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We study a singularly perturbed boundary value problem in R™“": x = f(x. J, &),
ev=glx, v, &), Bi(x(wg), v(wy) e)=0, By(x{wy+w) ylwe+w), e)=0. Given a
candidate for the Oth order approximation which exhibits both boundary layers and
interior layers, we present a complete procedure to compute higher order expan-
sions and a procedure to compute the real solution near a truncated asymptotic
expansion assuming the hyperbolicity of the regular layers and some generic
assumptions. Similar results concerning the existence of periodic solutions
(relaxation oscillations) are also presented. Several ideas from dynamical systems
theory are employed, e.g., exponential dichotomies, Fredholm alternatives, and
heteroclinic bifurcations. ¢ 1990 Academuc Press, Inc.

1. INTRODUCTION

We study the singularly perturbed boundary value problem

= fl(x, y, &),
er=gl(x, y. &),

WySI<wytw (1.1)
B (x(wy), y(wy), £) =0,

By (x(wo+ w), y(we+ w), £)=0,

where f, g, B|, and B, are vector-valued nonlinear functions. We assume
that a candidate for the Oth order asymptotic approximation of (1.1) is
given which admits boundary layers near ¢ =w, and w,+ w, and several
interior layers connecting the regular layers. Our main assumption is the
absence of any turning point in the regular layers, i.e., the matrix g (x, y, 0)
is hyperbolic along the Oth order regular approximations. (This is not a
generic assumption. However, functions g(x, y, ) that satisfy the assump-
tion form an open set in a suitable Banach space.) We prove that the
candidate for the Oth order approximation is a genuine one, i.c., there exists
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a real solution of problem (1.1) nearby, provided some additional generic
assumptions about system (1.1) are valid. We also provide procedures to
compute the higher order approximations and procedures to compute the
exact solution for a fixed e.

Our treatment uses methods of dynamical systems theory. The idea of
applying dynamical systems methods to singular perturbation problems
can be traced back several decades. Among many contributions we
mention the work of Vasil'eva [29], Hoppensteadt [17], Fife [8, 9],
Fenichel [ 7], and Hale and Sakamoto [14]. However, it is recent develop-
ments in dynamical systems theory that make possible a systematic treat-
ment of this subject. Among these developments is the theory of homoclinic
and heteroclinic bifurcation, which aims at understanding and predicting
the complicated behavior near a transverse homoclinic orbit. This theory
proves to be a powerful tool for studying singular perturbation problems,
because of the observation that transition layers are in fact heteroclinic
orbits connecting the regular layers. The usual approach to homoclinic
bifurcation is Melnikov’s method ; see Holmes and Marsden [16]. We shall
use instead a version due to Chow, Hale, and Mallet-Paret [3] and
Palmer [23] that uses exponential dichotomies, Lyapunov-Schmidt
reduction, and the Fredholm alternative. To solve successively the linear
recursive equations that determine the higher order approximations, we
shall again make use the exponential dichotomies and the Fredholm alter-
native. Another area of dynamical systems that we shall use is the theory
of the center manifold and its stable and unstable fibers (Fenichel [7]),
which furnishes the best geometric insights into the occurrence of interior
and boundary layers.

Our approach begins with the following observation. Consider a trunca-
tion of the asymptotic expansion of the solution to a certain order

p p
(x, )= < Y elx(1), 8”}{,-(t)>.

j=0 j=0
We expect it to be piecewise continuous and allow jumps between outer
and inner approximations. Moreover, i.e., due to the truncation, Eq. (1.1)
and its boundary condition will not be satisfied exactly, and some residual
error is expacted. A function (x(t,¢), y(z,¢)) is said to be a formal
approximation or a pseudo-solution of the boundary value problem (1.1)
if it is piecewise continuous, and if the jump error, residual error, and
boundary error are small. According to the shadowing lemma in the
dynamical system theory, if the linearization around (x(t, ¢), y(t, ¢)) has an
exponential dichotomy, then (x(z, &), y(z, ¢)) is a genuine approximation,
i.e., there is an exact solution nearby. The above program has been carried
out in Lin [19], where a nonautonomous problem similar to (1.1), but
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with the variable x absent, was studied. It was shown that the heteroclinic
solution became transverse, with the angle of stable and unstable spaces
being 0(¢), after adding higher order expansions, while for ¢ =0 the angle
was 0. The idea was in fact Malnikov’s idea in disguise. Also the conditions
to ensure transversality of the heteroclinic solution were exactly those that
enabled us to compute the higher order expansions.

The current work is a genuine generalization in the sense that by setting
i=1, the problem in Lin [19] may be written in the form (1.1). Moreover,
we now have an m-dimensional center manifold corresponding to the x
variable and the linearization ceases to have an exponential dichotomy.
Therefore, the concept of exponential trichotomy is introduced. The
linearization in this paper is made around the Oth order approximation so
that in the iteration process an e-independent linear operator is obtained.
In the previous work (Lin [19]), the linearization was around the pth
order truncation, and thus ¢-dependent. The advantage of such a change in
numerical implementation is clear.

Another outstanding problem for system (1.1} is how to “project” the
boundary conditions to the regular layers, which satisfy an m-dimensional
system of equations

x=f(x, »,0),

(1.2)
0=gl(x, 1, 0).
Not all the boundary conditions can be satisfied by the regular layers. The
“cancellation law,” which determines the induced boundary conditions
for system (1.2), has been studied by many authors; see Wasow [30],
Harris [157], O'Malley [22], and Flaherty and O’Malley [10]. Ours is a
geometric condition which requires that the center stable manifold of the
first regular layer intersect transversely the initial manifold, determined by
the zero set of B,(x, y, 0) =0, etc. Many authors have required that the size
of the boundary layers be small, or that the function g be linear in the
second variable . It can be verified that our geometrical condition in these
cases can be simplified greatly and leads directly to the previous resuits,
e.g., Tupciev [28] or Harris [15].
Systems like (1.1) arise in various fields: morphogenetic and population
dynamics, ecology, physiology, and chemistry. Fife {9] studied the system
of second order equations

£2ﬁ=f(u’ U),
= g(u, v), 0<r<t

u(i)=ua,, v(i)=8,, i=0,1.



322 XIAO-BIAO LIN

He showed the existence of boundary and interior layers under some
general assumptions. His result was improved by Ito [207]. Later we shall
give a simple generalization and show how his assumption implies ours.
Mimura, Tabata, and Hosono [21] studied a similar problem but with
Neumann boundary condition. In both of the two examples the number of
transition layers for a given system can range from a positive integer to
infinity. See Sakamoto [26] also.

Closely related to system (1.1) is the problem of the existence of periodic
solutions of a singularly perturbed system. Supposing that the Oth order
outer layers and inner layers form a closed cycle, we ask if the system of
differential equations with a small nonzero ¢ possesses a periodic solution
near the closed cycle. Such periodic solutions, which appear in many
applied fields, are usually called relaxation oscillations (Grasman [127).

Our treatment of the problem of existence of periodic solutions is
analogous to that of the boundary value problem (1.1), and thus the
general results will be stated without proof. As an application we consider
traveling wave solutions of the FitzHugh—Nagamo equation, which satisfy
a singularly perturbed system in R*:

’

u ==,
v'=0c— f(u)+w,

w =gl (u—yw).

We give a short proof of the existence of periodic traveling wave solutions
for a typical cubic-type nonlinear functions f(u). Other types of traveling
wave solutions of the FitzHugh-Nagumo equation are also solutions of
suitable boundary value problems, and can be treated by the methods of
this paper. The relaxation oscillation in van der Pal’s equation, however,
does not satisfy the hyperbolicity conditions posed in this paper because of
the existence of turning points on the slow manifold. We shall discuss
turning points in a separate paper.

Our main results and hypotheses are stated in Section 2, which also
includes the example adapted from Fife [9]. The Analytic hypotheses are
rather complicated. However, the geometric idea behind them is natural
and simple and therefore is also presented in Section 2. Basic definitions
and lemmas concerning the linear variational equation of the nonlinear
problem are given in Section 3. The solution of the linear boundary value
problem in Section 4 admits several specified jump discontinuities and
reminds us of the shadowing lemma in the dynamical system theory. We
shall use Theorem 4.9 in Section 6, however, we first prove Theorem 4.1 in
which the boundary value problem is stated in a more symmetric way
which allows a shorter proof. In Section 5 we give a complete procedure for
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the construction of inner and outer expansions. The major tool in solving
the linear recursive equations is developed by many authors, eg,
Palmer [23] in the study of the bifurcation of homoclinic orbits. We show
that no matching in the y direction is needed while matching in the x
direction is required and has to be compatible with the reduced boundary
conditions in the slow manifold. The proof of the validity of the formal
expansions obtained in Section 5 is given in Section 6, which is in fact a
straightforward application of Theorem 4.9. We point out that a lot of dif-
ficulty comes from the fact that system (1.f) is autonomous. Perturbation
of the length of time intervals occurs in Sections 4, 5, and 6, which makes
the presentation rather awkward. Franke and Selgrade [11] have proved a
shadowing lemma for autonomous systems where very complicated
rescaling of time also occurred. Singularly perturbed periodic solutions are
discussed in Section 7.

