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Abstract

∼ For a singularly perturbed higher dimensional system, we de-

scribe a general method to construct periodic orbits and study

their asymptotic expansions.

∼ Using the slow and fast variables and letting epsilon goes to

zero, two kinds of limiting system can be derived. One is the slow

system the other is the fast system.

∼ Dynamics on the slow or fast system is of lower dimensional and

usually easier to study.

∼ If one can find ”singular orbits” on the two limiting systems

and piece them together to form a ”singular” periodic orbit, then

under some general transversality conditions one can show that

for small, nonzero epsilon the system also has a periodic orbit.

“Heteroclinic Bifurcation and Singularly Perturbed Boundary Value

Problems”, JDE 1990
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Why should we study singular perturbation problems?

(1) In many physical and biological systems, small and

large scales of variables naturally occur.

(2) Reduction to lower dimensional systems.

(3) Study a complex system by localization.

(4) Study the solutions by linearization.

(5) Approximation of solutions by asymptotic series,

using a similar linear system.
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FitzHugh-Nagumo equaton with a small parameter:

ǫut = ǫ2uxx + f(u) − w,

wt = u− γw.

Traveling wave solution of the FitzHugh-Nagumo equation, with

the waves speed θ > 0, satisfies

ǫu̇ = v,

ǫv̇ = θv − [f(u) − w],

ẇ = θ−1(u− γw).

f(u) = −u(u− b)(u− 1), 0 < b <
1

2
.

This is called the slow system where u̇ = du
dt .

Zoom in, t = ti + ǫτ to catch the fast motion at t = ti:

u′ = v,

v′ = θv − [f(u) − w],

w′ = ǫθ−1(u− γw).

This is called the fast system where u′ = du
dτ .
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The slow flow on the cubic curve and two fast jumps that are

saddle – saddle connections.

Assume that u = γw intersects w = f(u) only once.
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The slow system describe the motion in regular layers where (u̇, v̇, ẇ)

are bounded as ǫ→ 0.

The fast system describe the motion in singular layers, or internal

layers where (u̇, v̇) are O(1/ǫ).

In the singular limit ǫ = 0, the motion in regular layers satisfies

0 = v,

0 = θv − [f(u) − w],

ẇ = θ−1(u− γw).

The first two equation define the slow manifold, u = f−1(w). It

has three branches: S1,S0,S2.

S1,S2 are hyperbolic center manifolds. The flow on the slow man-

ifold is

ẇ = θ−1(f−1(w) − γw).

dw/dt changes signs across u = γw.
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In the singular limit ǫ = 0, th motion in singular layers satisfies

u′ = v,

v′ = θv − [f(u) − w],

w′ = 0.

w = wi := w(ti) appears as a constant.

Reduce to a two-dimensional system

u′ = v, v′ = θv − [f(u) − wi].

The equilibrium points are on the slow manifold (u, v) = (f−1(w),0).

∼ For each w̄ < w < ¯̄w, f(u) − w has three zeros,

u1(w) < u0(w) < u2(w).

The u1 and u2 are saddle points on S1 and S2.

For each fixed θ, we look or saddle to saddle connections by ad-

justing w.
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Lemma 1 There is θ0 > 0 such that for 0 ≤ θ ≤ θ0, the (u, v)

system has a unique hoteroclinic solution connecting (u1(w),0) to

(u2(w),0) if w = w1(θ). The function w1(θ) satisfies w1(θ0) =

0, w′
1(θ) < 0. w1(0) satisfies the equal-area principle

∫ u2

u1

(f(u) − w1(0))du = 0.

Also for 0 ≤ θ ≤ θ0, the (u, v) system has a unique heteroclinic

solution connecting (u2(w),0) to (u1(w),0) if w = w2(θ). w
′
2(θ) >

0 and w2(0) = w1(0) (equal area line).

(At θ0, w1 is the lowest and w2 the highest.)

proof: Three methods:

(1) Compute w1(θ) explicitly, Casten, Cohen and Lagerstrom.

(2) It is a Hamiltonian system when θ = 0.

Phase plane analysis can be used when θ 6= 0.

(3) Melnikov’s method can be used to compute w′
j(θ).

Then a homotopy method can be used to continue the solution

to θ > 0. qud
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For each θ, w1(θ), w2(θ) are take-off points on the slow manifold

for the heteroclinic connections from one branch to another.

