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Abstract We study the existence of liquefaction and evaporation waves by the
methods derived from dynamical systems theory. A traveling wave solution is
a heteroclinic orbit with the wave speed as a parameter. We give sufficient and
necessary conditions for the existence of such heteroclinic orbit. After analyzing the
local unstable and stable manifolds of two equilibrium points, we show that there
exists at least one orbit connecting the local unstable manifold of one equilibrium
point to the local stable manifold of another equilibrium point. The method is known
as the shooting method in the literature.
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1 Introduction

Dynamic flows involving liquid/vapor phase transition is an important phenomenon
occurring in many engineering processes. For retrograde fluids, i.e. fluids with
high specific heat capacities, such flows can be approximated by assuming that the
temperature is constant.
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Fig. 1 The pressure function
p = p(λ ,v) for some fixed λ

The one-dimensional case of the system describing such flows in Lagrangian
coordinates is

vt − ux = 0,

ut + p(λ ,v)x = εuxx,

λt =
1
γ

w(λ ,v)+β λxx, (1)

where v is the specific volume, u the velocity of the fluid, λ the weight portion of
vapor in the liquid/vapor mixture, ε the viscosity, β the diffusion coefficient and
γ > 0 the typical reaction time. The pressure p(λ ,v) in (1) is a smooth function that
satisfies

pv < 0 < pλ , pvv > 0. (2)

Although pvv > 0 was assumed in many previous papers, we do not use it in the proof
of the existence of liquefaction and evaporation waves (Theorems 2.4 and 2.6).

Figure 1 shows the graph of a typical pressure function, where pe is the
equilibrium pressure at which liquid and vapor can coexist and m,M are the
Maxwell points.
The function w(λ ,v) represents the rate of vapor initiation and growth:

w(v,λ ) = (p(λ ,v)− pe)λ (λ − 1). (3)

A traveling wave of (1.1) is a solution of the form (u,v,λ )(s), where s = x−ct
ε and c

is the speed of the wave. With u′ = du/ds, we have

−cv′ − u′ = 0,

−cu′+ p′ = u′′,

−cλ ′ = aw(λ ,v)+ bλ ′′,

(u,v,λ )(±∞) = (u±,v±,λ±), (4)



A Dynamical Systems Approach to Traveling Wave Solutions for Liquid/Vapor . . . 103

where a = ε/γ , b = β/ε . Because λ is the weight portion of the vapor in the
liquid/vapor mixture, we only admit solutions with 0 ≤ λ ≤ 1.

From the third equation of (4), equilibrium points (λ±,v±) must satisfy
w(λ ,v)=0, which has three branches of solutions: λ = 0 or λ = 1 or p(λ ,v) = pe.

From the first two equations of (4), c2v′+ p′ = u′′ =−cv′′. Integrating from −∞
to s we have:

−cdv/ds = c2(v− v−)+ (p− p−).

Let s = bξ and u′ = du/dξ . We have

λ ′′ = −cλ ′ − abw(λ ,v),

− c
b

v′ = c2(v− v−)+ (p(λ ,v)− p−). (5)

If the traveling wave connects E± with (λ ,v) = (λ±,v±), then

c2(v+− v−)+ p(v+,λ+)− p(λ−,v−) = 0. (6)

Definition 1.1. A liquefaction wave is a solution of (1.4) with

λ− = 0, 0 < λ+ ≤ 1,

p(λ±,v±)≥ pe, c2 + pv(λ±,v±)< 0,

while an evaporation wave is that with

λ− = 1, 0 ≤ λ+ < 1,

p(λ±,v±)≤ pe, c2 + pv(λ±,v±)< 0.

A collapsing wave is a solution of (1.4) with

0 ≤ λ− < 1, λ+ = 1,

p(λ±,v±)≥ pe, c2 + pv(λ±,v±)> 0,

while an explosion wave is that with

0 < λ− ≤ 1, λ+ = 0,

p(λ±,v±)≤ pe, c2 + pv(λ±,v±)> 0.

