)
has exponential dichotomy in J with constants K K(M, or, e) and exponent a- e.

Moreover, Ps(t) approaches the spectral projection to the stable eigenspace of A(t) for
each fixed t, as 8- O.

Proofs of Lemma 3.2 and 3.3 may be found in Coppel [4]. Suppose that q(t), -> 0
is a solution for a nonlinear autonomous ODE, which approaches a hyperbolic
equilibrium x Xo as . The linear variational equation around Xo clearly has an
exponential dichotomy. Because of Lemma 3.2, we conclude that the linear variational
equation around q(t), -> ?, has exponential dichotomy for sufficiently large ?> 0, with
the projections close to those of the linearization around Xo. And it is easy to see that
the dichotomy around q(t) extends to J =/. Similar results also hold for J =R-.
These observations will be useful throughout the paper.

DEFINITION 3.4. Define a subset E(T, 1) of continuous functions on J as E(T, l)
{x(t)lsuptj(Ix(t)leltl(l+ltll)-l)<o}, which is a Banach space with the norm
Ilxll,, sup, {Ix(t)l eVl’l(1 + Itl)-), where 3’ is a real constant and l>= 0 an integer.
Let Ek(3’, l) {x(t)[x(t), x’(t),. ", xk)(t) Ej(%/)}, which is a Banach space with

DEFINITION 3.5. Let ’E)(3",l)-E(3",l), x--h, be defined as h(t)=
Yc(t) A(t)x(t). Let *" El(% l) E(% l), y-- g be defined as g(t) p(t) + A( t)*y(t).

Clearly and * are linear bounded. Assume that (3.1) has exponential dichotomy
in J with constant K and exponent a. Let 3" be a constant, I1 < .

LEMMA 3.6. (i) IfJ =-, then for any he Ea-( y, l) and u :Pu(O), there exists a
unique solution xE-(3",l) of (3.1) with P,(O)x(O)=u. Moreover
C{llhll -(% 1)+

(ii) If J=R+, then for any h ER+(3", l) and v P(O), there exists a unique
solution x E+( 3", l) of (3.1) with P(0)x(0) v. Moreover,
c(11 h o+,,> + v .

(iii) If J =, then for any h Eu(3", l), there exists a unique solution x E(3", l)
of (3.1) with ixll,,<-_ CIIhll,,.

Proof. (i) We can write the solution as

x(t)= T(t, O)u+ T(t, s)P(s)h(s) ds+ T(t, s)P(s)h(s) ds.

From a simple estimate using Definitions 3.1 and 3.4, we have
C(lihll -,,)/ Ilull). The estimate for Ilxll -,,) comes from (3.1).

Proofs for (ii) and (iii) are similar to that of (i).
LEMMA 3.7. If (3.1) has exponential dichotomies in - and + with constant K

and exponent c being the same in - and +, [3"1 < c. Let the projections, which define
the exponential dichotomies, be PS(t) and P-(t) for - and P+(t) and P+(t) for
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-. Then " E(% I)- Ea(% l) is Fredholm with Index =dim P(0)-
dim P-(O). h if and only if

for all Yf*. Indeed, Yf* c ER(a, 0).
Proof. The proof is completely similar to Lemma 4.2 in Palmer 17].
The following definition is from Gohberg and Krein [10], which also contains

proof of Lemma 3.9.
DEFINITION 3.8. Let 1 and t2 be two linear subspaces of ". By the minimal

angle between 1 and //2, it is meant the angle 0(1, 2)(0--< 0 -< r/2), defined by

cos 0(, 2) sup {l(x, y)lx , y e ,ff/2, Ix[--lyl- 1}.
Obviously 0(, 2) # 0 and dim + dim ://2 n is equivalent to q)’/2 n.

In this case, there is a projection P such that tP 1 and YfP 2. We are interested
in the case that 0(, 2) is small or, equivalently, IlPll is large. The following lemma
is useful.

LEMMA 3.9. There exist constants C, C2> 0 such that

IIPl[--< cz0( l,
We shall be interested in the e-dependent systems

(3.2) (t)-A(t, e)x(t)=O
where A(t, e) is C in e and uniformly bounded in t, OA(t, e)/Oe E(O, 1). Suppose
for e =0, (3.2)o has exponential dichotomies in - and +; then for e small, (3.2)
still possesses exponential dichotomies in - and +. Let the projections be P(t, e)+
P(t, e) I and P(t, e)+ P+,(t, e)= I, respectively, in R- and +. We are interested
in the following situation: (i) dim P(t, e) =dim P+,(t, e)=d+, (d-= n-d+) (ii)
P(0, 0)f-)YtP(0, 0) is one-dimensional. Let q(t) be the only bounded solution of
(3.2)o, up to a scalar factor. From Lemma 3.7, Ind 0 and there is a unique bounded
solution q(t) for q)(t) + A(t, 0)*q(t) =0. Indeed, both and q E(a, 0). Since at e =0,
YtP(0, 0)f3 P+(0, 0) # {0}, we find that O(P(O, 0), YtP(0, 0)) =0. We are inter-
ested in O(YtP-(O, e), +tPs (0, e)) for small and nonzero e.

Lemma 3.10. Under our assumptions on (3.2), if

_
O*(t)(O/Oe)A(t, 0)q(t)#0,

then there exist Co> 0 and C > 0 such that

0(P(0, e), P+(0, e)_-> cl l,

Proof We shall choose an orthonormal basis in P(0, 0): {u,. ., ua+} and an
orthonormal basis in +Ps (0, 0)" {v, , va-}. Without loss of generality, assume that
]q(0)l 1 and u v =(0). We claim that for e #0 and small, we have a basis
{u(e).’".u.+(e)}={u+al(e).’".ua++a.+(e)} in P-(O,e), with a(e)e
P2(0,0), i=l,...,d+. We also have a basis {vl(e),".,ve-(e)}=
{Vl +5(e), , re-+ 5e-(e)} in P,+(0, e), with 5(e) e P+(0, 0). To show these, let
x(t, e) be a solution of (3.2), x(0, e) u(e) 1 _-< -_< d +, and x(t, e) - 0 as -* -.
Clearly, x(t, e) satisfies the following integral equation

Io’x(t, e)= x(t, 0)+ T(t, s)P-(s, 0)[A(s, e)-A(s, 0)]x(s, e) ds

(3.3)

+ | T(t,
d-
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By the contraction mapping principle, it is easy to prove that there exists a unique
solution x(t, e), tIr-, lel_<-.eo. Moreover, x(t, e) and Ox(t, e)/Oe is continuous and
uniformly bounded for -, i1--< o. And we have

0a(e) 0

(3.4)
x(s, e) dsx(O, e)= T(O, s)P;(s, O)[A(s, F’)-A(s, 0)]
Oe

+IT(O,s)P-(s,O)--eeA(s,F’)x(s,F’)ds.
In particular, ti(F’)= O(F’), 1 <=i<=d+. This proves the assertion for the basis in
YP,(O, F’). Similar results are also valid for i(e), 1 <- i_-< d- We infer that

(3.5)

Define a projection Q(F’), which is from "--)9P(O, F’) and parallel to 3P(0, F’).
Consider a linear algebra equation

w=(u(F’), ue/(e), v,(F’), ve-(F’)) withlwl=l.

d d d
Clearly, Q(F’)w=2i=l iui(F’) and IQ(e)l=<Ci=l Iff, I. Observe that Yi= I’1 =<
C{det(u(F’),..., Ud+(e), V(F’),’’’, Vd-(F’))}-, as can be seen from the inversion
formula of matrices. Observe that

det (u,(e),..., Ud+(e), Vl(F’), Vd-(F’))

(3.6) =det (tT,(e)- 3,(F’), , Vd-(e))

=det (a,(F’)-t3,(F’), u:,. Ud+, V,," Vd-)+ O(e2).