Fast and slow singular orbits form a closed loop.

We can show that when ǫ is small, there is a periodic orbit near

the union of the singular orbits.
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For a given (θ̃, w̃), let (ũ(τ), ṽ(τ)) be the unique heteroclinic orbit.

For any (θ, w) near (θ̃, w̃), the heterolinic orbit may break. The

gap between the unstable and stable manifolds is G(θ, w). To have

a heterolinic orbit, we need

G(θ, w) = 0.

Implicit function theorem can be used to locally solve G = 0 as

w = w∗(θ). Let the vector field be F . Then

F =

(

u′(τ)
v′(τ)

)

,
∂F

∂θ
=

(

0
ṽ

)

,
∂F

∂w
=

(

0
1

)

.

Melnikov’s integrals, cf. Guckenheimer and Holmes, θ = tr(A),

generalized to Rn by Ken Palmer, 1984:

∂G

∂θ
=
∫ ∞

−∞
e−θτ(F ∧

∂F

∂θ
)dτ =

∫ ∞

−∞
e−θτ(ṽ)2dτ > 0,

∂G

∂w
=
∫ ∞

−∞
e−θτ(F ∧

∂F

∂w
)dτ =

∫ ∞

−∞
e−θτ ũ′(τ)dτ

> 0 if u(−∞) < u(∞), < 0 if u(−∞) > u(∞).

∂w∗

∂θ > 0 if jumps to the left, ∂w
∗

∂θ < 0 if jumps to the right.
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Conditions that ensure the existence of an exact peri-

odic orbit for ǫ 6= 0 near the singular orbits:

(H1) The slow manifolds S1,S2 are hyperbolic with the

same dimension of unstable index.

∼ This can be verified by computing eigenvalues on

slow manifolds.

(H2) ∂wG(θ, w) 6= 0 at the take-off points w1(θ), w2(θ).

(H3) The flow on the slow manifold cross the take-off

points transversely.

∼ This can be verified by dw
dt 6= 0 at the w = wj(θ).
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Formulation of pseudo-orbits

In regular layers, the ith solution between take-off points wi and

wi+1:

Zi = (U, V,W ) that satisfies

U = f−1(W ), V = 0, Ẇ = θ−1(f−1(W ) − γW ),

solution: Zi(t), ti ≤ t ≤ ti+1,W (ti) = wi,W (ti+1) = wi+1.

In singular layers, the ith solution between Si and Si+1:

zi = (u, v, w) that satisfies

u′ = v, v′ = θv − [f(u) − wi], w = wi,

solution: zi(τ, wi), −∞ < τ <∞,

zi(−∞) = (u−(wi),0, wi), zi(∞) = (u+(wi),0, wi),

zi(0+, wi) − zi(0−, wi) = Gi(θ, wi).

zi is a pseudo-heteroclinic solution. To have a true heteroclinic

solution, need Gi(θ, wi) = 0.
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Let 0 < β < 1. . For ǫ > 0, small, defined the approximations:

In regular layers, the intermediate variable ǫβ → 0, ǫ→ 0.

Zi(t), ti + ǫβ < t < ti+1 − ǫβ,

Wi(ti) = wi, Wi(ti+1) = wi+1.

In singular layers, ǫβ−1 → ∞, ǫ→ 0.

zi(τ, wi), −ǫβ−1 ≤ τ ≤ ǫβ−1,

τ = (t− ti)/ǫ, ti − ǫβ ≤ t ≤ ti + ǫβ.
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The union of fast and slow orbits

(z1, Z1, z2, Z2)

are approximations of a closed orbit in the sense: check!

(1) The residual errors are small in regular and singular layers.

Hi(ǫ) =







ǫU̇ − V
ǫV̇ − θV + f(U) −W

ǫẆ − ǫθ−1(U − γW )






.

hi(ǫ) =







u′ − v
v′ − θv+ f(u) − w

w′ − ǫθ−1(u− γw)






.

(2) The jump errors are small between regular and singular layers.

Ai = zi(ǫ
β−1, wi) − Zi(ti + ǫβ),

Bi = Zi(ti+1 − ǫβ) − zi+1(−ǫ
β−1, wi+1).

Hi(ǫ), hi(ǫ), Ai, Bi → 0 as ǫ→ 0. Why?