Recall that
√−pv is the speed of sound. The definitions can be summarized in the

following table:

p ≥ pe p ≤ pe

subsonic c2 + pv < 0 liquefaction evaporation
supersonic c2 + pv > 0 collapsing explosion
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Shearer [12–14], Fan [4] and Slemrod [15] studied the Liquid/vapor phase transition
through the p-system of conservation laws of hyperbolic-elliptic mixed type. Fan
[5–7] proved the existence of liquefaction and evaporation waves. He also studied
the stability of a simplified system consisting of a system of two conservation laws
and a KPP equation. See also [1–3, 8] for further discussions of the model.

The following methods were used in [5, 7] in proving the existence of traveling
waves:

(1) The Leray–Schauder degree theory.
(2) The theory of monotone systems of parabolic PDEs.

A common feature to methods (1) and (2) is the adding of a small diffusion term
ηvxx to the system,

vt = ηvxx + c2(v− v−)+ p− p−,

λt = bλxx + a(p(λ ,v)− pe)λ (λ − 1).

First one finds traveling waves for the system with small η > 0. Then one shows that
there exists a sequence ηn → 0 such that the corresponding solutions (λ ηn ,vηn) →
(λ ,v). The limit is a traveling wave corresponding to η = 0.

We briefly describe the use of the Leray–Schauder degree theorem to our system.
Consider the modified system:

ηv′′+ cv′ =−θ (c2(v− v−)+ p− p−),

bλ ′′+ cλ ′ =−θ aw(v,λ ), −L < ξ < M,

(v,λ )(−L) = (v−,λ−), (v,λ )(M) = (v̄+, λ̄+).

By choosing (v̄+, λ̄+) properly, once can show that there is a strictly monotone
solution for all θ ∈ [0,1].

Write the system as an integral equation T (x,θ ) = x. Then T : Ω̄× [0,1]→ X is
a compact operator in a real normed space. Moreover the solution exists if θ = 0.
From the Leray–Schauder degree, if we assume:

(i) T (x,θ ) �= x for x ∈ ∂Ω, θ ∈ [0,1].
(ii) The Leray–Schauder degree DI(T (·,0)− I,Ω) �= 0,

Then for any 0 ≤ θ ≤ 1, T (x,θ ) = x has at least one solution in Ω.
We then find convergent subsequences of monotone solutions such that

(i) L(n)→ ∞,M(n)→ ∞
(ii) v̄n → v+, λ̄n → λ+

(iii) ηn → 0.

The limit of solutions is the traveling wave solution to the system with η = 0. Next,
we briefly describe the use of the “Method for Monotone Systems of PDES” to our
system. Consider
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vt = ηvxx + c2(v− v−)+ p− p−,

λt = bλxx + a(p− pe)λ (λ − 1).

We can rewrite the system as

Ut = AUxx +F(U,c),

where

F(U,c) =

(
c2(v− v−)+ p− p−
a(p− pe)λ (λ − 1)

)
,

∇F =

(
c2 + pv pλ

aPvλ (λ − 1) a(p− pe)(2λ − 1)+ aPλλ (λ − 1)

)
.

Under the sufficient conditions, we can verify that

(1) The system is monotone: off-diagonal terms of ∇F are positive.
(2) The eigenvalues of ∇F at U− are negative.
(3) The wave speed c is sufficiently large.
(4) Other conditions for a monotone system are satisfied.

Then there exists a monotone solution U for small η . By letting η → 0 we find the
limit of solutions which corresponds to solutions for the system with η = 0.

Using a geometric/dynamical system’s method (shooting method), Fan and Lin
simplified the proof of the existence of evaporation and liquefaction waves obtained
in [5,7]. We also rigorously proved the existence of collapsing and explosion waves
that were only verified numerically before. Define h(λ ,v) := c2(v−v−)+ p(λ ,v)−
p−. Then

C := {(λ ,v) : h(λ ,v) = 0}
is the isocline for v due to (5). Based on (6),

h(λ ,v) := c2(v− v±)+ p(λ ,v)− p±.

In this paper we summarize our results obtained by the shooting method from 2005
to 2008 as follows:

Theorem 1.1. (1) The sufficient and necessary conditions for the existence of
collapsing waves are:

c2 ≥ 4ab|p(λ+,v+)− pe|, c2 + pv(λ±,v±)≥ 0.