Since problem (1.1) is autonomous, solutions or formal approximations
of solutions are invariant under a shift of time, ie., if u(s), a <1< f is
a solution, so is v(f) = u(t + 4), x — 4 <t < f — 4. The idea of allowing
different shifts of time in different layers is very useful and it leads to the
defining of local time in each layer, which resemble local coordinate charts
in the theory of differentiable manifolds. We use Z,(¢)=(X,(¢), Y,(¢)),
tela,b;], 1<i<lI (or Zjet), tela, f;). v,=a,/e, and B,=b,/e), to
describe a regular layer. We use z,(r) = (x;(t), »;(7)), teR, I <i<I-1, to
describe an interior layer between Z,(¢) and Z,, (¢). The change of local
time follows the following rule: t=0€R in z;(r) corresponds to 1= b, in
Z(t), ie., t=b,—e¢1, and t=a;,, in Z,, (t), ie, t=a,,  +¢t. Boundary
layers are described by local time te R* in zy(7) and te R™ in z,(t), with
1=01in z4(7) identified with r =a, in Z,(¢) and 1 =0 in z,(7) identified with
t=b, in Z,(1). The advantage of introducing the local time becomes
obvious when expanding «,, b,, a;, and f§, in power series of & The use
of local time allows us to compute each expansion a,+3Y " &'t/(a)
(or b,+3 7, ¢&'t;(h)) separately without interacting with the others.
Throughout this paper we use the index a (or b) to indicate a constant or
a function associated with the left (or right) end point of an interval.

Let {u,(t), t€[a;, b,]}_, be a sequence of piecewise smooth solutions
of an autonomous ordinary differential equation. If u,(b,)=u,, (a;,,) and
the trajectories are oriented such that the one of u,, ,(z)’s follows from that
of u,(r)’s. We define a “global solution” u(r)=\/;_, {u;(1), 1€ [a,, b;]} by
pasting the local solutions together, where \/ is called the pasting operator
and u(t), 1€ [wqy, wo+ w], is defined as follows :

(1) wyeR is an arbitrary constant, w=3""_, (b, —q,

(il) w(t)=u,(t —wy—
}/:1 (b,—(l,).

"‘(b_a)+(l)llej:ll —a)<t—wy <
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Similarly if {u;(¢), te[a;, b,]};_, is a sequence of formal approxima-
tions of solutions of an autonomous ODE, we can still define a global
formal approximation u(¢)=\/{_ {u;(?), te[a;, b;]} as shows in (i) and
(ii). Here we do not require u,(b,) =u,, ((a;, ), thus u(¢) may have jumps,
which presumably are smali.

Two functions u;(z), teJ,, i=1,2, are said to be orbitally close if
the graphs of those functions are close to each other. Define the orbital
distance as

dist(u,, uy) =sup{o(u,, u,), (uy, u,)},
where

o(uy, uz)=sup { inf (Ju,(£,) —ur(t2) + 11, — 1,))}.

heJy nel

Define a subset E,(y, /) of continuous functions on J as

E (y, )= {x(-) [ sup(Ix(t)] e(1 + ]1]) ") < 0},

ted

which is a Banach space with the norm

11l 5.0y = sup (Ix(1)] (1 +1117) 1),

red

where 7 is a real constant and />0 an integer. Let
E5(n, 1) = {x(0) | x(£), X' (1), o X U2) € ES(3, 1)},

which is a Banach space with
k

Hxllaj‘(»,v,/): Z HXU'HEm.u-
=0

We use “.” to denote d/dt and “'” to denote d/dr, where t=1t/¢ is a fast
variable. The range and kernel of linear operators are denoted by #
and .

2. ASSUMPTIONS, MAIN RESULTS, AND AN EXAMPLE

We study the singularly perturbed boundary value problem

x=f(x, y,¢),
ey = g(x, », &),

WeSI<We+w 2.1
Bl(x(w0)7 ,V(wo)’ S) = 0,

Bi(x(wy+ w), y(wg+ w), £) =0,
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xeR™ m>=1 and yeR”, n=1 f g B,, and B, are C* with all the
derivatives being bounded. B,: R"xR"xR —R“ and B,: R"xR"xR -
R with d,+d,=m+n+1. £>0 is small. w>0 is a parameter to be
determined by the problem. w,eR is an arbitrary constant, irrelevant to
the problem in fact.

Assume that the Oth order slow manifold (or regular, or outer, or center
manifold) has several branches

F={(x, y)| y=G'(x), G'e C*(R",R")}, I<i<],

where % consists of the zeros of g(x, 1,0)=0. Let (X4(r), Yo(0)),
te[a;, b,], be a solution of the Oth order outer equation

X=f(x, 5 0)

(2.2)
0=g(x, »,0),

which lies on &, 1 <i< I We do not assume that a,, , =b,, however, we
assume that X (b,)=X*"(a;, ), 1 <i<I—1. Let (x}, yo(1)), 0<i</, be
a solution of the Oth order inner equation

x'(1)=0,

(2.3)
y'(r)= glx(1), ¥(1), 0),

where x{ is a constant with x| = X}(b,) for 1 <i< 71 and xJ=Xy(a;). yi(t)
is defined for teR if 1<ig</I—1, teR* if i=0, and teR™ if i=1
yi(r) = Yi(b;) as 1> —o0, 1<i<, and yy(r) > Y N a,, ) as 1> +oo,
0<i<I—1. Moreover, the Oth order boundary conditions are satisfied,
ie.,

Bl(xg’ }‘8(0), 0) = 0’

(2.4)
By(xg, 15(0), 0)=0.

We assume the normal hyperbolicity on & near the orbit of
(X5(2), Yo()):

a{ g Xo(1), Yo(1), 0} n {|Re | <o} =4,  forall refu.bh]  (H;)

The dimension of the stable and unstable spaces of g, are denoted by ¢~
and d* =n—d~. Assume that d-, d*, and a0>0' do not depend on
I<i<l

We need to consider the linear homogeneous equation

¥'(1) — g.(x5, ¥o(1), 0) ¥(7) =0, (2.5)
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and the adjoint equation
¥(1)+ gF(xg. yi(), 0) y(1)=0. (2.6)

Assumption (H,) and the fact (xg, yo(r)) = ., as 1 — +oo imply that
(2.5) has an exponential dichotomy for e R*, 0<<i</—1, and similarly
(2.5) has an exponential dichotomy for re R, 1 <i< I (See Lemma 3.4 of
Palmer [23].) Let the solution map of (2.5) be U'(r, ¢) and the projections
to the stable and unstable spaces be Q’(t) and Q' (t) =1 — @‘(r). It should
be clear that yi(r)' is a nontrivial bounded solution of (2.5). Assume that
yo(t), teR, 1 <i<[I—1, is unique among such solutions up to a scalar
factor, then from the general theory of exponential dichotomies and the
Fredholm alternative, see Palmer [23], there exists a bounded solution
Y1), teR, 1 <i<I—1, of (2.6), which is unique up to a scalar factor.
Moreover ¥,{t) -0 exponentially as 7— +o. We need the generic
assumptions

"e‘f A gulxh L0V £0, I<I<I= L (HD)

4, f(Xy(b,), Yo(b,),0)#0

0 . (H;)
A f(Xg a0, Yt a,, ), 00#0,  1<i<T—1.
Consider the equations
{Bl.\'(xga )‘8(0)a 0)
0 -~ A
+ B(x3, 12(0),0) j 00, 5) 0°(s) g.(x3, £3(5), 0) ds} X
+ B,,(x5, ¥5(0),0) 02(0) ¥ =0, (2.7)

{BZ.\'('X-éﬁ }‘(I)(O)a 0)

+ By, 400,00 [ 0%0,5) Q1ls) (x4, 34151, 0) s} x

+ By (x}, ¥5(0),0) 01(0) y=0. (2.8)

Equation (2.7) is the equation for the common targent vector (x, y)
of #'B, and the center stable space of (Xj(a,), Xi(a,)); see (3.3).
Equation (2.8) has a similar meaning.
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The left-hand side of (2.7) defines a linear operator %, : (x, 0°(0) y)e
R”’x@QS(O)—» R%. Similarly, the left-hand side of (2.8) defines a linear
operator #,: (x, 0*(0) y) e R” x 20°(0) » R“. We assume that

A, and A, are surjective. (Hy)

{span[ f(Xo(a,), Yi(a,),0)1® ROX0)} n A B, = {0},

{span[ f(Xi(b,), Yi(b,),0)1@ RO(0)} n A B, = {0},
(H,) and (Hs) imply that

m+d z2d =zd +1 and m+dtzd,zd” +1. (2.9)

Conversely, if either one of (2.9) is valid then (H,) and (Hs) are generic
assumptions.

From (Hj), (x, y)e X &, if and only if y = G%x), where G° is a linear
map with the domain L.(0) = R” and range < #Q%0). Similarly,
(x, y)e X' B, if and only if y=G'*'(x), where G'*' is a linear map with
the domain R.(/) < R” and range = #0'(0). Obviously

dim L(0)=m+d~ —d,,
dim R.(0)=m+d* —d,, (2.10)
dim L (0)+dim R (0)=m — 1.
(H;) also implies that
f(Xola,), Yg(ay), 0)¢ L (0),
S(Xg(by), Yg(b)), 0)¢ R().