From our definition of 0(t), q(0) PT*(0, 0)VIP*(0, 0), where * denotes the
adjoint of an operator. Thus, 0(0) _1_ P(0, 0) and (0) _t_ 9P(0, 0). Without loss of
generality, let Iq(0)] 1. Then (3.6) is equal to

det (h(0), u2,’’’, Ud+, V,’’’, /)d-){0*(0)(t(F’) --/71(F’))} q- O(F" 2)

c{q,*(o)(a,()- ,())} + o().

From (3.5), we have

0___0e {4*(0)(,(0)-1(0))} I_ O*(s)OA(s,O)
OF.

q(s) ds # O.

From (3.4), we observe that

oa,() oa,(o)
o(1).

It is obvious that if F’o> 0 is sufficiently small and 0< [F’I <= F’o, Idet (u(F’), , va-(F’))] >=
fill, c>0 and IQ()I -< fill-’. From Lemma 3.9, CO(P-(O, e), P(O, F’))-<=
Cll-. Whence the desired result follows.
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4. Variants of shadowing lemmas. As mentioned previously, the basic tool of our
investigation is a generalized Shadowing Lemma. We state our theorem first for bounded
continuous functions defined on the whole real axis. Then we indicate how the general
theory applies to boundary value problems.

If R Ll,o<i<,,, [ti-1, ti] is a partition of the real axis into finitely or infinitely
many subintervals. We shall allow mo -oo and/or ml +oo. We shall agree that if
mo and/or rnl are finite, the first interval (-o, tmo+l] and/or the last interval [t,,-2,
are still denoted by Its, t,o+] and/or [tm-2, t,,_] for simplification of notation. Let
Ai(t), too<i< rn be a continuous matrix valued function in [ti_, ti]. Let Ti(t, s) be
the solution map for

)( t) Ai( t)x( t) O, [ ti-, ti].

We assume the following:
(i) Ti(t,s) has exponential dichotomy in [ti_, ti], with projections Piu(t) and

P(t), the constants K, a > 0 do not depend on i.

(ii) ?’piu(ti)lfflpi+l(ti)--Rns mo<i<m-l. Let Qi.n ._.>piu(ti be a projec-
tion with YdQ’=P+(t,). Then [Qi[<=M and [[I-Qi[<=M, M does not depend on i.

(iii) ti- ti_ _>- u, u > 0 is independent of i, ma < < m. Moreover, 4KM e < 1
and /2(i / K) KM e < 1.

Let be the Banach space of sequences of continuous and bounded functions
{ui(t)}<<,,,, each defined in [t_, t], and on each sequence the following norm is
finite:

[l{u,}lt. sup {lui( t)t" ti_, ti], mo < < m,}.

Let Z be the Banach space of bounded sequences of real numbers {gi}mo<i<mt-1, with
the norm II{g,}li -sup{ig, l mo<i<m-l}. Let Y=WxZ be a Banach space with
the norm

2K
II{f/} x {g,}[I -It{gi}ll+

Let sl: (s4)c -. Y be defined as sg:{u}{f} x {gi}:

lli( t) Ai( t)ui( t) =f/(t), ti_l, ti] mo < < ml
(4.1)

ui( ti) ui+( ti) gi, mo < < ml 1,

where the domain () is a subset of T on which the right-hand side of (4,1) is well
defined and is in Y.

LEMMA 4.1, Underthe assumptions of (i), (ii), and (iii), @(/)- Yis one-to-one
and onto. -: Y- is bounded with

Ti(t,s)Proof. Let v,(t) [.,,_ P,(s)fi(s) ds+t,, Ti(t,s)pi(s)fi(s) ds, t[t,_, ti].
Clearly, sC{vi} {f} {g,}, where

lye(t) -<___ K e-"(’-lfl ds + K e-"(s-’[fi ds
ti_

(4.2)
2K

<------" II{fIIt,
_

ti- ti],

(4.3)
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Let g gi- i. If g/k, 1 k, has been computed, define

v/k(t) T( t, ti_l)Pis( ti_)( Q’- I)ggi_l + T( t, ti)Pu( ti)Q’ gi

Then

(4.4)
gk+l

def
kgi--[vki(ti)--vki+l(ti)]

T(ti, ti-1)P(t,_)(I-Qi-)gt{_ + T(ti, t,+)Pi+l(t,+)Q’+gk+.

Obviously, from (4.3),

From (4.4),

II{gJ}li i]{f,} x {g,}ll .
II{g/+l}llz 2KM e-ll{g}llz, k >- 1,

II{v}ll 2MK Ii{g}llz, k 1.

Since 2KM e < 1/2, therefore k= II{g/}il < o, and Yk= il{v,}ll <- Let u,(t)=
v(t) + v(t) [t_ t], mo < < ml" then u(t) is continuous in its domain ofk=l

definition and by adding (4.4) through k 1, u(t) u+(t) g + g. Observ that
is a closed operator; thus

d{u,} {} x {g}.

We have the estimate

il{ui}llRMg , (2KMe-’) II{gJ}llz+tl{v,}tl

To prove uniqueness, we show that the only bounded and continuous solution of
(4.1), with {}x{g}=0, is {u}0. Assume the contrary; suppose at certain t, we
have 0 v Qiu(li), and I(I Q)u(t,)l IO’u(t)l, as the case I(i Q)u(
can be studied similarly. First, from Qu(ti) pi(ti)Qiu(ti) + P+(ti)Oiu(ti), applying
i to the equation, we have

thus

(4.5)

(4.6)

(4.7)

(4.8)

From (4.6) and (4.7),

From (4.5) and (4.8),

IOiu( ti)l IOiP+’( t)Oiu( ti)l <-<- MlP’(h)Qiu( ti)l;

1
[Piu+l(t,)vl >= -’ Ivl,

IP+’(t,)vl<-__Klvl,

P!+’ (ti)(l O’)u( ti)l--[(I O’)u(ti)l <= lvl,

]pi+( ti)(i Qi)u( ti)l 0,

IP.+’(h)u(t,)l <= (1 +

1
[pi,(ti)tt(t,) -- [vl.
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Using the relation T(t,+. t,)’P+l(t,)- Pi,+’(t,+l) and T(t,+l, t,)’P’.+l(t,)-
P(t;+l). and the exponential estimates, we have

]p+l(/i+1) (/i+1)] (1 + K)K
1

1
(4.9) ]Qi+lpiu+l( li+l)U( ti+l)l lpiu+l( ti+l)U( ti+l)l .--
(4.10) IQi+’P!+’(t,+,)u(t,+,)l<=MlP+’(t,+l)U(ti+,)l_<-_(l+K)KMe-lvl,

(4.11) (I Q,+l)p,+l(t,+l) u(t,+,) 0,

](I- Q+,)p!+l(t;+l) u (t+,)] M]p+I(t+l) u( t+,)[ (1 + K)KM e-]v],
From (4.9) and (4.10),

(4.12) Q+lu(t+,)le -(I+K)KMe

From (4.11) and (4.12),

(4.3) I(- +),(+)1 ( + K)KMe-lvI.
Since 2(K+I) KMe-"<I, (I+K)KMe-<(1/2KM)eL Therefore
(1/KM) e- (1 + K)MK e > (1/2KM) e > 1. We have obtained that
I+lu(+)leXlu()l with X>I. Now that
((1/KM) e -2(1 + K)KMe-)lvl 0, we can repeat the whole argument. Therefore,
Qu(() asj , contradicting the boundedness ofQ and u(t). This completes
the proof of {u(t)} =0, and whence the whole lemma.