(2) The sufficient conditions for the existence of explosion waves are:

c2 ≥ 4ab|p(λ+,v+)− pe|, c2 + pv(λ−,v−)≥ 0.
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The necessary conditions for the existence of explosion waves are:

c2 ≥ 4ab|p(λ+,v+)− pe|, c2 + pv(λ+,v+)≥ 0.

(3) If λ+ = 0,1, then the sufficient conditions for the existence of liquefaction or
evaporation waves are:

c2 + pv(λ ,v)< 0, if v− ≤ v ≤ v+, λ = 0,1,

and

c2 ≥ 4ab|p(λ−,v−)− pe|.
(4) If p+ = pe,0 < λ+ < 1, then the sufficient conditions for the existence of

liquefaction or evaporation waves are:

c2 ≥ 4ab|p(λ−,v−)− pe|,
c2 + pv(λ ,v)< 0, if λ = 0 ≤ λ ≤ λ+, v− ≤ v ≤ v+,

and along the isocline C for v,

sup
λ

{
abpλ (λ ,vc(λ ))

|c2 + pv(λ ,vc(λ ))|
}
< 1.

As proofs of the existence of collapsing and explosion waves were presented in a
separate paper [9], in the rest of this paper we will study the existence of liquefaction
and evaporation waves only. The existence of liquefaction waves for λ− = 0, λ+ = 1
will be proved in Theorem 2.4 while the existence of liquefaction waves for λ− = 0,
0 < λ+ < 1, p+ = pe will be proved in Theorem 2.6. Similar proofs apply to the
evaporation waves and will not be presented in this paper.

For liquefaction and evaporation waves, it will be shown in Lemma 2.1 that the
wave speed c is positive. Therefore, from (6),

c =

√
− p(λ+,v+)− p(λ−,v−)

v+− v−
. (7)

In [5,7], Fan proved that liquefaction and evaporation waves exist if the wave speed
c > 0 satisfies c ≥ 2

√
ab|p(λ−,v−)− pe|. On the other hand, if the speeds satisfy

c ≤ 2
√

ab|p(λ+,v+)− pe|, then there is no liquefaction or evaporation waves.
The locations of (v±,λ±) for both waves are depicted in Fig. 2.
Recall that the pressure p(λ ,v) satisfies

pv < 0 < pλ ,
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pFig. 2 The points (v±,λ±) of
liquefaction waves (p± ≥ pe)
and evaporation waves
(p± ≤ pe). The arrows point
to the fronts of the waves

and the growth rate w is

w(λ ,v) = (p− pe)λ (λ − 1).

Since pλ > 0, the function p = p(λ ,v) can be solved for λ = λ ∗(v, p). For
each v = v0, with vm < v0 < vM , w = w(λ ,v0) has three zeros: λ = 0, λe(v0) =
λ ∗(v0, pe), λ = 1. However, for v0 < vm or v0 > vM, w = w(λ ,v0) has two zeros:
λ = 0, λ = 1.

Let P ⊂ R
3 be an open set bounded by finitely many smooth surfaces.

Definition 1.2. For each P ∈ P such that the Φ(ξ0,P) ∈ ∂P for some ξ0 > 0, there
exists the first touch time ξ1 such that

Φ(ξ1,P) ∈ ∂P , while Φ(ξ ,P) ∈ P for 0 ≤ ξ < ξ1.

If the first touch time for P exists, then define the first touch point as B(P) :=
Φ(ξ1,P).

The following lemma is related to the Wazewski’s principle [10, 11]. It is not as
general but works well on our system.

Lemma 1.2. Assume that there exit two mutually disjoint open subsets of ∂P: S1

and S2 such that,

(1) For any P ∈ S j, j = 1,2, there exists a small ε > 0 such that Φ(ξ ,P) ∈ P for
−ε < ξ < 0. Moreover, the flow Φ(ξ , ·) is transverse to S1 or S2.