Let S'(r, 5) be the solution map for the linear equation

— £ (X3(1), Yi(1), 0) g "(Xg(1), Yo(0), 0) g (XG(t), Yolt), 0)} x(1)=0.
(2.11)

It is readily verified that Xé(t) or flX{(1), Yi(1),0) is a solution of (2.11).
Let 2, and 2, be two codimension one subspaces of R™. Let
(11, t:]<[a,, 5] (or [ty,t,]1€[a;b,]), and 2, @ f(Xy(1y), Y1), 0)=
2@ f(X§(1,), Yi(t,), 0)=R"™ We then define S'(15,4,:2,,2,): ¥, - 2%,
as follows: x,=S%(t,, 1;; 2>, X} x, if there exists { € R such that

xy=8'(t, 1) X, + {f(Xolt2), Yo(2,), 0).

[t is obvious that S(t,, 1,;%,,2,) is an isomorphism: 2| — X, with the
inverse S'(t,.t,; 2, 2,).
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DerINITIONS.  Let TM ;= {xeR"|4,-x=0} for 1 <i<I—1.

Let TM, be an (m— 1)-dimensional subspace of R™ with L (0)c TM,
and TM,@®span[ f(X,(a,), Yi(a,),0)]=R".

Let TM, be an (m— 1)-dimensional subspace of R™ with R.([)c TM,
and TM,@span[ f(X}(b,), Y{(b,),0)]]=R".

Let LJ(i)=S'(b;,a;; TM;,TM,_YL(i—1), and R.(i—1)=S'a, b,;
T™M, |, TM,) R (i), 1<i<I.

Observe that we have isomorphisms L (i)~ L.(i—1), R.(i— 1)~ R.(i),
I<i<gl
We assume that

L(H®R()=TM;, 0<i<I (Hy)

It is clear that dim L (i)=dim L (0) and dim R (i—1)=dim R (/) for
1 <i< I (Hg) is a generic assumption due to (2.10).

We now state our main results in Theorems 2.1 and 2.2. To simplify the
notations, we shall denote Z(r)=(X(t), Y(¢))e R"*", z(t) = (x(7), y(1))€
R"l+".

THEOREM 2.1. Suppose that {(Xi(t), Yi(1)}!_,, tel[a, b;] is given
which satisfies (2.2) and {(x{, yi(t))}!_, is given which satisfies (2.3), and
(H,)-(Hg) are satisfied. Then there exist formal power series:

(1) X20e/Xj(t), 72,8'Y[(t), 1<i<I tea,—8,b;+6], 6>0, is
a small constant.

(i) X7, (1), 2 0€ v (1), 0 < i< I, which are defined for teR if
1gig<I-1; reR+ ifz—OandreR ifi=1

(i) Y=, e'tia), T, etib), 1<i<l.

The functions X (1), Y (1), xj(t), y;(t) and the constants t(a), T(b) are
calculated recursively by systems of linear equations and the auxiliary
constants for the solutions of the linear equations are determined by an
asymptotic matching principle. Moreover, for any integer p>0and 0 < < 1,

the function

=V {(Z #/22(c), Te [0, 6 ‘])

i=1 j =

<

is’Z te[a+28’r a)+£”b+2£r(b — ])

J=1 J=1

&
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is a formal approximation of (2.1) with the jump errors as O(e"?* ") and
boundary errors as O(¢'?+"). The residual errors in the slow variable t and
fast variable t are listed below:

Residual errors in t equation of x equation of v
outer layers o™ O™t
inner lavers O(e'") Ooehr=1)

Residual errors in 1 equations of x  equation of y
outer lavers o) Ofe” )
inner layers Ooehr+ O(efrety

General discussions of the asymptotic matching principle may be found
in various places; see Eckhaus [5, 6]. We give a precise description for our
purpose. Let the inner expansions at the two end points of the outer
approximation be

_Zs(razéi <a+28 +ar)

k=1

. ‘ (2.12)
Z rb1=erZ’Z<b+Za b)+£r>,
= =0 k=1
where Z/= (X}, Y), z;(z, a, i) = (x;(%, a, i), y,(1, a, i), etc.
Asymptotic Matching Principle.
:f(T’ a, i)—z;il(T)EER*(yaj)» ]20
(2.13)

Z,-(T, b’ I.)—Z;(T)EER—(')',_].), 1201

where 0 <y <a, is a constant.
Define the composite €Xpansion Z.,mp(f, p) in two steps. First for
tela,+3f_ e'ti(a), b+ X[ e'ti(b)], define

i e iifl—a ¢ k-1
zcomp,i(t’ P)= Z ngj(t)+ Z sjz;' - = Z & t;(a))
j=0 j=0 & k=1
p . t—b, 14 1
+ Y s’:}( —- y & 1rk(b)>
=0 k=1
14 t—a, 14
-y s’z,-( A Yy e 'ti(a), a, 1)
j=0 k=1
P [_b 14
— Z s’z,( - — Z k-1 T.(b), b, 1) (2.14)
/=0 € k=1
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Next, define

7 [ P
Zeomplts )=V {—'oomp,,»it, ), tE[a,-vL Y e'tifa) b+ Y B"r}(b)}}-

i=1 r=1 y=1

(2.15)

THEOREM 2.2. Let z(t, p)=(x(t, p), y(t, P)), te[wy, wo+ @], be the
formal approximation as in Theorem 2.1, corresponding to some p= 1. Then
there is £,>0 such that for 0 <e<g,, there exists a unique exact solution
Zeyact{l), 1€ [0, W+ Wegace ), Of the boundary value problem (2.1) with
dist(z.,ai(?), 2(t, P))=Ole), and D — Wey,o,| = Ole). The composite expan-
sion  Zeomp(t, p) defined in (2.14) and (2.15) is wuniformly valid in
te [wy, wg+ w]. Moreover we have the following estimates for all p = 0:

dist(zexaet(1), 2(2, p)) = O(7 7+ 1), (2.16)
dist(Zexact(t)s Zeomplts P))=O(" 1), (2.17)
lw—wexacll=0(8p+l)' (218)

It is useful to present a set of geometrical conditions which is parallel to
the analytical hypotheses made in this section. Such geometrical conditions
also help to explain how the Oth order approximations (X((¢), Y{(¢)) and
(x6(1), ¥i(7)) may be obtained.

Each (x, y)e¥, 1<i<l, is an equilibrium point for Eq.(2.3).
Hypothesis (H,) implies that % is normally hyperbolic near the orbit of
(X5(1), Yi(1)). There exist two families of invariant manifolds, namely
stable fibers W*(x, G'(x)) and unstable fibers W“( x, G'(x)) passing through
each (x, G(x))e . The orbit of (xi(1), yi(1)), 0<i<I—1, lies on
We(x,G'*'(x)) and the orbit of (xj(t), yi(r)), 1<i<I, lies on
W' (x, G'(x)), for x=X}*"(a;,,) and x=X{(b,), respectively. Consider

0=Xib)=X"""Ya;;,), 1 <i<I—1, as parameter in the equation

¥ =gl(xg, ¥,0). (2.19)

One must find x} such that (2 19) has a heteroclinic solution connecting
(x5, G'(x5)) and (x5, G'* '(x})). Here we have a standard heterocllmc per-
turbation problem. Our hypotheses imply that the set M {xolthere isa
heteroclinic orbit for (2.19)} is not empty. Moreover by (H,), M, is an
(m — 1)-dimensional submanifold in R” and 4, is the normal of M,
1 <i<I—1. See Hale and Lin [13] for a proof. (H;) implies that each M,
is a local section for the induced slow flows on R™. See Fig. 1.

The flow on the slow manifold & is completely determined by its projec-
tion on R™, which satisfies the equation

X(0) = f(X(1), G'(X(1)), 0). (2.20)
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FIGURE 1

Therefore the reduced equation (2.20) is discontinuous when crossing a
section M,, 1<i<I— 1. However, the trajectory

!

X(t)=\/ (Xyr), 1€(a;, b,])

1=

is continuous due to the fact Xj(b;)= X" "(a; ;).
Boundary conditions at the two end points X,(a,) and X;(b,) have to be
specified in order to determine the Oth order approximation. Define

S={(x, y)| B|(x, y,0)=0},
1= {(x, )| By(x, y,0)=0},

yg:%n{ U WS(x,G‘(x))))}, (221)
reR”
9’;H=y;“m{ U mw(x G’(x))}. (2.22)

Both & and &/, | are nonempty, for by our assumptions (x{, y3(0))e ¥,
and (x}, y4(0))e %%, ,. (H,) is equivalent to:

50584 2-9
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(H4)': The nonlinear mappings B, and B, are (locally) surjective. %
and %, , are two (local) smooth submanifold in R”*". The intersections
in (2.21) and (2.22) are transverse (locally).

(H;) is equivalent to (Hs)" and (Hj)".

(Hs)":
TW3(xg, G'(x))n TS ={0}  at (x3, ¥3(0)),

TW'(xg, G'(x§)) TS, =1{0} at  (xg, y4(0)).
Define
M{={xeR"| % W¥x, G'(x)) # T},

M= {xeR"| S A W'(x, G'(x)) £ & }.

It is not difficult to show that locally M) and M are smooth submanifolds
in R™. Let
(x, ¥)e % Wi (x, G'(x)), xe M.

(x, y) is locally unique and (x, ¥) — (x, G'(x)) is a diffeomorphism through
the stable fiber WS(x, G'(x)). A similar situation also holds for
M;— &7, . Notice that dim M{,=d,~d* —1 and dim M|=d,—d~ — L.