Before we prove the nonlinear Shadowing Lemma, we need the following lemma.
LMa 4.2 (Inverse Function Theorem). Let X and Y be cwo Banach spaces. If

A" X Y is linear, A- Y X exiscs and is bounded with the norm A-I. Lee f" X Y
be C, f(O) 0,f’(0) =0. Also f’(x)l MlX, 1 > 0 iS a constant. en, for each y Y
with lyl 1 there exists a unique x e X such that y Ax +f(x), with
M;llA-I-. Moreover, Ixl 21A-ll

--1Pro4 Consider x A-ly A-f(x), the right-hand side maps x NM, IA-
into IXll Mla-’l- provided that lyl M’la--. And it is easy to verify that
xXl is a contraction of rate 5. Therefore, there exists a unique fixed element x x.
Moreover, Ixl la-l I1 + IA-11M1 Ixl la-’l I1 +121. Thus, Ixl lA-l I1.

Consider a nonlinear equation in N

(4.14) (t) =f(u(),

where fe C(N xR, N), Iflc. Assume that = U o<<m, [t_, t] is a partition
of N as in the beginning of this section and {u(t)} is a formal approximation of (4.14),
subordinate to the given partition, with

a( -f(u(, h(, e [-l,

Let A(t)=(u(t),t), t[t_,t] and T(t,s) be the solutions map of the linear
homogeneous equation

(4. 5 ( a(u( 0.
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THEOREM 4.3. For thepartition LJ mo<i<m [ti-1, ti] and the solution map Ti( t, s)
of (4.15), assume that the hypotheses (i), (ii), and (iii), as in the beginning of this section,
are satisfied. Suppose that , rl, e are positive constants with +(2K/a),/.<_-
-(4KM+ 1)- and e =M-(4KM+I) and suppose that II{h,}ll<= and

II(k,ll . en (4.14) possesses a unique bounded continuous solution u with
lu( t) ui( t)[ e Moreover

I1{ u u,} I1 2(4KM + 1)11{ h,} x { ki}

Proof Let u(t) u(t) + zi(t), t,_, t,]. We have to solve

i(t)-Ai(t)zi(t)= Ni(z)(t)-hi(t), t6[ti_, ti],

zi( ti) zi+,( ti) -ki,

where N(z)(t) =f(u,(t) + z,(t), t) -f(ui(t), t) Ai( t)zi(t). Equivalently,

d{z,} {Ni(z,)- h,} x {-k,}.

Applying Lemma 4.1, we have that d’ Y is one-to-one and onto with I1-’11
(4MK + 1). Observe that {N(0)} 0, D{N(0)} 0, and

< 1 --2From Lemma 4.2, foreach{h}x{k,} Ywithl}{h}x{k}[y=M (4MK+I) M,=
-1 --1(2K/a)M,, there exists a unique {z}e with I1{,}1 (4g + 1) Moreover,

We now indicate how Theorem 4.3 can be adapted to boundary alue problems
in finite interval or periodic systems in N.

First, consider the boundary value problem

(t)=f(u,t), aNtNb,

(4.16) Bl(U(a)) =0,

B2(u(b)) =0

where f: N x [a, b] , B,.N d-, and B2’ Nd+, d-+d+= n, are C2, bounded
functions with sup {Ifl, IB,, IB214 ,. Let M, =sup {,, (2K/a),}.

Suppose [a, b]=U,[t_,, t] is a partition of [a, b] and {u(t)} is a formal
approximation subordinate to this partition with

,(t)-f(u(t),t)=h(t), te[t_,,t], lNiNr,

u,(t,)- u,+,(t) k,, 1 r- 1,
(4.17)

B,(ul(a))=b,,

B2(u(b))=b2.

{h(t)}, {k}, b,, and b are residual, jump, and boundary errors, respectively.
Assume the B,x(u,(a))’N Nd-- is of rank d-. That is, YdB,x(u,(a)) is of

dimension d+ and Bx(Ul(a))’{YfBl(u(a))}zNd- is invertible, with the inverse
denoted by Bl(u,(a))-’. Let oe YfB,(ul(a)) and , {YfB,(u,(a))}. Consider

(4.18) B,(Ul(a)+ o+ ,)=0,
B,x(Ul(a))l + {Bl(Ul(a)+ 1)- Bl(U(a))- B,(u,(a)),}

(4.19)
-b, + B,(u,(a)+ ,)- B,(u,(a)+ o+ ,).
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Clearly, the term in { } is a nonlinear function in :, denoted by N(c), N(0)=0,
DN(0)=0, DN()<-_ M. And the right-hand side of (4.19) is bounded by Ib,l/
M,l:ol. It follows from Lemma 4.2 that there is a C function :1=*(:o), Io[-<
M B,x u, a ))-’11-=, which solves (4.18 ), provided that b =< 1/2M -’11B,x u, a ))-’11-=.
Let - 7*(0); then [[<-_2[[Bl(u,(a))-i[llb].

We can construct f(x) such that f(u(a)+sc-)=O, u(a)+ is a hyperbolic
equilibrium of the equation a(t)=f(u(t)), and the image of u=u,(a)+o+*(o)
with :o Y{B(u,(a)), tol <=MllB(u,(a))-’il- is the local unstable manifold. Such
a construction does exist and we shall not render it here.

Similarly, assume that B(u(b))’l-+[a/ is of rank d +. Let oY(B(u(b))
and sr {Y{B(u(b))}; then

B(u(b)+o+,)=O,
is uniquely solvable by a C2 function sr, rl*(Sro), I ol M-2llB2x(ur(b))-’l1-2, provided
that Ib21<-_kM-f’llB2(u(b))-’l1-2. Here B2x(ur(b))-’d+--->{ffgB2x(ur(b))}+/- is a right
inverse of B2(u(b)). Let ff=fff(0), 1211n2x(Ur(b))-llllb=l. We can construct an
autonomous ODE fi(t)=fz(u(t)) such that u(b)+ is a hyperbolic equilibrium and
the image of u ur(b)+ o+ (o) with o Y{B, (U(b)), lifo[ <’M1-2llB,(ur(b))-’ -=
is a the local stable manifold.

Consider a paition (-, a] (b, +) [ti_l, t]}; and an extended
system in "(4.20) a(t)= f(u(t), t),
where f(x, t) =A(x), (-, a), f(x, t)=f(x, t), [a, b] and f(x, t) =A(x),
( +). Let {u(t)), 0ir+l be a formal approximation of (4.20), with Uo(t)
u(a)+, u+(t) u(b)+ and u(t), 1 r being the previous formal approxima-
tion of the boundary value problem (4.16). We remark here that f(x, t) is only piecewise
C2 in (-, a)U [a, b] U (b, +). However, the proof of Theorem 4.3 shows that we
do not need the vector field to be C2 in the entire domain. We also observe the jump
errors Uo(a)(a)==O(b) and u(b)-u+(b)=O(b2). Let Ti(t,s) be the sol-
ution map of

ft(t)-A,(t)u(t) =0, ti-1, ti],

where Ai(t)=f(ui(t), t). Theorem 4.4 follows from an application of Theorem 4.3 to
(4.20).

THEOREM 4.4. Assume that (i), (ii), and (iii) are satisfied with mo= 0 andm r + 1,
Bx(U(a)) is of rank d-, and B2x(uz(b)) is of rank d+; ?TfBx(u(a))Ps(a)=
YdB2x(U,(h))@lP,(b)="; Q’"tfBx(U(a)+) with YfQ=P(a), and
Q’"--) P(b) with YfQ= YfB2,(u(b)+) are two projections with sup
QI, IQI, II-QI}<=M. Suppose that 6, , and el are positive constants with 6+
(2K/a)rl <-M-(4KM+ 1) -2 and e=1/2M-{(4KM+ 1)-, and suppose sup {]k/I}, 1
i<r-1}<6, sup{Ih(t) t, 1<i < ti]} < and Ibm[ < -==r, t[t_l, =7 =6/, 1 2, where C
2sup{llB,(u(a))-li, Then (4.16) possesses a unique solution u(t)
with ]u(t) u( t)[ <= e Moreover,

sup {lu(t) ut(t)i: 1 -_< r [ti_l, ti]}

<=2(4KM+l)(sup{C]bil, tk[" i= 1,2, 1 =<j=r-1}

+2K/ sup {lh,(t)l" 1 =< =< r, [t_, ti]}).
Next consider a periodic system of period to,

(4.21) ft(t)=f(u(t), t),
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where f(x, t)=f(x, t+to) is a C2 bounded function with [flc2<-_M. Let [0, to]=
U l_-<i=r [ti-l, ti] be a partition of[0, to] and {ui(t)} a formal approximation subordinate
to this partition, with

ft(t)-f(ui(t),t)=hi(t), t[ti_l,t,], l<-_i<-_r,

ui( t,)- ui+( t,) ki, 1 <- <-_ r- 1,

u(to)- u,(O) k.
Let T(t,s) be the solution map of O(t)-Ai(t)u(t)=O, t6[ti_, ti], where A()=
f(ui(t), t). We have the following theorem for the formal approximation {u(t)} for
the periodic system (4.21).