(2) For any P ∈P such that Φ(ξ ,P) ∈ ∂P for some ξ > 0, we have B(P) ∈ S1∪S2.
(3) There exists a smooth curve segment P1P2 in P such that B(P1) ∈ S1,

B(P2) ∈ S2.
Under these conditions, there exits a P0 ∈ P1P2 such that Φ(ξ ,P0) remains

in P for all ξ > 0.

The shooting method alone does not provide information on the uniqueness of
the traveling waves for each fixed wave speed c. In a work-in-progress paper by
Fan and Lin, numerical computation combined with the shooting method has been
performed on a similar system. For a given wave speed, these results suggest that
each type of traveling wave for liquid/vapor phase transition may be unique.
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2 Existence of Liquefaction and Evaporation Waves

In this section we present the proof of the existence of liquefaction waves for the
case {λ− = 0}→ {λ+ = 1}, and the case {λ− = 0}→ {p+ = pe}. The same proof
applies to the evaporation waves with some minor changes.

System (5) can be written as a first order system of three variables (λ ,μ ,v):

λ ′ = μ ,

μ ′ = −cμ − abw(λ ,v),

− c
b

v′ = c2(v− v−)+ (p(λ ,v)− p−). (8)

We look for a heteroclinic solution of (8) connecting the equilibrium points E± :=
{(λ±,μ±,v±)}.

Equilibrium states are the zeros of the right hand side of (8).

μ = 0,

w(λ ,v) = 0,

c2(v− v−)+ p(λ ,v)− p− = 0. (9)

The solutions of w = 0 form three branches: λ = 0, 1 and p(λ ,v) = pe. The graph
of (9) with a given c is a straight line in the (v, p) plane, see Fig. 2. However, the
graph of (9) in the (λ ,v) plane is the isocline C for v.

For each v with vm < v < vM , by solving p(λ ,v) = pe for λ , we have

λ = λe(v).

The equilibrium E− is on λ = 0 with p− > pe or on λ = 1 with p− < pe. The
equilibrium E+ is on the line λ = 1, p+ > pe or on p = pe,0 < λ < 1 (liquefaction
wave). The equilibrium E+ is on λ = 0, p < pe or on p = pe,0 < λ < 1 (evaporation
wave).

Let p+ = p(λ+,v+). The wave speed c and v± are now related by (6): c2(v+−
v−)+ (p+− p−) = 0.

From (6), for the liquefaction wave p+ < p−, we must have v+ > v−; while for
the evaporation wave p+ > p−, we must have v+ < v−.

2.1 Eigenvalues and Eigenvectors at Equilibrium Points

In this section, we first show that if c > 0, then the equilibrium E− corresponding
to λ = 0,1 is a saddle with exactly two positive eigenvalues and one negative
eigenvalue, while the equilibrium E+ has one positive eigenvalues and two negative
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eigenvalues. The traveling wave solution we look for is a heteroclinic solution
connecting saddle to saddle. Moreover, as ξ →±∞, the orbit of the traveling wave
starts at the two dimensional local unstable manifold W u

loc(E−) and ends at the two
dimensional local stable manifold W s

loc(E+).
The linear variational system at equilibrium point is

⎛
⎝Λ

M
V

⎞
⎠

′

= A

⎛
⎝Λ

M
V

⎞
⎠ , where A =

⎛
⎝ 0 1 0
−abwλ −c −abwv

− b
c pλ 0 −bc− b

c pv

⎞
⎠ .

Eigenvalues r are determined by

det(rI −A) =

∣∣∣∣∣∣
r −1 0

abwλ r+ c abwv
b
c pλ 0 r+ b

c (pv + c2)

∣∣∣∣∣∣= 0.

We first study eigenvalues at the equilibrium E± with λ = 0 or 1,

wλ (λ ,v) = (2λ − 1)(p− pe), wv(λ ,v) = 0,

det(rI −A) = (r2 + cr+wλ )(r+
b
c
(pv + c2)).

Eigenvalues at λ = 0,1 are

r1 =−c/2−
√
(c/2)2 − ab(2λ − 1)(p(λ ,v)− pe),

r2 =−c/2+
√
(c/2)2 − ab(2λ − 1)(p(λ ,v)− pe),

r3 =−b
c
(pv(λ ,v)+ c2).