Add correction terms to eliminate errors:

zi + ∆zi, Zi + ∆Zi, ti + ∆ti.
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Let Z = (Y,W ), z = (y, w) where Y, y ∈ R2. The corrections

satisfies:

∆Yi(τ)
′ = F(Yi + ∆Yi,Wi + ∆Wi) −F(Yi,Wi) −Hi1,

∆Wi(τ)
′ = ǫG(Yi + ∆Yi,Wi + ∆Wi) − ǫG(Yi,Wi) −Hi2,

∆yi(τ)
′ = F(yi + ∆yi, wi + ∆wi) −F(yi, wi) − hi1,

∆wi(τ)
′ = ǫG(yi + ∆yi, wi + ∆wi) − ǫG(yi, wi) − hi2.

Try to simplify:

∼ In singular layers

∆yi(τ)
′ −F i

y(τ)∆yi(τ) −F i(τ)∆wi(τ) = −hi1 + h.o.t.

∆wi(τ)
′ = −hi2 + h.o.t.

Can solve ∆wi then solve for ∆yi.

∼ In regular layers, cannot drop ǫG terms. WHY?
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Using W = W̄ + ǫω as time:

dU

dω
=

V

θ−1(U − γ(W̄ + ǫω))
,

dV

dω
=
θV − f(U) + W̄ + ǫω

θ−1(U − γ(W̄ + ǫω))
.

This is a slow varying system. The linear variational system at

each fixed W̄ and at V = 0, U = f−1(W̄ ) is hyperbolic. For small

ǫ it has an exponential dichotomy on each regular layer.

d∆Ui
dω

= F i
1u∆Ui + F i

1v∆Vi = −hiu + h.o.t.

d∆Vi
dω

= F i
2u∆Ui + F i

2v∆Vi = −hiv + h.o.t.

Integral formuals can be used to write solutions (∆U(ω),∆V (ω)),

then solve for ∆W (t).
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To cancel out the jump errors, we adjust the interval (ti, ti+1):

Ai = zi(ǫ
β−1, wi) − Zi(ti + ǫβ),

Bi = Zi(ti+1 − ǫβ) − zi+1(−ǫ
β−1, wi+1),

∆Zi(ti + ∆ti + ǫβ) − ∆zi(ǫ
β−1) = Ai,

∆zi+1(−ǫ
β−1) − ∆Zi(ti+1 + ∆ti+1 − ǫβ) = Bi.

Linearization:

∆Zi(ti + ǫβ) + ∆tiFi(ti) − ∆zi(ǫ
β−1) = Ai + h.o.t.

∆zi+1(−ǫ
β−1) − ∆Zi(ti+1 − ǫβ) − ∆ti+1Fi(ti+1) = Bi + h.o.t.

The vector field Fi(ti), Fi(ti+1) has nonzero W components, can

choose ∆ti to eliminate jumps in W , leaving only jumps in (U, V ).
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Jack Hale, “Ordinary Differential Equations”, page 145:

Basic to any discussion of problems concerned with perturbed lin-

ear systems is a complete understanding of the nonhomogeneous

linear system:

ẋ = A(t)x+ f(t).

Drop the higher order terms in differential equations

and drop the ∆ti in jump conditions,

the linear system where k = (0,1)τ :

∆y′i − L(τ)∆yi − k∆wi = −hi(τ, ǫ), −ǫβ−1 ≤ τ ≤ ǫβ−1,

∆Y ′
i −M(ω)∆Yi = −Hi(ω, ǫ), ti + ǫβ ≤ t ≤ ti+1 − ǫβ,

∆Yi(ti + ǫβ) − ∆yi(ǫ
β−1) = Ai,

∆yi+1(−ǫ
β−1) − ∆Yi(ti+1 − ǫβ) = Bi.
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(1) Study a linearized system around the heteroclinic solution.

Related Fredholm properties and the Liapunov-Schmidt reduction.

Generalized heteroclinnic solution.

(2) A version of shadowing lemma that can handle a sequence

of differential equations with jump conditions at junction points

{ti}
∞
i=−∞.

Let T (t, s) be the principle matrix solution for the ODE in Rn.

ẋ−A(t)x = h(t), t ∈ J = (a, b).