THEOREM 4.5. Assume that (i), (ii), and (iii) are satisfied with mo 0 andm r+ I.
Assume that P,(to)@P(0) =[". Let Qr.n _> pr(to be a projection with
P1s(O). Assume that [Qr <- m and [I- Qr[ <__ m. Suppose that 6, rl, and e, are positive
constants with 3 + (2K/a )rl <-" 1/4M-( (4KM + 1)-2, el 1/2M-(I(4KM + 1)-1 and suppose
that sup {Iki[, 1 <- <- r} <- 6 and sup {thi(t)t, 1 <= <- r, [ti_l, ti]} -< n. Then (4.21)
possesses a unique periodic solution u( t) u( t) + to), with [u(t) ui(t)[ <_ e. Moreover,

sup {lu(t)- ui( t)[" 1 <= <= r, ti_ ti]}

=<2(4KM+ 1)(sup {[ki]" 1 <_- i<_- r}+2K/a sup {]hi(t) i" 1_-< -< r, [ti-1, ti]}).

Proof Extend the formal approximation periodically to and apply Theorem
4.3. The bounded solution thus obtained is periodic, following from a uniqueness
argument.

5. Formal power series solutions and matching principles. We start with some
definitions that are slightly different from those in the statadard literature.

Let f(t, e) be continuous and defined on tJ and le[_-< Co, J is an interval in
bounded or unbounded, open or closed, and o> 0 is a constant. We sayf( t, e) O(e m)
if for any compact subinterval J1 = J, there exists a constant C(J) such that If(t, e)i <=
C(J1)[em[, J1. We say thatf(t, e)= o(e’) iff(t, e)/e" 0 uniformly in any compact
subinterval J, as e--> 0.

A format power series (in e) is a formal sum Y.=o #q(t); () is defined and
continuous in J. A formal power series Y’.=o #%(t) is an asymptotlc expansion of a
continuous function f(t, e) in J, ]el =< Co, if

f(t, e)- Y #%(t)= O(e"+) for all rn->0.
j=0

This relation is denoted by E{f(t, e)} =o #%(t), E is called the expansion operator,
and f is said to be in the domain of E, and shall be called an asymptotic sum of
=:o e%(t).

it is immediately obvious from Taylor’s formula that if each (Oi/Oei)f(t, e) exists
and is a continuous function of x e, then f(t, e) is in the domain of E. The following
lemma shows that E has a right inverse and is a generalization of a lemma of Borel
and Ritt. The proof shall be omitted.

LEMMA 5.1. There exists an (nonunique) asymptotic sum f(t, e), J, e for
each formal power series =o #%( t). Moreover, for each >- O, (c)/Oei)f( t, e) exists and
is continuous in and e.

Two functions, f(t, e) and g(t, e), both in the domain of E, are said to be asymp-
totically equivalent, denoted by f(t, e) g(t, e), if and only if E (f(t, e)) E (g(t, e)).
For any formal power series .:oe%(t), E-l(j:oe.’q(t)) forms a nonempty
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equivalence class and shall be denoted by [.ioeJpj(t)], or [f(t,e)] with fE
[E)o eJtPj( t)].

Let F(u, u2,’’’, Uk, t, e) be C in all the variables. Assume that f(t,e)---
gi(t, e) [.--o #j(t)], i= 1,..., k. Then

F(fl(t, e), ,fk(t, e), t, e) F(gl(t, e), gk(t, e), t, e).

Therefore,

F e@(t) ,.’., ep(t) ,t,e [F(f(t,e),’’’,fk(t,e),t,e)]
=0 =0

is well defined.
F JDEFINITION 5.2. Define (j=o e qj(t),. ., j=o eJq(t), t, e) as a formal power

series j=o eJg/j(t), which is the asymptotic expansion of

F([E)=o e o (t)],. , [j=o #q(t)], t, e). The relation shall be denoted by

)(5.1) F j e tpj(t)," E e"q;(t), t, e E eJd/j(t)
o =o =o

It is now clear that termwise summation and multiplication by scalar functions
of formal power series, as well as multiplication of two formal power series, can be
defined by using Definition 5.2. Moreover, if each oj(t)C, we define
d/dtYq=o#qj(t) defYj=o eJi(t). We remark here that this definition is not merely
formal, i.e., there exists at least one function f(t,e)_[Yq=o#q(t)] such that
(d/dt)f(t, e) [E-_-o ej(t)].

LEMMA 5.3. Each term (t) of (5.1) can be computed recursively by the following
equation"

(5.2) E eJqj(t) =F eJqj(t) , eJq(t), t,e +O(e"+’)
j=O \j=O j=O

for any ml, mk with mi >= m, 1 <--_ <--_ k.
Proof. By virtue of Lemma 5.1, we can choose f(t, e)[=oepj(t)], l<-i<-k.

Since oeqj(t)=f(t,e)+O(e’+), we have the right-hand side of (5.2)=
F(f(t, e)+ O(e"+), ,fk(t, e)+ O(e"+), t, e)+O(e"+) whence (5.2) follows by
the Taylor expansion.

We say that =o e"qj(t) formally satisfies an algebraic or differential equation
L(u, t, e)= 0 if L(.i:o eqj(t), t, e)= 0 in the sense defined as above. In this case we
call :o eqj(t) a formal solution of the algebraic or differential equation.

LEMMA 5.4. Ifj=O eJcpj( t) is aformal solution ofan algebraic or differential equation
L(u, t, e)=0, then :o eP(t) is a formal approximation of the solution of the equation
with the residual

L( eJj(t), t, e) =O(e’+).
j=O

Proof This is a direct corollary of Lemma 5.3.
Finally, for any .i=o eqj(t), we can define a change of variable to+ ez as

another formal power series denoted by

Z %() E (to+ ),
j=o j=o



SHADOWING LEMMA AND SINGULAR PERTURBATIONS 43

which is obtained by choosing an arbitrary f(t, e) [Yf=o eJqJ(t)] and expanding

E{f(to+ eT’, e)}= E ed/j(’)
j=O

Clearly the definition does not depend on the choice of f(t, e).
Throughout this section and 6, 3’ is a constant with 0 < y < < no.
5.1. Formal power series solutions in [t,_, t,]. Let {}jo be an arbitrary sequence

of real vectors. Consider the formal asymptotic expansion defined in Definition 5.2"

f e, t, e =f(Xo, , O)+ 2 e{f(Xo, , O)X + (X,..’, _,’..,
(5.3)

DDf(Xo, t, 0),...)},

where .( is a sum of multilinear functionals on X,. -, ._, each term has the form

o,offXo, , o)x, ,-,
zXjl

where i 0 is an integer, and k,. , k:_ and i are multi-indices, satisfying k +. +
k:_ i, lkl + 21k[ +" + (j 1)lk,_,l + i =j. Consider the recursive equations

(5.4)0 0 =f(Xo(t), t, 0),

_(t) =LfXof t), t, o).( t) + 6.(x( t), _,( t),
f5.4)

O,O,f(Xo(t), t, 0),...).