Lemma 2.1. (1) Assume that c > 0. At E−, assume that c2 + pv(λ ,v) < 0 and
(2λ − 1)(p− pe) < 0. Then the equilibrium E− has two positive eigenvalues
and one negative eigenvalue. At E+, assume that c2 ≥ 4ab|p(λ ,v)− pe| and
c2 + pv(λ ,v) < 0. Then if E+ is on the line λ = 0,1, it has two negative
eigenvalues and one positive eigenvalue.

(2) Assume that c < 0. At E−, assume that c2 + pv(λ ,v) < 0 and (2λ − 1)(p−
pe)< 0. Then the equilibrium E− has two negative eigenvalues and one positive
eigenvalue. At E+, assume that c2 ≥ 4ab|p(λ ,v)− pe| and c2 + pv(λ ,v) < 0.
Then if E+ is on the line λ = 0,1, it has two positive eigenvalues and one
negative eigenvalue.

Proof. Proof of (1): We always have r3 > 0 for λ = 0 or 1. If λ = 0, p > pe or if
λ = 1, p < pe, we have

ab(2λ − 1)(p(λ ,v)− pe)< 0,



110 H. Fan and X.-B. Lin

and hence r1 < 0 and r2 > 0. Thus E− has two unstable eigenvalues and one stable
eigenvalue. If λ = 1, p > pe or if λ = 0, p < pe, we use c2 ≥ 4ab|p(λ ,v)− pe|
to show r1,r2 are real and r1,r2 < 0. Thus E+ has two stable eigenvalues and one
unstable eigenvalue.

The proof of (2) is completely similar and shall be omitted. �

Since in the case (2), a heteroclinic connection from E− to E+ usually does not

happen, we shall assume c > 0.

2.2 Existence of Liquefaction Waves for λ− = 0, λ+ = 1

In this section, we consider the liquefaction wave connecting λ− = 0 to λ+ = 1.
The liquefaction wave that connects λ− = 0 to p+ = pe shall be constructed later.
Since liquefaction and evaporation waves are subsonic waves, cf. Definition 1.1, we
assume that the waves satisfy the following assumption in this section:

(H1) c2 + pv(λ ,v)< 0, if v− ≤ v ≤ v+ and λ = 0,1.
The traveling waves satisfy the following system of equations:

λ ′ = μ , μ ′ =−cμ − abw(λ ,v), (10)

−c
b

v′ = c2(v− v−)+ (p(λ ,v)− p−). (11)

As from Lemma 2.1, we assume that c > 0.
The isocline for v means C := {(λ ,v) : v′ = 0}. Clearly (λ ,v) ∈ C if h(λ ,v) = 0.

It is easy to see that on the two equilibrium points, (λ±,v±) ∈ C.
Due to (H1), on the line λ− = 0 we have c2 + pv < 0. If v > v−, then h(0,v)< 0.

Therefore v′ > 0 if v− < v < v+ and λ = 0. Similarly, due to (H1) again, if λ = 1,
we can show that v′ < 0 if v− < v < v+. Now for each v ∈ (v−,v+), there exists a
unique λ ∈ (0,λ+) such that h(λ ,v) = 0, denoted by

λ = λc(v).

Due to the fact pλ > 0, λc(v) is a smooth function of v ∈ (v−,v+).
In general λc(v) may not be a monotone function as depicted in Fig. 3.
The isocline for v divides the rectangle (λ−,λ+)× (v−,v+) into two parts. Let

N := {(λ ,v) : v− < v < v+, 0 < λ < λc(v)}.