Definition: We say T (t, s) has an exponential dichotomy in J if

ther exists projections Ps(t) + Pu(t) = I such that

T (t, s)Ps(s) = Ps(t)T (t, s), t, s ∈ J,

|T (t, s)Ps(s)| ≤ Ke−α(t−s), t ≥ s,

|T (t, s)Pu(s)| ≤ Ke−α(s−t), s ≥ t.
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Lemma(Frozen coefficients)Assume that ‖A(t)‖ ≤ M,A(t) has d−
eigenvalues with negative real parts and d+ = n − d− eigenvalues

with positive real parts and ‖A′(t)‖ ≤ δ. If δ is sufficiently small,

then ẋ = A(t)x has an exponential dichotomy in J.

Recall the slow system:

du

dω
=

v

θ−1(u− γ(w̄+ ǫω))
,

dv

dω
=

θv − f(u) + w̄+ ǫω

θ−1(u− γ(w̄+ ǫω))
.

Proposition (1) The linearized slow system for Y = (U, V ):

∆Y ′
i −M(ω)∆Yi = −Hi(ω)

has an exponential dichotomy in τ ∈ (ti/ǫ, ti+1/ǫ), ω ∈ (wi/ǫ, wi+1/ǫ).

(2) The linearized fast system for y = (u, v):

∆y′i − L(τ)∆yi = k∆wi − hi(τ),

has exponential dichotomies in (−∞,0] and [0,∞). The dimen-

sions of unstable spaces are the same, but the projections

Ps(0−) 6= Ps(0+).
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A solution in regular layers as a two point boundary value problem:

For any φs ∈ ℜPs(ai), φu ∈ ℜPu(bi),

∆Yi(ω) = T (ω, ai)φs +
∫ ω

ai
T (ω, η)Ps(η)(−Hi(η))dη

+T (ω, bi)φu +
∫ ω

bi
T (ω, η)Pu(η)(−Hi(η))dη.

Here ai = wi/ǫ, bi = wi+1/ǫ.

|∆Yi| ≤ C(|φs| + |φu| + |Hi|).

Comment: C is independent of ǫ as ǫ→ 0.

(φs, φu) to be determined.

Solutions in singular layers is not so easy to write down.
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Fredholm property, Ken. Palmer (JDE 1984):

(H) Assume ẋ − A(t)x = 0 has exponential dichotomies on R±.

Then

Fx = ẋ−A(t)x

is Fredholm in the space of bounded solutions, with

IndexF = dimℜPu(0−) − dimℜPu(0+).

If dimℜPu(0+) = dimℜPu(0−), and if there is a unique bounded

solution φ(t) to the system. Then the adjoint system

ẏ+A(t)∗y = 0

has a unique bounded solution ψ(t). For any bounded f(t), the

nonhomogeneous system

ẋ−A(t)x = f(t), t ∈ R,

has a bounded solution iff
∫ ∞

−∞
< ψ(t), f(t) > dt = 0.

K. Palmer (1985): (H) is necessary for F to be Fredholm.
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Generalization of Palmer’s result, Lin 1989

ẋ−A(t)x = f(t), a ≤ t ≤ b, a < 0 < b,

Ps(a)x(a) = φs, Pu(b)x(b) = φu.

The system has a unique solution x(t), x(0) ⊥ φ(0) iff

∫ b

a
< ψ(t), f(t) > dt+ < ψ(a), φs > − < ψ(b), φu >= 0.

If the condition does not hold, then let the left hand side be G.

There exists a unique solution x(t), x(0) ⊥ φ(0) such that

x(0+) − x(0−) = G ψ(0). (Assume |ψ(0)| = 1).

The generalized solution has a jump in prescribed the direction.

|G| ≤ C(‖f‖ + e−α|a||φs| + e−α|b||φu|).

Comment: (1) C is independent of the length of interval b− a.

(2) The jump is in the direction of ψ(0) ⊥ ℜPu(0−) + ℜPs(0+).