We shall solve the recursive system in [t_, t], 1i r. Let X(t)= p(t), which by
our assumption satisfies (5.4)o. Assume that X(t),..., X:_(t) have been computed,
and our assumption (H1) implies that there is a unique X.(t) satisfying (5.4): for

t_, t]. We shall show that =o eXj(t) is a formal solution of the equation

e(t)-f(X(t), t, e)=0.

Consider the formal power series

=o

j=l

,... ,. D2f(Xo(t), t, 0),...)},

which from our recursive equations is identically zero for t_, t].

5.2. Formal solutions for the bounda layers. The equation for the boundary layer
near a may be obtained by setting a + er. In the fast variable r +, (1.1) becomes

(5.5)
y’(r,e)=f(y(r,e),a+er, e), 0r<+,

B(y(O, e), e)=0.

Here we may assume that f(x, t, e) has been extended and defined for all a.
Consider the formal asymptotic expansion

f ey, a + er, e =f(Yo, a, O) + 2 e{f(Yo, a, O)y
(5.6)

=o

+y ...,_,,... o,o’,Df(yo, a, 0),...)}
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where Gi(y,,’", yg-,,’", D’DI2D3f(yo, a, 0),...) is a sum of multilinear func-
tionals on Yl,""", Y-I, each term has the form

(5.7)

where i2-----0, i3=>0 are integers, and i, kl,’’" and k._ are vector indices, with
k, +... + kj_, i,, Ikll / 2[kl /’" + (j- 1)lkj_ / i2 + i3 =j. Consider the recursive
equations

Y(’) =f(Yo(’), a, 0),

(5.8)j
Y.(’) =f(Yo(’), a, 0)yg(’)

i2+ G/(y(’),..., y._(r),..., D}D,.D(yo(’), a, 0),-..).

Equation (5.8).i is a linear inhomogeneous equation in y.(r) provided that
Yo(’),""", yj-(’) have been computed. We shall need boundary conditions for y.i(-)
at -= 0 and

Consider the formal asymptotic expansion

(5.9)

B, e-i)7., e B,(fio, 0)+ E e{B,x()7o, 0)/9j +/-/()7,, , )7./_, ,...
j=O j=l

DD#B,(9o, 0),...)}

where I-I(p, y_,- D)Di2Bl(yo,- 0), -..) is a sum of multilinear functionals
on 371,’’’, 37._, each term has the form

D Di#B .9o 0). "fi "ffJ-I
where i2 0 is an integer, and kl, , k_ and. i are indices, with k /" / kj_ i,
Ikll + 21k +" + (j 1)lk./_l + iz =j. Consider the recursive equations

(5.10)o B,(37o, 0) 0,

(5 lO)j B,x(o O)yj / nj(, fij_, DilD,..., ,.. B,(37o,0),...)=0.

The solution )7i of (5.10).i shall be the initial condition for (5.8), yj(’)l__o
Finally, we assume that

(5.1 1) y.i(r) ER+(O,j),

which is a growth condition for (5.8) at " +.
We now construct our formal solution i=o eY.7("r) of (5.5) as follows. First let

y(r) qo(r), which satisfies (5.8)0, (5.10)o, and (5.11)o by our hypotheses on qo(’).
Assume that yo(’), o,y_(’) have been computed, which satisfy (5.8)o-(5.8).i_1,
(5.10)o-(5.10)_1, and (5.11)o-(5.11)_. We show how (5.8).i, (5.10), and (5.11).)
uniquely determine y.(’).

To begin with, it is easy to verify that

0Gg(y(’), ,y.i_,(’) DD; ’3 oD2f(yo(’), a, 0),’’ .)6 ER+(0,j),

oby virtue of (5.7) and the assumptions on yl(-), , Y.i-(’). Observe that qo(’) -* P (to),
as ’ +, which is a hyperbolic equilibrium for (5.8)o. From the remark made after
Lemma 3.3, the solution mapping T(t, s) for the homogeneous part of (5.8), j>= 1,
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possesses an exponential dichotomy in [+, with the projections being P(s) and P(s).
Any solution of (5.8)j in Ee+(O,j) can be written as follows:

y(z) T(z, 0) o 0P.,.(0)yj(0) + T(’r, s)P(s)Gj(’’ .)(s) ds

(5.12)j
+ Joo T(r’ s)P(s)Gj(’" .)(s) ds.

We refer the verification of (5.12)j to Lemma 3.6(ii). From (5.12)j, we have
o(0 o oNow substituting yj P,(0)yj(0)

+ P(0)yy(0)into (5.10)j, we have

(5.13)j B,x(y(O), 0)P(0)y.(0) + Bl/(Yo(0), 0)P,(0)ys-(0) + H.(yl(0), ")=0.

Notice that P(O)@Y{B,,,(y(O),O)=N, by virtue of (H2). Thus, n(0)y(0) is
uniquely solvable from (5.13)j. By substituting into (5.12)j, y(r) has been completely

0determined. And yj(’) Ee+(O,j) by Lemma 3.6(ii).
It is straightforward to verify that the formal power series j=o eJYY(’r) thus obtained

is a formal solution for (5.5). We shall not render the details here.
We remark that ys.(-) is determined by the growth condition at T--+oO rather

than matching principles as commonly used. However, there is a matching of y.(’)
with outer layer that can be proved as the consequence of our construction and that
is useful in the sequel. Consider the inner expansion of the outer formal solution

(5.14)
=0 =0

It is easy to show that x.(-) is a polynomial of degree ---j. We can now state the
following result.

THEOREM 5.5. The formal solution Yj=o e"y(-) of (5.5), with yo(’)=qo(") is

uniquely computable from (5.8)j, (5.10)j, and (5.11)j reeursively. Moreover, we have
y.(’) x(’) E/(% j).

Proof. From (5.14) and the fact that j=o eJx)(t) formally satisfies (1.1) without
boundary conditions, we easily derive that j=o eJx() formally satisfies

y’(’) =f(y(’), a + e-, e).

Thus, x(-) satisfies (5.8)o (in fact, x(r)=pl(a)=const.), and x.(-) satisfies (5.8)j
0with (y,(r),’",yj_l(r))=(x(’),’",xj_,(r)). Assuming that y(r)-x(r)e

Ee+(T, K), 0<-_ k<=j 1, we consider the inhomogeneous equation for yy(r)-X(r)"
(y.(’r) x.(’r))’ +fx(y(z), a, O)(y.(Z) X.(’r))

{(fx(Y(’), a, 0)-fx(x(’), a, 0))xy(’)}
+ {Gi(y(’), ys-_,(’), D’DDf(yo(’r), a, 0),...)

-Gj(Xl(Z), x JtXot’), a, 0),...)}..1_1(,./.),... Di,D)Di3 o,

It is easy to verify from the specific forms of Gj(...) that the two bracketed terms
are all in Ee/(y,j) Ee+(0,j). Obviously, y.(z)-x(z) Ee+(0,j) and the
inhomogeneous equation (5.15) has a unique solution (z) Ee/(O,j), uniquely deter-
mined by setting P(O)(O)=P(O)(y(O)-x.(O)); in fact, ff(z)=x(z)-x.(z).
However, the inhomogeneous equation (5.15) also has a unique solution z(z) Ee/( 3’, J)
if P(0)z(0)= P(O)(y.((O)-x.(O)) is given. But z(z) Ee/(O,j), from the uniqueness,
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z(r) (r) y(r) x.(’). We refer the justification to Lemma 3.6(ii). Therefore,
y(r) xj.(7") 6 Ee+(y, j). [3

Similarly, we can derive the recursive equations for the formal series Y=o eY(r),
which formally satisfies the boundary layer equation at b,

y’(r, e)=f(y(’, e), b+ e’, e), -< ’<-0,

B2(y(0, e), e) 0,

which also satisfies a growth condition at r -, i.e., y(r) qr(7") En-(0, 0), y(r)
E-(O,j), j_-> 1. Moreover, if Y=o eJx(r)==o eXfi(b+er), we have yj(r)-xfi(-)
E-(%j).