If (λ ,v) ∈ N , then v′(ξ )> 0. Let EF be the curve on which p = pe and v− < v <
v+,λ− < λ < λ+, see Fig. 3. Then EF ⊂ N where v′ > 0. This can be shown as
follows. Since on EF , p = pe < p+ and v < v+, we have

h(λ ,v) = c2(v− v+)+(p− p+)< 0.
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Fig. 3 The pentahedron and the top view of its base Fb. On the curve EF , p(λ ,v) = pe. On the
isocline GH, v′ = 0

Consider a pentahedron shaped solid P in (λ ,μ ,v) space bounded by the five
surfaces:

Left side F� := {λ = 0};

Back side Fk := {v = v+, 0 < λ < 1, 0 < μ <−c(λ − 1)/2};

Front side F f := {v− < v < v+, λ = λc(v), 0 < μ <−c(λ − 1)/2};

Slant side Fs := {c(λ − 1)/2+ μ = 0, 0 < λ < λc(v),v− < v < v+};

Bottom side Fb := {μ = 0, 0 < λ < 1}.

The bottom side is further divided into Fb = Fb1 ∪Fb2, with

Fb1 := Fb ∩{p(λ ,v)≥ pe},
Fb2 := Fb ∩{p(λ ,v)< pe}.

For each interior point P of P , let B(P) be the first touch point on ∂P as in
Definition 1.2.

(1) Since dλ/dξ = μ > 0 inside P , B(P) /∈ F�.
(2) On Fk, we have v′ = − b

c (p(v+,λ )− p+). Since pλ > 0 and λ < 1, we have
p(v+,λ )< p(v+,1) = p+. Thus, v′ > 0. It is possible B(P) ∈ Fk.

(3) On F f , we have λ ′ > 0 and v′ = 0. Let the outward normal of F f be n =
{(λ ,μ ,v) = (1,0,−dλc(v)/dv), and let the vector field be f. Then n · f > 0. The
flow starts on F f must leave P transversely. It is possible that B(P) ∈ F f for
some P ∈ P .

(4) On the interior of Fb2 we have dμ/dξ < 0 due to w > 0 for 0 < λ < 1 and
p < pe . It is possible that B(P) ∈ Fb2.

(5) On the interior of Fb1, we have dμ/dξ = −abw(λ ,v) > 0 due to w < 0 for
0 < λ < 1 and p > pe. Thus B(P) is not in the interior of Fb1.
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If B(P) ∈ {p = pe}∩Fb1 at the first touch time ξ1 > 0, then from (10) it is easy
to verify that μ(ξ1) = μ ′(ξ1) = 0 and μ ′′(ξ1)< 0. Therefore, there exists δ > 0 such
that μ(ξ )< 0 if ξ1 − δ ≤ ξ < ξ1, contradicting to ξ1 being the first touch time. So
B(P) cannot be on the line {p = pe}∩Fb1.

The following lemma shows that B(P) /∈ Fs.

Lemma 2.2. The first touch point with the boundary B(P) is not on the slant
side Fs.

Proof. The inward normal of the slant side Fs := {c(λ − 1)/2+ μ = 0} is

n = (nλ ,nμ ,nv) = (−c/2,−1,0).

The vector field is

f = (fλ , fμ , fv) = (μ ,−cμ − abw(λ ,v),v′).

We want to show that on Fs,

n · f =−cμ/2+ cμ+ abw(λ ,v)> 0.

Using μ =−c(λ − 1)/2, we have

n · f = (1−λ )((c/2)2− abλ (p− pe)). (12)

Since (λ ,v) satisfies

c2(v− v−)+ (p− p−)≤ 0, and v ≥ v−,

we have p ≤ p−. Therefore,

(c/2)2 > ab(p−− pe)≥ abλ (p(λ ,v)− pe).

It follows that n · f > 0, see (12). Therefore B(P) /∈ Fs. �

Let us check the edges of P (not including E+). The four edges that lie on λ = 0

cannot contain B(P) as shown by (1).
Among the other four edges, two of them bound Fs, so they cannot contain B(P)

due to n · f > 0 as in Lemma 2.2. What left are the two more edges that bound Fb1

(not including {p = pe}). They cannot contain B(P) due to μ ′ > 0.
We have shown that if B(P) is the point where Φ(ξ ,P) first hits the boundary of

P , either it lies on S1 := F f or it lies on S2 := Fb2 ∪Fk ∪{μ = 0,v = v+,0 < λ <
λe(v+)}.