(Hs)": The flow of (2.20) for i=1 (or i = 1) is not tangent to M (or
M7) near (X(i(al)’ Yé(al)) (or (Xé(bl)’ Y(’)(bl)))~

The construction of the Oth order approximation (Xj(¢), Yi(1)), I i</,
can be stated as follows:

Find a continuous trajectory starting at M, ending at M, and passing
through each M, 1 <i</, successively. The trajectory has to satisfy (2.20)
on each & when moving from M;_, to M,. See Fig. 1.

It is clear from (Hg) that such a trajectory is locally unique. Details of
how to compute such a trajectory shall not be discussed here though it is
a problem of fundamental interest, since the method employed will be con-
siderably different. All the hypotheses made above can be localized in an
obvious way. We emphasize again that our analytical hypotheses are
merely detailed descriptions of the sets of geometrical conditions. Tt is
precisely the same conditions that ensure the solvability of higher order
approximations and the validity of the formal power approximations.

The following example is a simple extension of Fife [9].

ExampLE 2.3. Consider

i=f(u,v),
&% = gl(u, v), 0<r«l,
u(i)=o;,
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where ueR™ veR", f:R"*" > R", g:R"*" > R". Setting ti=u,, eb=v,
and adding i=1 to the equation we have a (2m+ 2n+ 1)-dimensional
system, with m + n + 1 initial conditions and m + n + 1 terminal conditions:

i=1,
u=u,,
iy = flu, v),
eh=r,
e6, = glu, v);
1=0, r=1,
B.C.: Su=uy, U=,
v=Pfo; v=P.

Let x=(t,u, u,) be the slow variable and y= (v, v,) be the fast variable.
Assume that equation

O=v,,
0=g(u ),
has two branches of solutions
v=hy(u) and v="h(u).

Assume that

olg(uhu)}nR =&, R =R u{0}. (2.23)

Let A=( ;), and it is not hard to show the following:

(i) ieo(A)if and only if A= i\/,l_j, where {4;}"_, =0{g,.}. There-
fore A is hyperbolic, with n-dimensional stable and unstable projections,
denoted by Q, and Q,, respectively.

(i) (5)e s (A—A)* implies (,)e. 4 (—i—4)5, k=1, is an

integer. Therefore (,,) € ZQ; if and only if ( *,)e Z20,.

(iii)
{e| (1) =2
Fl(2)eso s

Il
—~I—
<
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Consider
v'=v,,

(2.24)
vy = glu, v),

with u=constant as a parameter. Assume that 'cR™ is a smooth
codimension-1 smooth submanifold such that for werl, {2.24) has a
heteroclinic solution (v(t), v,(t)) — (#;(1), 0), i=0, 1, as T — Foo, respec-
tively. Assume that (v'(t), vi(t)) is the only bounded solution for the
linearization of (2.24) around (z(t), v,(t)), then the formal adjoint equation
shall have a unique bounded solution (¥(7), ¥,(t)) up to a scalar multiple.
Assume that

|7 00 gutu vlx)) de 0. (2.25)

Note that (2.23) implies (H,) and (2.25) implies (H,). In the case
m=n=1, (2.25) is equivalent to a condition in Fife [8,9]. See also
Lin [19] for a discussion of the equivalence.

The initial manifold % = {(t, u,u,, v, v,}[1=0, u=0a,, v=_L,, u;eR™,
v,eR”} and the terminal manifold %, = {(t,u, u,,v,0))|t=1, u=a,,
v=p,, u,eR™, v,eR"} are explicitly given. However, it seems to be very
difficult to describe the stable fibers and unstable fibers attaching to points
(u, hi(u)), i=0,1. A special case with m=1, n=1 has been studied by
Fife [9]. We expect that conditions like (H,) and (Hs) can only be
checked numerically in general cases. Many authors assumed that

(a) g(u, v) is linear in v, or
(b)  Bo—holao) and B, — hy(x,) are small.

In both cases (a} and (b), the stable and unstable fibers can be computed
(or approximated) by the generalized eigenspaces corresponding to the
stable and unstable eigenvalues, respectively. Based on (ii1), it is clear that
if (a} or (b) holds, we have that

LAY {(Luu,v.v)teR ueR”, u eR™, (v,v,)e Wi hy(u),0)},
S B unuy, v, 0,) | t€R, ueR™, u e R™, (v, v,) € W(h,(u), 0)},
and
TS {0} x {0} x {0} x TW*(ho(u), 0) = {0},
TS {0} x {0} x {0} x TW*(hy(u), 0)= {0},

at the points of intersections, where W* and W*" denote the stable and
unstable manifolds of the equilibria (4,(u), 0) of Eq. (2.24). We can also
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obtain easily that M{={(t,u,u,)|[t=0, u=0a, u,eR™} and M=
Htuu ) t=1, u= Py, u,eR”}.

We have to solve the following two initial value problems in order to
compute a Oth order approximation in the slow manifold:

i=1,
u=u,, (2.26)
i, = fu, ho(u)), =0,
with #(0) =0, u(0)=a, being given, and u,(0)e R™ as a parameter, and
i=1,
w=u,, (2.27)
u, = flu, h(u)), <1,

with 7(1) =1, u(1)=a, being given, and #,(1)e R™ as a parameter. Let the
solution of (2.26) be ¢,: (¢, u,(0)) — (¢, u. u,) and the solution of (2.27) be
@ (t,u (1)) = (¢, u,u;). Let the trajectories of ¢, and ¢, intersect
RxI'xR™"c=R* ! at two m-dimensional curves I'y and I',. Assume that

Fymr, in Rx/I xR™

Let (%, u*, uf)e 'yn [, 0<t* < 1. Based on (r*, u*, u¥) we can compute
u,(0) and u,(1). We assume that uf¥ #0 and

[ w0 gulu®, o(0) de -ut #0. (2.28)
Clearly (2.28) implies (H;), and /=1 implies (Hs)".
We have given a set of sufficient conditions such that Theorems 2.1 and
2.2 apply to this example. It is easy to verify that our conditions are natural
generalization of Fife [9] for a case with m=n=1,

3. PRELIMINARIES

Most of our analysis depends on the properties of the linear variational
equation around the approximate solutions. Here the concept of the
exponential dichotomy has to be extended to the exponential trichotomy
due to the presence of the slow motions on the slow manifolds. We refer
to Coppel [4] and Palmer [23] for the basic properties of the exponential
dichotomies. See also Sacker and Sell [25] and Sacker [24]. Many propet-
ties of the exponential trichotomy can be derived from the corresponding
ones of the exponential dichotomy.
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Consider a linear ODE in R”
X(8)~ A(t) x(t) = h(1), teld, (3.1)

where A(¢) is a continuous and uniformly bounded matrix-valued function.
Let T(t,s) be the solution map for the linear homogeneous equation
associated with (3.1).

DeriNiTION 3.1, We say that (3.1), or 7T(ss), has an exponential
trichotomy in J if there exist projections P.(t), P((t), and P,(t)=
I—P(t)— Py(t), teJ, and there are constants K>1 and a>¢>0 such
that

T(t, 5) P(s)y=P(1) T(t,s), tzsinJ,v=c¢,u,s,

|T(, 5) P(s)| < Ke®" ¥, ¢, 5in J,
|T(1, 5) Py(s)| < Ke™ ™), r2sinJ,
|T(s, t) Py(t)] < Ke %" ™9, t=sinJ.

We say that (3.1) has an exponential dichotomy in J if it has an
exponential trichotomy with P (¢)=0 and P (¢)+ P (f) =1

LEmMMA 3.2. Assume that J=R7*, lim,, ,  A(t) = A(+x), and
X(#)— A(o0) x(t) =0 has an exponential dichotomy with the exponent o> 0
and projections P, and P,. Then (3.1) has an exponential dichotomy in R™,
with the exponent & and projections P (t) and P (1). Moreover 0 <@ <o can
be chosen arbitrarily close to o and P(1)— P, —0 as t > +o0.

LEMMA 3.3. Assume that |A(t)| <M VJ, and A(t) has d~-eigenvalues
with real part < —ou <0 and d* =n—d~ eigenvalues with real partza>0
Jor all teJ. Assume that for any 0 <e<ua, there exists 0 <d=6(M, o, &)
such that if |A(t,)— A(t))| <0 for |ty —t,| < h, where h> 0 is a fixed number
not greater than the length of J, then (3.1) has an exponential dichotomy in
J with the constant K= K(M, o, &) and exponent a—¢. Moreover, P (t)
approaches the spectral projection to the stable eigenspace of A(t) for each
fixed t, as 6 — 0.

The proof of Lemma 3.2 can be found in Palmer [23] and the proof of
3.3 in Coppel [4].

DEFINITION 34. Let F: E[(y,!)— E,(y,1), x—h, be defined as
h(r)=x(t)— A(t) x(¢). Let F*: Ei(y,1)—> E/y,]), y— g be defined as
g(r)= (1) + A()*»(2).
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Clearly # and #* are linear bounded. Assume that (3.1) has an
exponential dichotomy in J with constant K and exponent a. Let >0 be
a constant with |y} <a.