(3) The jump size Gi depends weakly on the boundary data (φs, φu)

if |ai|, |bi| >> 1.
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For a ≤ t ≤ 0, xu(0) ∈ ℜPu(0−),

x(t) = T (t, a)φs +
∫ t

a
T (t, s)Ps(s)f(s)ds

+ T (t,0)xu(0) +
∫ t

0
T (t, s)Pu(s)f(s)ds.

For 0 ≤ t ≤ b, xs(0) ∈ ℜPs(0+),

x(t) = T (t,0)xs(0) +
∫ t

0
T (t, s)Ps(s)f(s)ds

+ T (t, b)φu +
∫ t

0
T (t, s)Pu(s)f(s)ds.

Since ℜPu(0−), ℜPs(0+), ψ(0) span the space Rn, there exist

unique (xu(0−), xs(0+), G) such that

xs(0+) − xu(0−) +G ψ(0) = T (0, a)φs +
∫ 0

a
T (0, s)Ps(s)f(s)ds

−T (0, b)φu +
∫ b

0
T (0, s)Pu(s)f(s)ds.
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Observe that

< ψ(0), xs(0+) >= 0, < ψ(0), xu(0−) >= 0, |ψ(0)| = 1,

T ∗(0, a)ψ(0) = ψ(a), T ∗(0, b)ψ(0) = ψ(b), T ∗(0, s)ψ(0) = ψ(s).

Apply ψ(0) to the last equation, we have

G =
∫ b

a
< ψ(t), f(t) > dt+ < ψ(a), φs > − < ψ(b), φu > .

Comment: (1) Let a→ −∞, b→ ∞, we have

G =
∫ ∞

−∞
< ψ(t), f(t) > dt.

(2) In a two dimensional system, the gap formulas reduce to the

original Melnikov’s integral.

(3) Solutions with a jump in the specified direction will be called

pseudo-solutions.

(4) In applications f comes from differentiating with respect to

parameters in linear variational equations.
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Reference for the classical shadowing lemma:

J. Guckenhermer, J. Moser & S. Newhouse, dynamical

systems, Birkhauser, 1980.

Generalization to system of differential eqautions:

Lin, Shadowing lemma and singularly perturbed bound-

ary value problems, SIAM J. Appl. Math, 1989
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Shadowing lemma:

ẋi(t) −Ai(t)xi(t) = fi(t), ti−1 ≤ t ≤ ti,

xi(ti) − xi+1(ti) = gi.

Lemma (1)Assume that the system has exponential dichotomies

in [ti−1, ti] with the same constants and exponentials.

(2) ℜP iu(ti) ⊕ℜP i+1
s (ti) = R

n.

Let Qi be the projection to the unstable space. ‖Qi‖ ≤M .

Then for each sequences of uniformly bounded continuous func-

tions {fi}, and sequence {gi}, there exists a unique solution {xi}

such that

‖{xi}‖ ≤ C(‖{fi}‖ + ‖{gi}‖).

Proof (1) Each equation in [ti−1, ti] has a solution that is uniformly

bounded by |fi|:

xi(t) =
∫ t

ti−1

T (t, s)Ps(s)fi(s)ds+
∫ t

ti
T (t, s)Pu(s)fi(s)ds.
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(2) Solve the system

ẋi(t) −Ai(t)xi(t) = 0, ti−1 ≤ t ≤ ti,

xi(ti) − xi+1(ti) = g̃i.

t ii−1 t

Let

xi(t) = T (t, ti−1)P
i
s(ti−1)(Q

i−1 − I)gi−1 + T (t, ti)P
i
u(ti)Q

igi.

With xi(t), the jump condition is not satisfied, but gets smaller.

The proof is completed by the method of iterations. qed
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Consider the linearized “correction problem”: Look for

∆Zi, ∆zi, ∆ti.
∆z′i − L(τ)∆zi − k∆wi = −hi(τ, ǫ), −ǫβ−1 ≤ τ ≤ ǫβ−1,

∆Y ′
i −M(ω)∆Yi = −Hi(ω, ǫ), ti + ǫβ ≤ t ≤ ti+1 − ǫβ,

∆Yi(ti + ǫβ) − ∆yi(ǫ
β−1) = Ai,

∆yi+1(−ǫ
β−1) − ∆Yi(ti+1 − ǫβ) = Bi.

Solve the nonhomogeneous system:

∆Yi(ω) =
∫ ω

ai
T (ω, η)Ps(η)(−Hi(η))dη+

∫ ω

bi
T (ω, η)Pu(η)(−Hi(η))dη.

Here ai = wi/ǫ, bi = wi+1/ǫ. Then find ∆wi by

∆wi

∫ ǫβ−1

−ǫβ−1
< ψ(τ),ki > dτ =

∫ ǫβ−1

−ǫβ−1
< ψ(τ), hi(τ, ǫ) > dτ,

∆ti = ∆wi/ẇ(ti).