Moreover, B(P) cannot belong to the four boundaries of F�, the three boundaries
of Fs and the three boundaries of F f . The point B(P) can belong to the common
boundary of Fk and Fb2 but not the common boundaries of Fk and Fb1.
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Lemma 2.3. There exist P1,P2 ∈ W u
loc(E−) ∩ P such that B(P1) ∈ S1 and

B(P2) ∈ S2.

Proof. To start the shooting method, we list facts about W u
loc(E−): Let r1 < 0 < r2

be the two eigenvalues for (10). Let r3 > 0 be the eigenvalue with the eigenvector
(0,0,1).

(1) The line {λ = 0} is on W u
loc(E−). On this line, we have

v′ > 0 if v > v−, v′ < 0 if v < v−.

(2) W u
loc(E−) is two dimensional with two linearly independent tangent vectors

(Λ,M,V ) = (0,0,1) and (Λ,M,V ) = (1,r2,0).

Based on this, we can express the local unstable manifold as

W u
loc(E−) = {(λ ,v,μ) : −ε1 < λ < ε1, v−− ε2 < v < v−+ ε2, μ = μ∗(λ ,v)}.

Moreover, if λ > 0, then μ∗ > 0.

Recall that the isocline C for v can be expressed as λ = λc(v) with λc(v−) = 0,
and dλc(v−)/dv > 0. Choose v̄ with v− < v̄ < v−+ ε2 so that 0 < λc(v̄)< ε1.

For each 0 < λ1 < λc(v̄), define a line segment P1P2 on W u
loc(E−):

P1P2 := {(λ ,v,μ) : λ1 ≤ λ ≤ λc(v̄),v = v̄,μ = μ∗(λ ,v)}.

It is parameterized by λ with λ = λc(v̄) corresponding to P1 and λ = λ1 correspond-
ing to P2. It is also clear that P1P2 is in P except for the point P1.

Since the flow on the v-axis is transversal to the plane {v = v+}, assuming that
λ1 is sufficiently small so that P2 is close to the v-axis on W u(E−), then the orbit
Φ(ξ ,P2) stays close to the v-axis until it hits v = v+ transversely. It is easy to show
that B(P2) will hit the boundary of P in S2. On the other hand, P1 is on S1 and the
flow Φ(ξ ,P1) leaves P transversely at P1 ∈ S1. �

Theorem 2.4. Consider the liquefaction waves with λ− = 0, λ+ = 1. Assume c2 +
pv(λ ,v) < 0 if λ = 0,1 and v ∈ [v−,v+] and c2 > 4ab|p(λ−,v−)− pe|. Then there
exists a liquefaction wave connecting E− to E+. The (λ ,v) components of the wave
are monotone.

Proof. There exits an relatively open subset O1 of P1P2 containing every P such that
B(P) ∈ S1. There exits also an relatively open subset O2 of P1P2 containing every
P such that B(P) ∈ S2. It is also clear that O1 and O2 are mutually disjoint. Since
P1 ∈ O1, P2 ∈ O2 and P1P2 is a connected set,

P1P2 − (O1 ∪O2) (13)
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is nonempty. Let P be a point from (13). Then Φ(ξ ,P) cannot hit the boundary of
P . It must stay inside P and approach the equilibrium E+. Also Φ(ξ ,P) → E− as
ξ →−∞ since P ∈W u

loc(E−). �


2.3 Existence of Liquefaction Waves
for λ− = 0, 0 < λ+ < 1, p+ = pe

Assume c > 0 as before so that the equilibrium E− corresponding to λ = 0,1 is a
saddle with exactly two positive eigenvalues and one negative eigenvalue. We do not
know exactly what are the eigenvalues for E+ when p+ = pe,λ �= 0,1. However, it s
not used in the proof of Theorem 2.6.

Assume that

c2 + pv(λ ,v)< 0

is satisfied throughout the region λ ∈ [0,λe],v ∈ [v−,v+]. The isocline C := {v′ = 0}
can be solved from the equation

c2(v− v+)+ p(λ ,v)− p+ = 0,

and the solution can be expressed as

v = vc(λ ), 0 ≤ λ ≤ λ+,

dvc(λ )
dλ

=
−pλ

c2 + pv
> 0.