LEMMA 3.5. (i) If J=R~, then for any he Eq (7,1) and ue #P(0),
there exists a unique solution x e Eg (7, 1) of (3.1) with P,(0) x(0)=u. The
solution can be written as

x(1)=T(1. 0)u+f T(1, 5) Pu(s)h(s)ds+j T(1, 5) P,(s) h(s) ds.
[}] _

x
Moreover | x| (.1, < CLIAN gy 0y + lull }-

(it} If J=R™, then for any he Eq (y,!) and ve AP (0), there exists
a unique solution x € Eg-(y, 1) of (3.1) with P(0) x(0)=v. The solution can
be written as

x(1)=T(, ow+j' (1, 5) Ps(s)h(s)ds+j' T(1, 5) P(s) h(s) ds.
0 %
Moreover x| g1 ;. < C{IAN ggvpn + 00}

(iit) If J=R, then for any he Eg,,, there exists a unique solution
xe Ex(y, 1) of (3.1) with Il g2y < CLNAN ggerry}- The solution can be
written as

t

x(:):f’ T(t,5) Pls) his)ds + [ T(1,5) Py(s) his) d.

— X

LEMMA 3.6. If (3.1) has exponential dichotomies in R~ and R with the
same exponent & in R™ and R*, |y| <a. Then F:Ej(y,1)— Ex(y,!) is
Fredholm with Index % =dim #P;(0) —dim #P}(0). he RF if and
only if

IAGLGE

Jor all e X F*. Indeed, X F* c Eg(a, 0).

Consider the following system in R”*" which comes from the lineariza-
tion of the inner layers:

x=0

(32)
y—(A(t)x+ B(t) y)=0, teR (or R*).
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LeMMA 3.7. If A(t) and B(t) are continuous for teR*, and if
lim,_ , A(1)=A(+ ) and lim, , , B(t)= B(+ x) with

|4(1) = A(+%)| < Cre™™,
[B(t)— B(+ )| < Cye ™,

suppose cB(+x)n {|Re Al <a}= . Then (3.2) has an exponential tri-
chotomy in R™. Moreover, if (x, y(1)) € RP.(t), te R is a solution of (3.2),
and 0 <y, =min{a, y}, then

| 3(1) + B(+0) ' A(+90)x| < Ce™ ™,

Similar results also hold for (3.2) defined in R .
Proof. Exponential trichotomies in R* are not unique, and we can
define one by setting
RP(1)={(x, ¥)|x=0, y(t)e Q,(1)}
RP(1)={(x, ¥)|x=0, () e Q 1)}

RP(1)= {(x, ¥)|xeR™, y(t)=fr Ult, s) Q.(s) A(s)x ds

+J' U(t, s) 0,(s) xds}

where U(1, 5) is the solution map for y(r) — B(t) y =0, which, according to
Lemma 3.2, has an exponential dichotomy in R* with projections Q.(¢)
and Q,(r). Now let (x, y(r)re #P(t), te R™, be a solution of (3.2). Let
()= —B(+ ) "A(+oc)x + z(¢), and we have

2o B(t)z=[A(t)— A(+c)]x—[B(t)— B(+ )] B(+ ) 'A(+x)x.

The right-hand side is bounded by Ce ™" in norm. From Lemma 3.5(ii), we
have |z(1)] < Ce ™", Q.E.D.

Suppose that j(t)— B(¢) »(t)=0, with solution map Ul(s, s), has
exponential dichotomies in R~ and R ™, respectively. Let the projections to
the stable and unstable spaces be Q,(¢) and Q,(t), te R~ or R™. Assume
that

dim 20,0 " )=dim #Q,(0")=d*

dim 20,00~ ) RQ.(0%)=1.

From Lemma 3.6, Ind # =0 and dim )% = 1. Therefore, the adjoint
equation y + B(¢)*1(f) =0 has a unique bounded solution y=/(¢) up to a
scalar multiple.
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LEMMA 3.8. Assume that A(t) is continuous and bounded, and

A ‘f—i‘j” W(1)* A(1) di #0,

— X

then Eq. (3.2) has nonunique exponential trichotomies in R~ and R ™, respec-
tively. Moreover we can always choose the trichotomies in R~ and R™, with
the projections being P(1), P(1), and P (1), te R~ or R™, such that

RP(07)=U(0)® W,(0),

AP0 )= V(0)® W,(0),
AP0 )= N(0)® W,(0),

AP0 )=N(0)® W,(0),
AP (07 )=U(0)® @(0),
AP (0% )=V(0)® D(0),

where @(0), N(0), U(0), V(0), W,(0), and W,(0) are linearly independent,
with the following properties:
def

(i) ®(0)= {(x,y):x=0, ye2Q,(07)NAQ(07)} is one dimen-
sional

(i) NO) L {(x,3):4-x =0,y L&O), (x5) € ZP,07) N
AP (07)}, y=Lx, L is a linear map from 4+ - ®(0)*, N(0) is (m—1)
dimensional

(ili) UO)=AP,07)© ®(0), V(O0)=AP(07)O ®(0), U©) 1is
(d* — 1) dimensional and V{0) is (d~ — 1) dimensional,

(iv) W(0)=RAP,(07)© ZAP,(07), Wy0)=#P(07)O AP(07),
W (0), and W,(0) are both one dimensional. (x, y}e W(0) or W,(0) implies
that 4 -x #0 unless x=0.

We define U(r), ¥(1), N(t), W,(1), and W,(1) by U(r)= T(1, 0) U(0), etc.
The results of Lemma 3.8 are depicted in Fig. 2.

Proof. The unstable space #P, (1) for te R~ and the stable space
AP (t) for teR* are uniquely defined, ie.,

AP,(1)={(x, y):x=0, ye RQ (1)} for teR™,
AP (1) ={(x, v): x=0, ye 2Q(1}} for reR™.

Part (i) follows from our assumption on ZQ (07 )N ZQ(0").
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I’V&(t) I/I/rl(t)

t=0

FIGURE 2

The center stable space #P() for te R is uniquely defined, and

AP (1) = {(x, ¥): 3(1) = Ult, 0) 0,(0%) (0)

nt

+| U, 5) Q(5) A(s) ds - x + f U(t, s) Qu(s) Als) ds-x}.
(3.3)

The center unstable space #P,,(r) for te R~ is uniquely defined, and

RP(1)= {(x, ¥): 7(6) = U(1,0) 04(0- ) (0)

+j[ U, 5) Q.(s) Als) ds.x+j' U(5) Q) A(s)ds-x}.
(3.4)

From those formulae, we conclude that (x, YIERQ (O0Y)N RO, (0 ) if
and only if

4-x=0.
Moreover y = Lx is uniquely determined by x if the additional requirement
@(0) L ¥(0)

is imposed. The proof of these facts follows closely from Palmer [23].
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Define N(0) as in (ii), and clearly N(0)=ZP (0" )N AP (0F) © @(0).
Define U(0) and V(0) as in (iii), and clearly U(0)n#P. (0" )= {0} and
Let xeR™ be such that 4 - ¥ # 0. Define

wy(t)y= {(f, () y(n)y= {J[ Ulr, s) Q,(s) A(s) ds

0

+[' U(t,s)Qs(s)A(s)ds}f} for reR",

(3.5)
wa(t) = {(.& y(): v = {fo Ult, 5) Qi(s) Als) ds

+f' U(t,s)Qu(s)A(s)ds}f} for reR*.

XN

It follows that w (¢)e &P (r), teR~, and w,(r)e AP, (1), teR™.
Moreover w,(0) ¢ ZP.(0*) and w,(0)¢ P.,(0 ). Let W,(0)=span{w,(0)}
and W,(0)=span{w,(0)}. Property (iv) can easily be verified.

Finally, define #P (0%), ZP,0%), and ZP(0%) as shown in the
lemma, and set ZP (), v=u, s, orc, teR* or R, by applying 7(z, 0) to
AP (0%), teR* or R, respectively. It remains to prove the desired
exponential estimates to confirm that P (1), v =u, s, ¢ which are completely
determined by #P (¢) are the desired projections which define exponential
trichotomies. The proof is straightforward and shall be omitted. Q.E.D.

The following linear system shall be used in the study of regular layers.
Define an evolution system in (x, y). with the help of an intermediate
variable v,

X'(t)—eA(etr) x(t) —eB(et) v(1) =0,
v'(t)— D(et) v(1)=0, (3.6)
o(t) = Cler) x(1) + y(1), 1€ [a/e, b/e].

Here a<b. t=t/e, te[a, b]. '=d/dt. A(t), B(z), C(t), D(t), and (d/dt) D(r)
are continuous in 7€ [a, b]. o{D(t)} " {|Re A| <o} = for all re[a,b].
From Lemma 3.3, there exists ¢,>0 such that for O<e<eg,,
v'—D{(et)v=0 has an exponential dichotomy in [a/e, b/e], with the
solution map being U(z, 0) and the projections being Q,(t) and Q.(7).
Let S(¢, s) be the solution map for x(t) — A(t) x(¢)=0, and T(z, o) be the
solution map for (3.6).
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LEMMA 3.9. Equation (3.6) has an exponential trichotomy in [afe, b/e],
0<e<egy. The constant and the exponent do not depend on e. The center
space is defined as

AP (1) ={(x, y): Clet)x+ p=0}.
There exist constants C,, C, >0 such that

|T(1,0) P o)l < C,, ale<o<t<ble,
(3.7)

J‘ |T(t, 0) P (o) do < C,/e, ale<o, <1< fle

a1

The stable space RP,(t) is the image of a linear isomorphism
v,(1) = (x(1), y(2)) for all v,(t) e AQ,(t), while the unstable space AP (1) is
the image of a linear isomorphism v,(1) — (x(t), y(t)) for all vy(1)e 0 (7).
Moreover

lx(0)] + [ »(1) — v, () < Celo ()] (3.8)
for (x(1), y(t))eAP(1), and
Ix(t)] + | y(7) — va(1)] < Celoy(7) (3.9)

for (x(1), y(1))€ AP (7).