5.3. Formal solutions for the interior layers. The equation for the interior layer at
ti, 1 =< -< r- 1, after setting ti + e-, becomes

(5.16) y’(r, e)=f(y(’, e), ti+e’, e), -<

where we may assume that f has been extended to all It.
Suppose that Y=o e yj(’) is a formal solution of (5.16), we have y(r)=

f(y(r),ti, O). We also assume that y(’)-pi(t) as -- and y(r)pi+(ti) as
+. Therefore, from our assumptions on q(r), we may set y(r) q(r+ ), where

is a parameter to be determined. Equivalently and more conveniently we shall assume
that =o e y(r) is a formal solution of

(5.17) y’(r, e)=f(y(r, e), ti + e(r+ ), e),
with y(r) q(r). We assume that E((e)) .i:o #%. Consider the formal asymptotic
expansion

f eyi, t+e r+ eJj ,e
o o

f(Yo, t, O) + , e {f (Yo, ti, O)yj +f(Yo, t,, O)_,
j=l

+ L(yl, y_, to,’’’, )_, D}D’D}f(yo, t, 0),...)}
where L(...) is a sum of multilinear functionals on y,..., Yj-1, ’o,""", Tj-2, and
each term has the form

(5.19) D’O’2Df(yo,
where i2, i3, /o," ", /j- are nonnegative integers; i, k,..., k_ are multi-indices
with k +. .+ ku_= i, Io+" "+1_,= i2, lk,l/21k21/" "+(j-1)lk_l+ lo+ l +212+
..+(j-1)!i_+i3=j.

Consider the recursive equation

yfi(r) f(yo(r), t,, O)y(z)+f(yo(r), t,, O)r.i_
(5.20)j

", ," f(Yo(r), t,, 0),...)+ Lj(yl(r),’" yj_(r), ro r_, ",

for j 1 with the growth condition at z +

(5.21) y(’) En(O,j).

We also require that

(5.22)j yj(O) _t_ q(O),
since the perturbation in the tangential direction of the orbit of q(’) has been taken
into account by =o e rj. We claim that yo(r) y(r) q(r) and (5.20)j, (5.21).i, (5.22)
uniquely determine {’}=o and {yj(-)}=. Suppose y’k(r), 0<---- k<=j 1 and ’k, 0 <-- k =<
j-2 have been computed and satisfy (5.20), (5.21)k, 1--<_ k<=j 1. Then from (5.19)
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we easily conclude that

L.(’,(,) -,(,), ,o, ,-, Df(yo(7.), ti, 0) ...) E(0, j)

Consider (5.20)j as an inhomogeneous equation in y(7.). Since qi(7.)->p(ti) as 7.-->

and qi(7.)->pi+(ti) as 7.->+, from Lemma 3.2, the linear homogeneous equation
corresponding to (5.20) has exponential dichotomies in R- and R/. Our assumptions
imply that "E(0,j)-> E(0,j), defined as (y)(z)=y’(r)-f,(qi(z), t,O)y(r),
is Fredholm with index if=0. Since dim Y{ff= 1, we have dim Yg’* 1, and Y’ff*
is spanned by q,(z) by our assumptions. Now Lemma 3.7 implies that (5.20)i is
uniquely solvable if and only if

{I_ooP* (a’)f(q(a’), ti, O) dz} a-
(5.3b

+ q’*i(7.)Li(y,(7.),’", yj-,(7.), 7.o,""", 7.j-2,"" ") d7.:0

for j->l and the solution yj(r) is in the codimension one subspace
{y(7.)ly(O)+/-q’(O)}, which is complementary to Y’. From hypothesis (H3), r_ is
uniquely solvable from (5.23). Once (5.23) is satisfied, from standard property of
Fredholm operators, y(7.)7]i is uniquely determined by (5.20) and (5.21)j. See
Lemma 3.7.

The proof that =o eY(Z) and .=o e zj formally satisfy (5.17) is straightforward.
Similar to the boundary layers, y.(7.) is determined by the growth condition (5.21

rather than by matching principles. However, the match of yj(7.) with the outer
expansion can be proved as a consequence of our construction. Consider the inner
expansion of the outer formal solutions

eJxj,,(7.) eJx. ti+e 7"+ 2 eJ
=0 =0

(5.24)
j=o

i(i/lE e Xj,2(7.) E e,.j ti+e 7.+ E ej
j=o j=o j=o

,," +We assume that each X(t),. (t) has been extended C to teE. However,
(7.)}.j=o and {x,2(7.)}=o do not depend on the extension, xj,(7.) and Xj,2(7.) are, in

fact, polynomials of degree =<j. It is easy to see that =o ex,(7.)i or j=o eJxj,2(7.),
with " j=o e 7., formally satisfies (5.17). We can now state the following result:

THEOREM 5.6. Theformal solution =o e y(7.) and =o e 7. of (5.17) with y(7.)=
qi(7.) is uniquely computable from (5.20)j-(5.22) recursively. Moreover, yj(7.)-x,(7.)
En-(T,j) and y!(7.)-xj,(7.) E+(T,j)

Proof We shall show that yi(7.)-X,z(7.)E+(y,j). Clearly, for j=0, y(7.)=
q(7.) pi+,( t) Xo,2(7.) as 7. +o exponentially fast as does e-r. Assume that yi,(7.)
xi,,2(7.) En+(T, k), O<-_k<=j-1. Since both y.(7.) and x,(7.) satisfy (5.20)j, it follows
that the inhomogeneous equation for y.i(7.)- xj,z(7.) is

(yj(7.)-xj,(7.)’-f(y(7.), li, O)(y(7.) x,2(7.))
{fx(Yo(7.), li, O)-f,, 0)}Xj,2(7.(X0,2(7.), ti,

+ {f, (YD(7.), ti O) --ft (X0,2(7.) ti 0)} 7.j--I
(5.25)

", e"f(Y,o(7.), ti, 0),"" ")+{L(y’(),.. y._(r), ’o, r._a, .,D;D’?d’
L(x,,(),..., x_,(), o," , .,-, ,

D, Df(Xo,(7.) t,, 0),’’ ")}.
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From the specific form of Lj(. .) and the assumptions on y(7")--Xk,2(’r), 0<= k<=j 1,
it is clear that the right-hand side of (5.25) is in E+(y,j)c E+(0,j). Moreover, we
have that yj(z)- x_2(z) En+(0,j). Arguing as in the proof of Theorem 5.5, we infer
that yj(r) x,2(r) E+(y, j). D

Remark 5.7. It is of interest to compare our method with the classical matching
principles (see Eckhaus [5]). For all the boundary layers and interior layers, we have
merely imposed growth conditions on y.(z), 0_<-i_-< r. The limiting behavior y)(z)-
x(r) E(y,j) is proved as a consequence but not a constraint.

However, there exist overlap regions and the intermediate variable can be (t-
ti)/e, for any 0</3 < 1, in a neighborhood of ti in [a, b]. Also, the asymptotic matching
principle, using the notation of Eckhaus [5],

EE’x(t, e)= TE’Ex(t, e)

is satisfied, for all m->_ 0, n->_ 0 integers. The proof is straightforward, though tedious.
The uniformly valid composite expansion is

j=O =0 j=O

t=a+er

in a neighborhood of a in [a, b].