∆yi(τ) =
∫ τ

−ǫβ−1
T (τ, η)Ps(η)(kwi − hi(η))dη

+
∫ τ

ǫβ−1
T (τ, η)Pu(η)(kwi − hi(η))dη.

Error! Do positive and negative τ separately. Introduce ∆y(0±).
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This causes new jump errors (Ã, B̃).

An iteration process to eliminate jump errors:

(LABEL I) Find (φis, φ
i
u) as in the shadowing lemma. Find ∆wi,

∆wi

∫ ǫβ−1

−ǫβ−1
< ψ(τ),ki > dτ =< ψ(−ǫβ−1), φis > − < ψ(ǫβ−1), φi+1

u > .

Yi(τ) = T (τ, ai)φ
i
s + T (τ, bi)φ

i+1
u ,

yi(τ) = T (τ,−ǫβ−1)φi−1
s + T (τ, ǫβ−1)φiu

+
∫ τ

−ǫβ−1
T (τ, η)Ps(η)k∆widη+

∫ τ

ǫβ−1
T (τ, η)Pu(η)k∆widη.

GOTO I

Even if the iteration converges, the jump errors still exist due to

∆ti (O(∆wi)), but will be smaller by an exponential factor:

∆Zi(ti + ǫβ) + ∆tiFi(ti) − ∆zi(ǫ
β−1) = Ai,

∆zi+1(−ǫ
β−1) − ∆Zi(ti+1 − ǫβ) − ∆ti+1Fi(ti+1) = Bi.

Another layer of iteration will eliminate the new jump error.
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PART II

A general (m+ n)-dimensional system, x ∈ Rm, y ∈ Rn.

In regular layers:

ẋ = f(x, y, ǫ),

ǫẏ = g(x, y, ǫ).

Singular layers:

x′ = ǫf(x, y, ǫ),

y′ = g(x, y, ǫ).

Let ǫ = 0 in regular layers. It has d branches y = ηi(x), where

|ℜσ{gy(x, y,0)}| ≥ α0 > 0.

The slow manifolds are hyperbolic. Assume that the unstable

indices are the same for all i.

31



Study the singular limit system.

An algebraic-differential system in regular layers:

Ẋ = f(X,Y,0),

0 = g(X,Y,0).

Flow on the slow manifold Si = {Y = ηi(x)}:

Ẋ = f(X, ηi(X),0), Y = ηi(X), ti ≤ t ≤ ti+1.

A heteroclinic connection problem in singular layer layers:

x′ = 0, x ≡ ξi = constant,

y′ = g(ξi, y,0).

Equilibrium points are on the slow manifolds Si.

y = yi(τ, ξi), −∞ < τ <∞

yi(−∞) ∈ Si, y
i(∞) ∈ Si+1,

yi(0+) − yi(0−) = Gi(ξ
i).

Look for a codimension-1 submanifold Mi ⊂ Si such that if ξ ∈Mi,

then the heteroclinic exits (take-off lines).

Assume that DξGi(ξ
i) 6= 0.
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An alternation of regular and singular orbits.
X(t), ti ≤ t ≤ ti+1, X(ti) = ξi, X(ti+1) = ξi+1,

y(τ, ξi), yi(−∞) ∈ Si, y
i(∞) ∈ Si+1.
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Assumptions:

(H1) |ℜσ{gy(x, y,0)}| ≥ α0 > 0. The dimensions of stable and un-

stable spaces d− + d+ = n is independent of i.

(H2) The gap function Gi(ξ) is nonsingular.

(H3) The flow on the slow manifolds are transverse to the talk-off

lines.

(H4) If the slow manifolds are more than one dimensional (not

needed in the previous example), then the induced piece-wise

smooth periodic orbit on slow manifolds is non-degenerate:

M0 →M1 → · · · →MI ,
dX

dt
= f(X, ηi(X),0).

(H4’) The induced piecewise smooth periodic orbit on the slow

manifolds is hyperbolic.
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∼ (H1) ensues that g(x, y,0) can be solved as Y = ηi(X). The

graph of which is a hyperbolic center manifold for the fast system.

At ǫ = 0 the center manifold consists of equilibrium points.

∼ (H2): Consider y′ = g(ξ, y,0) and a heteroclinic solution y(τ, ξ).