Proof. Consider a t-dependent change of coordinates (x, y)— (x,v=
C(et)x + »). Clearly #P.(t)= {v=0} is invariant under T(t, ¢). And for
(x(0), y(6))eRP (0),

T(1, o)(x(5), y(o)) = (S(et, ea) x(g), —Cler) S(et, €06) x(a)).

Therefore (3.7) is valid.
For v,(t)e 2Q,(1), define (x(1), y(t))e ZP(7) as

x(1) =Jr S(et, e0) eB(so) Ulo, T) v,(1) do
be (3.10)
v(t)=1v,(r)— Cler) x(1), ale <t < bfe.

From this the estimate (3.8) follows easily. We claim that
IT(zy, T)(x(7), y(0))] < Ke """~ oy (1), i< <ble (3.11)

for some K>1, y>0. In fact v,(6) = U(a, ) v,(1), 0 =7 is a solution for
the 2nd equation of (3.6) and an exponential estimate for |v,(g)| holds due



HETEROCLINIC BIFURCATION 343

to the fact v,(t)e #Q(r), and (3.11) then follows from (3.8) with
replaced by t,. There also exist C;, Cy>0 such that

Cslo o)l < lx(@)] + 130 € Cqluy (1)l

Thus |T(t,, D)(x(t), pe) < K;e 7"~ (|x(t) + | p(0)]), 7= 1. Similarly,
for vs(1)e #Q (1), define (x(1), y(1)) € AP (7) as

x(1)= ] S(er, e0) eBleo) Ulo. 1) valc) do,
(3.12)
y(t)=1,(1) — Clet) x(7), ale <t < ble.

We can show (3.9) and
IT(ty, Dx(r), (O < K e 770 ([x(n) + [p(2)]), w2714

We can show that #P(r) and &P (t) are invariant under 7(r, o). These
together with ZP_(t) determine the projections P.(t), P,(), and P,(z).
It can be shown that if ¢,>0 is small and 0 <e<¢g,,

[P(T) + [P(t) +|Pu(r) <K
for some K >0, based on (3.8) and (3.9). Q.ED.

Lemma 3.10. If B is nilpotent, B*=0 for some k>1 and |B| <K for
some K> 1. A is a matrix of the same order, |A| <d< 1. If

200K Yk <1,
then

x

Y [(A+ B)"| < .

n=1

Proof. (A+B)'=3C, ---C,, where a,=1o0r2 C,=4 and C,=8
The total number of the terms in the sum is 2". Each nonzero product in
the sum is of the form

AilleAi2Bj2 . AimB/m

with >7_ (i, +j,)=n and j,<k—1. Let n=1/k, and for each nontrivial
term we have

lAilB/l”_AimBjmlglAIkal)._'(IAl Kk—l)s((sz—— 1)1
morethm

since the total number of the A's is {; + --- +{,, = /. We have the estimate
for r=Ilim, _ _ {|(A+ B)"|'"}:

r< (26K I = 2(BKF ) R < 1. Q.E.D.
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4, A LINEAR BOUNDARY VALUE PROBLEM

The solvability of a linearized boundary value problem associated with
(2.1) is the key to justify the correctness of our formal approximation. The
unusual character of the linear boundary value problem is that the solution
admits jumps which are part of the input data. It is reminiscent of our early
work based on a modified shadowing lemma (Lin [19]). The major dif-
ference is that the linearization in this paper is made around the Oth order
approximations while in the previous paper the linearization was made
around the higher order truncations. The advantage of the new method is
that the linear operator is now essentially independent of &. The linearized
equation in the outer layers and inner layers are quite different, mostly
because the time spent on the regular region is O(1/¢) (in the fast variable
7), therefore O(¢) terms have to be retained, while the time spent in inner
layers is shorter, thus the O(¢) term may be dropped.

To simplify the notation, define f*(et)= f(X/(er), Yi(er), 0) for i=2I,
1<I<[ Similarly define fi(et), f(et), g'(en), g'(gr) and gi(er) in the
obvious way for i=2I, 1 <I<I Next, deﬁnef (1) =S(xh(1)s vi(t), 0) for
i=2l+1, 0<I< I Similarly, define fi(t), f/(), g'(t), g'(r), and g'(7) in
the obvious way for i=2/+1, 0<I< L '

Consider the linear boundary value problem

Sty = Afn o) (D) =Fx),  telu,f) 1<i<vv=20+1 (41)

B =z 0) HCe,=hy, I<igv—1, (4.2)
El(_zl(al)+€0€0)= _Ex» (4.3)

2,(B,) +{e,) =D, (44)
d-z;(t;)=0, I<igy, (4.5)
where z, = (x,, y;) € R™ x R", F(t) = (f.(1), g:(r)) e R” x R". B, =

D.B,(x§(0), y§(0),0): R”*" » R* and B, = D.By(x((0), y{(0). 0):
R™*" - R are matrices of rank d, and d,, respectively. {;eR, 0<i<v, is
an unknown parameter. [«,, ;] is given as follows:

(i) [anBl=[aje+e?"'+a,bje—e?'+5,], where 0<f<1, g,
and b, are real polynomials in ¢, if i=2/, 1<I<I;

(ii) [a,Bl=[—ef e ", ifi=2+1,1<I<I-1

(iii) [ay,B,1=1[0,"'], and [a,,B,1=[—¢" "', 0]
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Equation (4.1) is given as follows:

(i) For i=2l, 1<I<I, (4.1) has the form

x (1) —ef der) x,—ef (eT) yi= filz),
yi() —g,‘(er)x,-—g,..(sr)_v,-—(g,..(sr) 'gi(e)) ¥,
+(gh(er) 'g'(en)) - {ef len)) - [ef ler) xi+of ((eT) i} = g.(x),  (41)

which can be rewritten as
(1) —e{filer)— fifer)- giler) ' len)} xi(2)
—e&f (er) vi(1) = fi(2),
v, (1) — gher) () = g.(2) + g, (e7) " 'g'(en) filT),
where v,(t)= y.(7) + g\er) ‘g (en) x (). (4.1)"

(ii) Fori=2I+1,0</</, (4.1) has the form

xi(7) = fil1),
yilt) — g\ 1) xi(1) — g(1) yi(t) = g,(2). (4.1)"

Let U'(z, 6) denote the solution map for the equation
(i) »p(r) —gi(z) y(r)=0, if i=21+1, 0<gi<L
(i) y(r) — g (e1) ¥(1)=0, it i=21, 1<giI<]

From the hypothesis (H,) and Lemmas 3.2 and 3.3, U'(r,0) has an
exponential dichotomy in [a,, ;] if i=2/ 1</<I, and U'(r,0) has
exponential dichotomies in R* if i=2/+1, 0</</—1, and in R~ if
i=2l+1, 1 <I<I Let the associated projections be Qi(z) and Q! (r) (onto
the stable and unstable spaces, respectively). The constant t, in (4.5) is
given by 1,=1,/e € [a;, B,], where ¢, does not depend on ¢ if i = 2[, 1<IKL
7,=0if i=2/+1,0<iI<

Let T%(t, o) be the solution map for the homogeneous equati on of (4.1).
From Lemmas 3.8 and 3.9, T'(1, o) has exponential trichotomy in [«,, 8]
if i=21, 1<I<I, and T'(z, o) has exponential trichotomies in [«;, 0] and
[0, B;], respectively, if i=2/+1, 0</<<I We assume that the projections
which define these trichotomies have been chosen such that Lemma 3.8
applies to the case i=2/+1, 1</<I—1, with A(t)=g'(r) and B(t)=
g,(t), and such that Lemma 3.9 applies to the case i=2/, 1 </<I, with
Alet) =f(er) - fllet) giet) ~'g'(en), Bler) =f(et), Cler) = gl(er) ~'g'(er),

and D(et) = gi,(er). The linear subspaces associated with Lemmas 3.8 and



346 XIAO-BIAO LIN

3.9 shall be denoted by #P, ZP., U'(0), V'(0), N'(0), etc., for 1 <i<w.
We now define d'=(d'., d’)#0 as follows: d' L H(i), where

(i) H(i)=RP{(0 " )@ RP. (0" )® N'0), i=2+11<I<i-1;
(i) H(i)=ZPi(z)® RP(r)® {(x, y): x - fi(zx) =0,
v=—gier) 'g(er,)x} if =20 1<IST;
(i) H(i)={(x, y):xe TM,}, if i=21+1,I=00rl=1

e;eR” xR" is given as

efz(fi+l(£°‘i+1)v —g'l;v-'-l(gai+l)7lg,'r+i(8ai+l)fi+l(8ai+l))a
if i=21-1,1<i<],

e, =(f"eB;), —g.(eB) 'geB) fieB)), if i=2 1<I<]

€= (fz(a1 ), J‘O

x

U'(z, ) Q'(0) g{a) do -fZ(an),

e=(r 0] vk g0 1) ).