6. Proof of the main results. In this section, 7 is a constant with 0 < 7 < a < ao.
Proof of Theorem 2.1 The construction of the formal solutions :o

1-<i <-- r and j=o eJyj(i ,1.), ;--< __<-- r is given in 5. In particular, see Theorems 5.5 and
5.6. Consider the formal approximation x(t, e) obtained piecewise from the truncations
of those formal.solutions as in Theorem 2.1. The estimates for the residuals of the
outer approximations in [ti-1 + e, ti-e], and boundary errors at a and b,
follow from Lemma 5.4. For the residual in the boundary or interior layer, Lemma 5.4
does not offer a uniform estimate. Consider the boundary layer at a, in the fast
variable r. We need an estimate for (Yg=o e2Y(r))’-f(Yq=o eJY(), a + ez, e), O z-<-
e t--1. From Taylor expansion and (5.6), (5.7), (5.8).i, we find that the residual is
O(supo-, (ez) "+1) O(e(m+)). Similarly, we can show that the residuals for all
the interior layer approximations are O(e+)). For the jump errors at t + eta, assume
that To > 1 is a constant such that [z[ < To- 1, =< =< r- 1, then [E m-lj=O ei’2[ =< To if e

is small. Consider the jump error at t e 1<’<-t=r 1. We need an estimate for

j=o eX.(t)_=o e.y(r) at i= et where t-ti)/e+ jm=-o e izj. Let {x,(z)}"=oi
be as in 5. We have

j=o =o
<=C

j=O

C e

_-< C e-/2- O(e m+),

EN-( ’)/,forlz[>=e--To. Herewehaveusedthefactthat yi(z)-x,,(z) j). Moreover,

0 0
C[ET] m+l

<__ Ce(m+)
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for It- til =< e t and [rl N et- + To. Thus, the jump error is O(e(m+)), 0</3 < 1. The
other cases may be treated similarly.

Proof of Theorem 2.2. Our main tool is Theorem 4.4. We shall study the formal
approximation x(e% e), which is defined piecewise by a change of variable from

Y.i=0 eXj(t), l<=i<=r or j=o e yj(T), O<--i<-r, and which is presented in the fast
variable -= t e, ’ [a/e, b/e]. The proof is divided into several steps.

(1) In each subinterval, the residual error is

x( e’, e)’-f(x( e% e), ez, e O( e t(

The boundary errors are B(x(e. a/e, e), e)= O(e re+l) and B2(x(e" b/e, e), e)=
O(e"+). Moreover, the jump error at (ti+e)/e, ONiNr-1 or (ti-et)/e, l<=r<--r
is O(e("+l)), 0</3 < 1. These are the consequences of Theorem 2.1 since change of
variable from to - does not affect these errors.

(2) For te[ti_+e,ti-et] or ’e[(ti_+e)/e, (ti-e)/e], x(e’,e)=
=o eXj(e’). The homogeneous linear variational equation around x(e% e) is

(6.1)

Comparing this with

(6.2)

z’()-L ( xj(), , )z()=0.j=0

we find that the coefficients differ by O(e). We now apply Lemma 3.3 to (6.2). From
(H1), for each fixed % (6.2) is hyperbolic with the dimension of the stable space being
d- and unstable space d +. Also (O/O’)fx(pi(e’),eT, O)=O(e). Therefore if e is
sufficiently small, (6.2) has exponential dichotomy in [(ti_ + et)/e, (ti-et)/e], with
the projections P (r, e) and Pu (% e) approaching the spectral projections of the matrix
fi(pi(er), e’,.0). Also the constant K is uniformly bounded and the exponent c
approaching ao as e-->0. It is clear from Lemma 3.2 that (6.1) also has exponential
dichotomy in the same interval as (6.2) and with the projections Ps(’, e), P,(-, e)
approaching the spectral projections offi (p(eT), er, 0) and with K uniformly bounded
and a -> ao as e --> 0. We may notice that Lemma 3.2 is stated for semi-infinite intervals.
However, we can extend (6.1) and (6.2) so that Lemma 3.2 applies.

(3) The extension of f(t, x, e) to f(t, x, e) seems to be essential in the sequel. For
1-<_i=< r-1, extend the definition of f(t, x, e) in a neighborhood of ti to e as

f(x, t, e)=( --/ f(x, t, e)+ 2 ---/ f(x, t+3p, e)

(6.3)
t- ti\

h-3 ----)S(x, ti 3p, e)

where f(t), 0<-fi(t)-< 1, i=1,2,3 is in C(), with f(t)= 1 for Itl2, ,(t)=O for
Iti3; (t)= 1 for t3, 2(t)=0 for t2; and 3(t) (-t). Here f also depends
on and p; for simplicity, we drop these dependencies. For i= O, we define f(x, t, e)
for a only and for r, we define f(x, t, e) for b only. Both are similar to (6.3)
with obvious changes.

We shall also. modify y.j() to fj(z), j 1. For 1 r- 1, and j 1, let

y3(r) + g2 y.; + 3 y.;

z’(r)-fi(p,(er), er, 0)z(r):0,

follows"
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For i= 0, j _-> 1, 9(’) is defined for r->_ 0 only and for i= r, y-r(r) is defined for r 0
only. Both are similar to (6.4) with obvious changes.

Finally, let 37(r) y() q,(r), 0 r.
(4) For t[a, a+e] or z[a/e, (a+e’)/e], in which x(er, e)=

:0 eY(r-a/e) is a perturbation of qo(r-a/e). We know that

(6.5) z’(r)-f(qo(r-a/e), a, 0)z(r)=0

has exponential dichtotomy in [a/e, +). Comparing it with

(6.6) z’()-f ( ey(r-), er, e)z(z)=O,
j=0

we find that the coefficients differ by O(p + e). Choose p + e sufficiently small. Then
from Lemma 3.3, (6.6) also has exponential dichotomy in [a/e, +), with projections
and exponent close to those of (6.5). With p fixed, if e is sufficiently small, e< p,
0<fl<l. Thus, in [a/ e, (a + e)/ e],

j=0

also has exponential dichotomy. Moreover, the projections at (a+e)/e, P((a+
e)/e, e) and P,((a + e)/e, e) are close to the spectral projections ofZ(p(a + e), a +
e, 0), if we let e be sufficiently small. We also infer that

P(a/e, e)Y{B,(x(a, e), e)="

with the angle of the two subspaces being bounded away from zero as e 0. Here
hypothesis (H2) is employed.

Similarly, the homogeneous linear variational equation around x(er, e),
[(b-e)/e, b/e] has exponential dichotomy in that interval with projections at one
endpoint P((b-e)/e, e) and P,((b-e)/e, e) close to those of the spectral projec-
tions offx(pr(b-e), b-e, 0), if e is sufficiently small. Moreover,

P.(b/e, e)fffB2x(X b, ), e)=",

with the angle of the two subspaces being bounded away from zero as e - 0, by viue
of (H2) again.

(5) For te[t-eo, t+eo], or r[(t-eo)/e,(ti+eo)/e], in which x(er, e)=
Ej=o e’yj( r ti/ e EZ’ e r) is a perturbation of q(r-t/e- to). We first prove that
the homogeneous linear variational equation around x(er, e) has exponential
dichotomy in [(t-eo)/e, t,/e] and It,/e, (t+e)/e], with projections P(r, e) and
Ps(r, e) close to the spectral projections of f(x(er, e), er, O) at (t-eo)/e and (t+
e)/e. It is convenient to make a shift in r. Comparing in r e ,
(6.7) z’(r)-fx eJfj(r), ti+e r+ E eJ ,e z(r)=0,

j=o =o

with

(6.8) z’(r)-f(q,(r), t,, 0)z(r)=0,

we find that the coefficients differ by O(p + e). Since (6.8) has exponential dichotomies
in E- and E+, so does (6.7), provided that p + e is sufficiently small. Moreover, the
projections Ps(’, e) and Pu(r, e) corresponding to (6.7) are close to those of (6.8).
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Our next step is to use Lemma 3.10 to show that /su(0-, e)03/5(0+, e)=R
with O(Pu(O-,e),ff’s(O+,e))>-Clel, C>0 is a constant, provided that 0<e-<eo,
eo > 0 being a small constant.