When moving ξ, the heteroclinic usually breaks. A pseudo-heteroclinic

solution exists with a jump in the prescribed direction of ψ(0).

y′ξ − gy(ξi, y,0)yξ = gx(ξi, y,0),

yξ(0+) − yξ(0−) = ∇G(ξi) :=
∫ ∞

−∞
ψ∗
i (τ)gx(ξi, y(τ),0)dτ.

∼ (H3): ∇Gi(ξi) · f(X(ti), Y (ti),0) 6= 0.

∼ (H4): can be checked by checking that λ = 1 is not an eigenvalue

of the composition of Poincare mappings between take-off surfaces

(cross sections of the slow flow).

Exercise: Show that the conditions (H2) and (H3) are satisfied by

the FitzHugh-Nagumo equation. Show that ∇Gi(ξ) is the same

obtained by the Melnikov’s integral (JDE 1990, page 379).
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f(t, ǫ) =
∞
∑

0

ǫjfj(t)

means f(t, ǫ) =
∑m

0 ǫjfj(t) + o(ǫm).

Power series solutions in regular and singular regions:

(
∞
∑

0

ǫjXi
j(t),

∞
∑

0

ǫjY ij (t)),

(
∞
∑

0

ǫjxij(τ),
∞
∑

0

ǫjyij(τ)).

Taylor expansion:

f(
∞
∑

0

ǫjXi
j(t),

∞
∑

0

ǫjY ij (t), ǫ)

= f(X0, Y0,0) +
∞
∑

1

ǫj{fx(X0, Y0,0)Xj + fy(X0, Y0,0)Yj

+ Fj(X1, Y1, X2, Y2, . . . , Xj−1, Yj−1)}.
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In regular layers:

Ẋi
0(t) = F (Xi

0(t), Y
i
0(t),0),

0 = g(Xi
0(t), Y

i
0(t),0),

Ẋi
j(t) = fx(X

i
0(t), Y

i
0(t),0)Xi

j(t) + fy(X
i
0(t), Y

i
0(t),0)Y ij (t)

+ Fj(X
i
1, Y

i
1, . . . , X

i
j−1, Y

i
j−1),

Ẏ ij−1(t) = gx(X
i
0(t), Y

i
0(t),0)Xi

j(t) + gy(X
i
0(t), Y

i
0(t),0)Y ij (t)

+Gj(X
i
1, Y

i
1, . . . , X

i
j−1, Y

i
j−1).

The solution stays near the ith slow manifold for

ai +
∞
∑

1

ǫjτ ij(a) ≤ t ≤ bi +
∞
∑

1

ǫjτ ij(b).

To the lowest order, (Xi
0(t), Y

i
0(t)) is the singular orbits that forms

part of the loop.

Method of induction: After obtaining (Xi
k(t), Y

i
k(t)), k = 0, . . . , j−1,

solve an algebraic-differential equation:

Y ij (t) = −g−1
y (t)gx(t)X

i
j(t) + ℓ.o.t.

Ẋi
j(t) = (fx(t) − fy(t)gy(t)

−1gx(t))X
i
j(t) + ℓ.o.t.
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In singular layers:

x′(τ) = ǫf(x(τ), y(τ), ǫ),

y′(τ) = g(x(τ), y(τ), ǫ).

xi0(τ)
′ = 0,

yi0(τ)
′ = g(xi0(τ), y

i
0(τ),0).

xi1(τ)
′ = f(xi0(τ), y

i
0(τ),0),

yi1(τ)
′ = gx(τ)x

i
1(τ) + gy(τ)y

i
1(τ) + gǫ(τ).

xij(τ)
′ = fx(τ)x

i
j−1(τ) + fy(τ)y

i
j−1(τ)

+ Fj−1(x
i
1, y

i
1, . . . , x

i
j−2, y

i
j−2),

yij(τ)
′ = gx(τ)x

i
j(τ) + gy(τ)y

i
j(τ)

+Gj(x
i
1, y

i
1, . . . , x

i
j−1, y

i
j−1).

To the lowest order, (xi0, y
i
0) is satisfied by the heteroclinic solution

xi0(τ) ≡ xi0, lim
τ→±∞

yi0(τ) = Gi(xi0) or Gi+1(xi0).
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Define E(γ,m) := {x(·)| sup(|x(t)|eγ|t|(1 + |t|m)−1) <∞}.

We require that

yij ∈ E(0, j), yij(0) ⊥ yij(0)′.