We look for the liquefaction wave connecting λ− = 0 to p+ = pe. The traveling
wave satisfies (10) and (11). As from Lemma 2.1, we assume that c > 0.

Consider a pentahedron shaped solid P in (λ ,μ ,v) space bounded by the five
surfaces (Fig. 4):

Left side F� := {λ = 0};

Back side Fk := {v = v+, 0 < λ < λe, 0 < μ <−c(λ −λe)/2};

Front side F f := {0 < λ < λe, v = vc(λ ), 0 < μ <−c(λ −λe)/2};

Slant side Fs := {c(λ −λe)/2+ μ = 0, 0 < λ < λe, vc(λ )< v < v+};

Bottom side Fb := {μ = 0, 0 < λ < λe}.
The bottom side is further divided into Fb = Fb1 ∪Fb2, with

Fb1 := Fb ∩{p(λ ,v)≥ pe},
Fb2 := Fb ∩{p(λ ,v)< pe}.
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μ= −c(λ−λe)/2

λ=0

v = v−

 v = v+

λ=0

v

μ

λ=λe

λ

λ

H
F

E

λ = 0 λ = λe

v +

v −

v

G

Fig. 4 The pentahedron and the top view of its base Fb. On the curve EF , p(λ ,v) = pe. On the
isocline GH, v′ = 0

Let P be an interior point of P and B(P) be the first touch point of the orbit at ∂P .
Just as in §2.2, we can show:

(1) B(P) /∈ F�.
(2) It is possible that B(P) ∈ Fk.
(3) It is possible that B(P) ∈ F f .
(4) It is possible that B(P) ∈ Fb2.
(5) B(P) is not in the interior of Fb1. Also B(P) cannot be on the line {p = pe}∩

Fb1.

The following lemma shows that B(P) /∈ Fs.

Lemma 2.5. Assume that along the isocline C, we have

sup
λ

{
abpλ (λ ,vc(λ ))

|c2 + pv(λ ,vc(λ ))|
}
< 1.

Then B(P) is not on the slant side Fs.

Proof. The inward normal of the slant side Fs := {c(λ −λe)/2+ μ = 0} is

n = (nλ ,nμ ,nv) = (−c/2,−1,0).

The vector fields are

f = (fλ , fμ , fv) = (μ ,−cμ − abw(λ ,v),v′).

We want to show that on Fs,

n · f =−cμ/2+ cμ+ abw(λ ,v)> 0.
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Using μ =−c(λ −λe)/2, we have

n · f = (λe −λ )
(
(c/2)2 − ab

w(λ ,v)
λ −λe

)
. (14)

Recall that pv < 0, thus ∂w/∂v > 0. Since on Fs , we have vc(λ )< v< v+, therefore

w(λ ,v)
λ −λe

<
w(λ ,vc(λ ))

λ −λe
≤ 1

4

∣∣∣∣ p(λ ,vc(λ ))− p(λe,vc(λe))

λ −λe

∣∣∣∣ , (15)

by the fact λ (1−λ )< 1/4 and p(λe,vc(λe)) = 0.
The difference quotient can be estimated by

sup
λ

|d p(λ ,vc(λ ))
dλ

|= sup
λ

|pλ + pv(dvc(λ )/dλ )|

= sup
λ

|pλ + pv
−pλ

c2 + pv
|= sup

λ
| c2 pλ
c2 + pv

|.

If the assumption of the lemma is satisfied, then from from (14) and (15), we have
n · f > 0. �

Theorem 2.6. Consider the liquefaction waves with λ− = 0, 0 < λ+ < 1, p+ = pe.
Assume that c2 + pv(λ ,v)< 0 throughout the region and

sup
λ

{
abpλ (λ ,vc(λ ))

|c2 + pv(λ ,vc(λ ))|
}
< 1,

along the isocline C for v. Then there exists a liquefaction wave connecting E− to
E+ with p+ = pe. The (λ ,v) components of the wave are monotone.

Proof. The rest of the proof of the existence of the liquefaction waves follows
exactly like the case where λ+ = 1. �
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