THEOREM 4.1. There is e3> 0 such that for 0 < ¢ < g, the boundary value
problem (4.1)~(4.5) admits a unique solution ({z,(t)},_,, {{i(1)}]_o):

sup |z + sup |¢,-|<C{ sup [l + 1B+ (Bl + sup g

1<igy 0<i<g<y Igigv—1 1<i<gy
1
+; {filei=2L1<IST}+€ " sup{|fi];i=2+ l,Oslsl}}.
The proof of Theorem 4.1 is divided into several lemmas.

LEmMMA 4.2. Equations (4.1) and (4.5) admit a (nonunique) solution
Zi(1) = (X;(2), (7:()), with

1
lf,-|C<C{;m|c+|g,-|c}, =2 1<i<, (46)

1Zde<CLP Sl lgilels i=2+1,0<I<L (4.7)

Proof. Since H(i)=R™*" is of codimension one, there exists a solution
#.(1) of the homogeneous equation associated with (4.1) with d.(z,) ¢ H(i),
1 <i<v. Moreover, §,(t) can be chosen such that

|$;( e < Claf(f.-)l

due to our definition of H(i). Thus, we only need to solve (4.1), and (4.5)
can be satisfied by adding a multiple of ¢,(t) to the solution.
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For i=2, 1 <I<I, set §,(1)=g(t)+ g'(e1) "'g'(er) fi(r) and
0(0)=[ U(t.0) Ql(0) Elo)do + [ U'lx, o) Qilo) &(0) do,
% B
ot 1
Xi(1) =J S'et, e0)-¢- {f"’,(so) v,(0) +Ef"(0)} do,

%

FAT = v,(1) — g (e1) "'l (eT) ,(0).

Z,(1) = (¥,(1), (1)) is obviously a solution of (4.1), satisfying (4.6).

For i=2I+1, 1<I<I—1, extend f,(¢) and g,(¢6) by O if 6 ¢ [a,, B,], so
that f,(¢) and g,(c) are defined for o € R. We shall solve (4.1) and (4.5) in
the extended domain o € R. Set

J?,-(t):C,.\?,-+Jrf,(o) do,
0

where ¥,€ R™ is such that 4,- ¥;#0. Clearly we have

[l <ICx+6 7 Sl
since [o;, B;1=[—¢*", ¢/~ ']. We then look for a bounded solution y,(1)
of the equation

r~

Fit) — g (1) Filr) = C; g (t) ¥, + g'(7) J Slo)do+g(z). (438)

0
The right-hand side is a bounded function defined in R. From Lemma 3.6,
(4.8) has a unique bounded solution which satisfies

yo(0)'- 7,(0)=0 (4.9)

if and only if

G {c,- gr) 5+ £4(0) [ filo)do+ g,»m} =0, (410)

where () is the unique bounded solution (up to a scalar multiple) of the
adjoint equation of (4.8). From hypothesis (H,) we can solve C, so that
(4.10) is valid. It is trivial to verify that

|Gl < C(e# ! [fic+1gile)
Thus, we have (4.7).

505/84°2-10
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Finally for i=1 and i=v, set

%(0)=[ fo)ds, i=1andi=v,
5u0)= [ Ul 0) Qi(aNgklo) (o) + g1(0)) do

[ U 0) QUoNglo) o) + gil0)) do,  i=1,

x

7i(1)=] U'(r,0) QL0 gL(0) %i(0) + (o)) do

+[ Uln,0) QUoNgl0) % (o) + gloN) dx,  i=v.

Again Z;= (X (1), # (1)), i=1, v, is a solution of (4.1) with (4.7) being valid.
Our next step is to solve system (4.1)-(4.5) with F;(t)=0.

LEMMA 4.3. There exists a constant g3 >0 such that if 0<e<e,, the
boundary value problem (4.1)-(4.5), with F,(t) =0, admits a unique solution
({‘ (T)Jr 1 {Q }! 0 Moreover

sup zJe+ sup LIS C( sup ]+ 1By + |Byl).

I<igy o0<igv I<igv—1

Proof. The proof is based on an iteration scheme. If we choose
{z.}:_,=0, {{;}_0=0, then {#}'Z!, b,, and B, become the “error”
terms. The purpose of the scheme is to project the errors onto the stable,
unstable, and center spaces and pass them to the boundaries and even-
tually to be absorbed by the boundaries. (Recall the relations of L (0) and
R.(I) with ker B, and ker B,.)

We start to define a codimension one subspace for each 1 <i<v which
admits the splitting

Li(1)® R(t) = AP (1), I<igw.
For i=2/, 1 <I<], let
Z.={xeR™|fer,)-x=0}.
Define
Li(t)={(x, y)IxeS"et;,a; X, TM,_,) L(I—1),
y=—gi(er) 'giler)x},  for i=2l, 1<I<],
Ri(t)={(x, v)IxeS'et,,a; %X, TM,_;) R.(I-1),

= —gl(er;,) 'giler)x}, for i=21<I<L
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For i=2/+1, 1<I<I~—1, (4.1)" naturally extends to teR, and the
trichotomies extend to te R~ and teR*. According to Lemma 3.8, for
each x, with 4,-x=0, there is a unique y such that (x, y)e ZP. (07 )n
AP (0%), and such that y5(0) - y=0. Denote the relation by y=L'x.
Define

Li(0)={(x, »xe L), y=L'x},
Ri(0)={(x, y)|xeR(l), y=L'x}.
For i=1, (4.1)” extends to te R*. Define

LY0)={(x, »)|(x, y)e ZP.(0) ket B, =A%, }.

c

From our discussion in Section 2, L(0)= {(x, v)|xe L.(0), y=G%x)}.
Let

0
RI(0)= {(x, MIxeR(0), y=| U'0.0)0}0) gX(o) da-x}.
Similarly, for i=v, (4.1)"” extends to e R . Define

RI(0)={(x, »)|(x, y) e RP: (0) ~ker B, =HB,}.

[~

From our discussion in Section 2, RX(0)= {(x, y)|xe R.(I), y=G'"'(x)}.
Let

0
L:(0)= {(x, MixeLdD, r=[  U(0,0)Ql0) g3(0) g3(0) da-x}.

Recall that t,=0 for all i=2/—1, 1 <I/<[I+ 1. Finally, in all the cases let
Li(ty=T'(t,t;) Li(t;) and Ri(t)=T'(z, t;) Ri(t;), t€[a,, B.]-

For convenience define L%(B,)=L!(«,) and R:*'(«,.,)=R}(B,), and
define ZP°(B,) to be a subspace of ker B, such that

RPO(By) ® LY(Bo) = ker B,. (411)

Similarly, let ZP:*'(«,, ;) be a subspace of ker B, such that
AP oy, BRI (a, ) =ker B,. (4.12)

We remark that f, and «,, , have no true meaning, they are introduced for
the sake of notational symmetry. To complete the proof of Lemma 4.3, we
need Lemmas 4.4 and 4.5 and Corollary 4.6.

LEMMA 44. R"*"=RP(B)DLIB)D AP (0;, VORI (o, 1) D
spanf[e;] for all 0<i<v. Let the projections corresponding to the above
splitting be

I=P(RP(B,))+ P(L(B))+ P(RP* (a,,,))

+ P(Ré+ 1(0‘:+1)) + P(span[e;]),
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then the norms of all the projections are bounded by a constant M = | which
does not depend on ¢ < ¢,.

Proof. We only prove the case =2/, 1 </<I Consider the limit of
each subspace as e¢—0. From (39) of Lemma39, #P (8,)-
{(x, 3):x=0, ye ZQ(B,)} as ¢—0. From Lemma 33, 2Q(B,)~
the unstable eigenspace of g'(ef,)}. From the definition of B, i=2I,
kisdwrﬂthf»mamiﬂPuB%+E {(x, ¥):x=0, yeunstable
eigenspace of gi(b,)}, as ¢—0. We can also show that LI(B,) > E, 4
{(x ) VEL (), y=—g\(b,)"'g'(h)x} and span[e,] - Es=span[(f'(b,),
—g(b)'gi(b) fi(b)] based on ¢f, — b, as ¢ —0. We then observe that
Uy = —s/’“—> —o0 as €0, If (x, y(r))e R.* (1), then xe R (/) and
(x, ¥(1))e ZPL (1). From Lemma 3.7, y(1) > —g'"'(— o) 'g't!(—o0)x
It follows that R.*'(a,, ;) — Es 2 {(x, v): xeR(), y=—g'(b) g'(b)x)
since g\*!(—oc)= g'(b ) and g'*'(—o0)= g‘\,(b,). From Lemma 3.2,
RPNy ) = {(x, y):x=0, EQ’”(a,H) S E, & {(x, ¥):x=0. ve
stable eigenspace of the matrix g’ (b,)} as ¢ — 0.

Finally, observe that R”*"=@> | E,. If ¢,>0 is small and 0 <¢ < gy,
each subspace under consideration is close to one of the spaces E,,
1 <i<5, the desired result follows from the standard theory concerning the
perturbation of E;, 1<i<5, and the projections determined by the
mutually complementary subspaces. See Kato [ 18]. Q.E.D.

LemMMA 4.5. For each Ze L'*Y(«,, ), we can find Ze L(B;) and (e, such
that

|z—2—{e| < CeP|Z]. (4.13)

For each ze RY(B,), we can find Ze R'*'(a;, () and e, such that (4.13) is
still valid.