Assume xi0, y
i
0, . . . , x

i
j−1, y

i
j−1 has been obtained, then

xij(τ) = xi0(0) + ( a function in E(0, j)),

yij(τ)
′ = giy(τ)y

i
j(τ) + gix(τ)x

i
j(0) + ( a function in E(0, j)).

Fredholm’s property to polynomial growth functions:

To have a solution yij ∈ E(0, j), need to choose xij(0) such that

∫ ∞

−∞
ψ∗
i (τ){g

i
x(τ)x

i
j(0) + ( a function in E(0, j))}dτ = 0.

The undetermined xij(0) lies on a codimension one surface.

∇Gi · x
i
j(0) = dij.
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Matching conditions between the regular and singular layers must

be satisfied. It is like the change of coordinates between two over-

lapping local coordinate charts representing the same differential

manifolds.

Matching condition of Van Dyke, see Eckhaus 1977, Lecture notes

in Mathematics, V594.

Inner expansion of outer layers: τ = 0 in the ith singular layer

corresponds to t = bi+
∑∞

1 ǫkτ ik(b), and t = ai+1 +
∑∞

1 ǫkτ i+1
k (a).

∞
∑

j=0

Zij(bi +
∞
∑

k=1

ǫkτ ik(b) + ǫτ) =
∞
∑

j=0

ǫjzj(τ, b, i),

∞
∑

j=0

Zij(ai +
∞
∑

k=1

ǫkτ ik(a) + ǫτ) =
∞
∑

j=0

ǫjzj(τ, a, i).

The matching condition:

zij(τ) − zj(τ, b, i) ∈ ER−(γ, j),

zij(τ) − zj(τ, a, i+ 1) ∈ ER+(γ, j).
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i+1
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Z

z (0)

ba
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Let Zi = (Xi, Y i), zi = (xi, yi).

The matching of yij(τ), τ → ±∞ to the outer layers can be proved

based on the growth conditions of yij(τ).

The matching of xij(τ) to Xi
j is complicated.

xj(0, b, i) = Xi
j(bi) + Ẋi

0(bi)τ
i
j(b) + . . .

= Xi
j(bi) + f(Xi

0(bi), Y
i
) (bi),0)τ ij(b) + . . .

xij(τ) − xj(τ, b, i) = xij(0) − xj(0, b, i)

+
∫ τ

0
( a funciton of σ which is in ER−(γ, j − 1))dσ.

xij(0) −Xi
j(bi) − f(Xi

0(bi), Y
i
0(bi),0)τ ij(b) = Cj(b, i),

xij(0) −Xi+1
j (ai+1) − f(Xi+1

0 (ai+1, Y
i+1
0 (ai+1),0)τ i+1

j (a)

= Cj(a, i+ 1).

Let P (a, i), P (b, i) be the projection in R
m with the range

TMi−1, TMi and kernel f(Xi
0(ai), Y

i
0(ai),0), f(Xi

0(bi), Y
i
0(bi),0).

P (a, i+ 1)(xij(0) −Xi+1
j (ai+1)) = P (a, i+ 1)Cj(a, i+ 1),

P (b, i)(xij(0) −Xi
j(bi)) = P (b, i)Cj(b, i).
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j
ij

i

i+1
X  (t)

x  (0)

i

X (t)

TM
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One can compute P (a, i+1)xij(0)−P (b, i)xij(0) from ∆i·x
i
j(0) = dij,

hence

P (b, i)Xi
j(bi) − P (a, i)Xi+1

j (ai+1) = Cij.

Let Πi : TMi−1 → TMi be the Poincare mapping induced by

Ẋi
j(t) = (f ix(t) − f iy(t)g

i
y(t)

−1gix(t))X
i
j(t) + ℓ.o.t.

Then Πi : P (a, i− 1)Xi
j(ai) → P (b, i)Xi

j(bi).

Assume λ = 1 is not an eigenvalue of ΠN ◦ ΠN−1 ◦ · · · ◦ Π2 ◦ Π1.

X = ΠN(ΠN−1(· · · (Π2(Π1X + C1j) + C2j) + · · · )CN−1,j) + CNj

has a fixed point P (a,1)Xi
j(a1).

∼ If we specify some phase conditions, Xi
j(t) and τ ij(a), τ

i
j(b) can

be determined.
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