Let g > 0 be a small and fixed constant and consider p p(g) g, 0 </3 < 1 and
0_-< e _-< g. Let Ai(r, e)=fx(2"-o eJ)7j(r), tint- e(’r2.7=;’ #rj), e). We observe that
Ai(r, e) is C1/1 in e and uniformly bounded in r, (O/Oe)Ai(’, e) E(O, 1). Moreover,
A(r, O)=f,(q(r), t, 0). From our assumptions on q(r), the only bounded solution of
(6.8) is (r) q(r), up to a scalar factor. Let 0(r) be the only bounded solution, up
to a scalar factor, of the formal adjoint equation of (6.8). To apply Lemma 3.10, we
have to show that

def ff 0

Oe

Ai(r, O)=fxx(qi(r), ti, O)fi(r)+fxt(qi(r), t, O)(r+r)+fx(q,(r), ti, 0).
Oe

Let be an arbitrary parameter, we have

+f,(q,(r+ ),t,, 0)(r+ r+ r)+f(q,(r+ ), t,, 0)]

q’(r+ ) dr I1 + 12,

i1 0(7+ )
0 [fx(qi(7 + e), ti, 0)yil(7+ e)

+(qi(+ e), t,, 0)(+ +,) +f(q,(+ e), t,, 0)]

’(r+ e)’ }-fx(q,(,+ ), t,, 0)yl -(q,(,+ e), t,, 0) d,.

From (5.20), y(r)’=f(q(r), t, O)y’l(,)+f,(q(), t,, 0)(+,)+2(q(,), t, 0),
we have that

I, /2(r+){ i(7+)’-(qi(7+ t,,0)}dr.y,(,+ e) -f(q,(,+ e), t,, 0)y,

However, S(r)=(O/O)yl(+)-f(qi(r+), ti, O)y,(r+)’ is in the range of the
Fredholm operator z z’(r)-A(r+ )z(r), therefore I (r+ )S(r) dr=O. And

l,=-f (r)(q,(), t,,0)dr#0

by viue of (H3). Consider

h (+ e)fxx(q,(,+ ), t,, 0){’,( + e)-yl(+ et d

(g)/g

0 as gO,

since () C e-11 and p(g)/g as g O. Therefore, for g suciently small,
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Strictly speaking, the entire equation, (6.7), depends on g, i.e., it should be written
as

z’(’r)-A(7", e, g)z(7")=0.

The projections P(-, e, e) and P,(z, e, g) also depend on g. From Lemma 3.10,

(6.9) 0(/5 (0+

the constant C (g) > 0 also depends on g. Suppose we can prove that there exists eo > 0
such that for all 0 < g =< o, C(g) >_- C > 0, and (6.9) is valid for all 0 < e Co, the desired
results can be obtained by setting e g in (6.9). Here we refer back to the proof of
Lemma 3.10 and make the folloWing observations. If Co> 0 is sufficiently small, and
0 -<- g-<-eo, then (i) the unique solvability of (3.3) for [e[-eo does not depend on g;
(ii) the estimates fi(e)= O(e),
(iii) we have shown that 1_ q(’)(O/Oe)A(z, O, g)o(z)[_-> 111]/2> 0 uniformly with
respect to g; and (iv) from (3.4) O(e)/Oe-Oa(O)/Oe O(e), uniformly with respect
to g. Thus the dependence of g of the equation (6.7) does not matter. Let us now
consider the restriction of (6.7) on [-e/3-1 -"j=om-1 j E/3-1 m-1

e , -E=o erj] If eo is small
and 0 < e g Co, then j=o

ej <=To<-e/3-and

e ,e =f e’yj(.r), t,+e ’+ml 6Jzj ,
=0 =0 =0 =0

This completes the proof that the linearization around x(er, e) has exponential
dichotomies in [(ti-e/3)/e,t,/e] and [ti/e,(t+e)/e], respectively. Moreover,
o(P=(( t,/e)-, ), P,((t,/e)+, e))- clel, and the projections are close to the spectral
projections of f,,(x( er, e ), er, 0) at

(6) To complete the proofofTheorem 2.2, we shall recall the main facts concerning
the formal approximation x(er, e), which is defined piecewise in 2r+ 1 subintervals
of [a/e, b/el. The residual and the jump errors are O(e’+1)). The boundary errors
are O(e’/l). We may further divide each interior layer into two and make the total
number of subintervals into 3r, i.e.,

i=1 E E E E

The homogeneous linear variational equation around x(e% e) has exponential
dichotomy in each subinterval as has been proved in (2)-(5) of this proof. We also
know that the constants K and a, for all the subintervals are uniform with respect to
0 =< e =< eo, The projections P(’-, e ), P(’-, e), P(’+, e and P(r+, e ), at the common
points =(t_+ea)/e or r---(t,-e/3)/e, are close to the spectral projections of
f(x(e, e), e, ) provided that eo is small. Therefore 0(P(r-, e), P(r+, e))_->
C, C > 0 is a constant. Our result in (5) also shows that O(P(-, ), P(r+,’e)) =>
Clel, C> 0 is a constant for all the common points r t,/e, 1,’ , r- 1. Let Q(r)
bc the projections "- p(r-, e), parallel to P(r+, e), hcrc r is one of the 3r-1
common points of the 3r subintervals, then [Q(r) O(1/e), 0< e <_- Co. We also know
that O(Y{B,(x(a, e), e), P(a/e, e)) and O(Y{Bx(x(b, e), e), P,(b/e, e)) are
bounded away from zero, uniformly with respect to 0 < e _-< Co. Define the projections
Q(a/e)’l"Y{Bx(X(a,e),e), Y{Q(a/e)=P(a/e,e) and Q(b/e)’"-*
P,(b/e, e), ?KQ(b/e)=Y(B,,(x(b, e), e). It is clear that Q(a/e) and Q(b/e) are
bounded uniformly with respect to 0 < e _-__ Co. Finally, the length of each interval is
no less than e/3- >_- e-. For the time being, suppose/3(m + 1) > 2. It should be clear
that if eo is sufficiently small, all the assumptions of Theorem 4.4 are satisfied, in



SHADOWING LEMMA AND SINGULAR PERTURBATIONS 53

particular, Ii-11 o(1/e) and e</>--o(11-11-=), Therefore, we obtain a unique
solution Xexact(ET’, E) in a neighborhood of the orbit of x(e’, e). It follows from the
estimate in Theorem 4.4 that

(6.10) sup [Xexact(ET" e)-x(er, e)]}= O(e(m+l)-l).
r[a/e,b/e]

We now consider Ix(r, e)- (-, e)i where (r, e) is the composite expansion in (2.5).
i--1For t[t_+e,t-e], by virtue of the fact yj--x, Eu+(%j) and y-x,

Ea-(%j), Ix(r, e)-(r, e)[ O(e+). For [t_, t_ + e] by viue of the fact

=0 =0 8 j=0

j =o j=o =o

Ix(r, e)-g(r, e)l= O(e+)). This is similar for t[t-e, t]. Therefore

(6.) sup (IXexat(r, )--(,

Recall that our approximations x(r, e) and g(r, e) depend on m, and should be
denoted by x(r, e, m) and 2(r, e, m). For any m 0, we can always choose m > m
such that (m+ 1)-1 m + 1. It is easy to see that

Ix(t, , m)-x(t, , m,)l= o(+’)),
I(t,

We now apply (6.10) and (6.11) to x(t, e, m) and (t, e, m), and the desired esti-
mates in Theorem 2.2 follow easily.

The proof of Theorem 2.3 uses Theorem 4.5 and is analogous to those of
Theorem 2.1 and 2.2. Details shall be omitted.
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