Proof. We only give the proof for the case i=2/, 1</</, and
Ze Ri(B;) since the proof of the other cases is completely similar. We
have by definition that B,=b,/e+b,—¢’~' and a,,,= —e#"' Let
Z=(%, j)e RL(B;), then j= —g'(eB,) ' g'(eB;)x. Moreover there exists
ZeR such that '

¥ < S'(b,, eB) %+ Cfi(b)e Rl) = TM,.

According to our definition of R:*!(0), we find 7= j(¥)eR” such
that (%, #)e R;*1(0) with |J|<C|%|. Finally, define Z=(X, )=
THY(—¢#71,0) (%, j)e Ri* Y (a;, ). And clearly we have X = .

Since T'*'(1, O)(X, 7) = (%, —g'(b,) 'g'(b;)%X) exponentially fast as
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T —o0, see Lemma 3.7. To complete the proof of Lemma 4.5, it suffices
to prove that

(%, —g'(eB)) gL (eB)T) + ({F'(eBo), —g'(eBy)"gl(eB) F'(eB.)
— (%, —g(b) 'g\(b) %)= O(” - |3]).

This is true since we have
ef, —b,= O(e)
S'(b,, ef,) x — x| < CeP|x|.
Q.E.D.

COROLLARY 4.6. (i) |P(RP,(B)) +|P(RAP* (o NI +IP(R (241))]
+ |P(span[e;])| = O(&?) if the domain of all the operators is restricted to
L£+ 1(ai+ l)-

(ii) [P(RP (B + |P(AP (a;, )+ IP(LUB)| + |P(span[e;])|
= O(£®) if the domain of all the operators is restricted 10 RL(B)).

Proof of Lemma 4.3 (continued). From (4.11) and (4.12), there exist
unique elements # and ¢ such that

b€ RP(a,)® R(x;)Dspan[e,],
veRP(B,)D®LUB,)Dspan[e,],

B,v=-b, (4.14)

B, =b,, (4.15)
with

7| <eclb,] and |7 <clB,).

We can rexrite (4.3) and (4.4) as

—b—z(0,)+ pepeker B,

_ _ (4.16)
z(B,)— 0+, e.ecker B,.
We are ready to define the iteration scheme. Let
h}=h, 1<igv—1,
_ (4.17)

ho=¢ and  hl=n0.
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Define for k= 1:

zi = =T,  { P(AP [« ))+P(R ( A

+ Tit, B P(RP(B))+ P(LUB))} HE,  1<igv. (4.18)
25(Bo) = { P(RP°(Bo)) + P(LYABo))} ho (4.18)
2 ()= {P(RP. T (o, )+ PR Mot )} A (4.18)"
w1 .
T 0<i<y, (4.19)
le;|”
W =R — (25 (B) — =5, (o) + (el 0<i<y. (417)

We claim that

{4.20)

is the desired solution for system (4.1)}-(4.5), with F;(t)=0. The proof is
given in the following two lemmas.

LEmMMA 47. If 37 | |h¥| < oo for all 0<i<v, then (4.20) is a solution
for system (4.1)—(4.5) (with F,(1)=0).

Proof. 7, |h*| <o implies that Y7, |z%(-)l.<o0 and X7, |(F]
< oo from (4.18), (4.19), and the estimates for T'(z, «,;), T'(z, §;) on each
indicated subspace. Therefore {z,(t)} and {{;} are well defined by (4.20)
with

sup |zde+ sup [L1<C sup Y A (4.21)

I<igy o<gigv 0Kig<y k=1

z,(1), 1 <i<v, is a solution of (4.1) since each z¥(r) is such a solution. Add
equation (4.17)" through k=1 to k= o, and we have

h _Z k(ﬁ)_z 1+l 1+1 Z’: 1<ig<v—1.

k=1 =1

From (4.17), we obtain (4.2). For i=0, we-have

hi= 5= {P(APYBo)) + P(LUBo))} Y. hk—z,(a)) + {oeo.
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From (4.16) and (4.14), we have (4.3). Similarly, (4.4) can be verified.
From the definitions of d’ and z¥(t), it is also clear that z(t;)e H(i)=
AP (1 YD AP, )® LUt,)® Ri(t,) and d' L H(i), thus (4.5) is valid.

It remains to prove the following lemma.

LemMMa 4.8. There is a constant g,> 0 such that 0 <e < g, then

sup Z lh§| < C( sup [k + 15, +1Bal),

0<igy I<igsv—1

where the constant C does not depend on e.
Proof. 1t is straightforward to verify that
KB — 25, (o )+ e =R+
where --- consists of functions of A% | and A%, | only. Therefore by (4.17')
Rt =T'(B,, 0,){ P(APYx;)) + P(RU(a;)) } hE_ |
+ T s B HPRP (B N+ PLE (B ) ALy, (422)

for 0<i<v, provided that we define 4* | =h* | =0. Define an equivalent
norm for {h¥}!_, as

IR Yol = sup {|A¥(Lo)] + A5(R)] + IHS(P )] + A5 (P)] + |h¥(e))l ),

0gigy

where
W(L.)=P(LL(B)) b, hE(R)=P(RL o, 1)) B, hi(P,)=P(RP(B)) h,
h(P)=P(RP:*Y(a,,))h*  and  h¥(e,)=P(span[e,]) h}.
It suffices to show Y=, [[{A*}i_,ll < oc. Observe that
|hi(e) S ClhFI < C sup {JAF (L) + |AF (R

[VEFEY
+ [P+ A (P
from (4.22). Thus it suffices to obtain the estimates for
sup ). {IA(L) + IAF(R)| + IRF (P + RE(P) ).
O0<isy k=1
We shall use matrices to write (4.22). Let H(k) be a (v+ 1) x (m+n—1)-
dimensional column vector,

H' (k) = (..., 5L, R5(PL), BY (R, HE(PY)Y, ),

where 0 <i<v, and “t” denotes the transpose. Equation (4.22) is equivalent
to the equation

H(k + 1) = #H(k),
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where # is a [(v+ 1) x (m + n— 1)]? matrix, which is of block tri-diagonal
form, .#;=0for all 0< j < v:

Moy My O 0

Ay o My O

0 H H Moy 0
M= 0 0 S . 0
. . M,y
0 Mooy M,
00 P(L’c(ﬂ,)) Ti( i ) P(Rf;(ai))
[0 0 P@PLBN TR ) PR
" 0 0 P(R*'a,.) T(B,, a,) P(Ra;))
0 0 P(AP* o)) T(Bys ;) P(RU2,))

P(LAB)) T (B, o) P(RP(,))
P(RP(B:)) T'(B., ;) P(RP(a;))
PR Yoy 1)) T(B,, 2;) P(RP,))
P('%P’:l(aw 1)) Ti( i ) P('%P;(ai))

Except for the (3, 3)th entry in .4, ,_,, which is bounded by KM?, all the
other entries in the 3rd column are bounded by Ce” (Corollary 4.6), and all
the entries in the 4th column are bounded by KM e ~*# ~ =2 < CeP, for we
have |B,—a,| = ¢ ~!. We remark that

[T (B, 2;) P(RPL(a;))] < KMe —*\Bi—12

even for i=2/+1, | </<v— 1, while exponential trichotomy does not exist
in the whole interval [«;, §;]. (See Lemma 3.8.) Similarly,

P(L::(ﬁz)) T (o415 Biv1) P(Li+ l(ﬁi+l))
P(RP(B)) T(etis 15 Biv 1) P(LY (B 1))
P(R." l(ai+l)) Ty 1y Bist) P(L£+1(Bi+l))
P(QP?I(“HJ) Ti(ai+19 Biiy) P(L£+1(Bi+l))

P(L(B:)) T (i1 Biy 1) P(RPLT(Bi 1)) 0
P(RP(B)) T (et 1s Biv i) P(RPL (B ) 0
P(R£+l(‘xi+1) Ti(“wla Bii1) P(‘%Pf1+l(ﬁi+l)) 0
P(RP o)) Ty Bi i) PPN (B ) O

"‘izi,i+l=

(=R e R )

Except for the (1, 1)th entry which is bounded by KM? all the other
entries in the 1st and the 2nd column are bounded by Ce”.
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We can write .# = .#, + .#, + .#,, where .#, is a block upper triangular
matrix which consists of only the (1, l)th entry of each .4, ,. .4, is a
block lower triangular matrix which consists of only the (3, 3)th entry of
each .4, ;:

|.#| < CM?, i=1,2

|. 45| < CeP.
It is easily verified that .#,.#, = .#,.#, =0. Therefore
(H + . 4)y=0"+.1"%, Viz0.
(M, + .26 =0,

We can show that 3 °_ | [(.#, + .#, + .#,)*| < oo, which implies the desired
result of this lemma, by virtue of Lemma 3.10, provided that ¢, is
sufficiently small and 0 <& < ¢,. This completes the proof of Lemma 4.8.

We now prove that the solutions of system (4.1)-(4.5) are unique.
Consider the modified system

zi(t) — A(r, ) z;(1) =0, refa,B,], 1<i<gy,
B -z )+ e =h,  IiSy—,
B\(—zy(2,) 4 {oeo) = =By,

By(z.(b.) +.e.) =B,

d' - (t)=D,

]

1<<igw.

It is easy to modify our proof of the existence theorem for system
(4.1)-(4.5) to show that the system presented above admits at least one
solution for any given {h,}, b,, b,, and {D,}. Using the relation
2B =TUB;, 2;) z(x)), thls system is in fact a linear algebraic equation
which has an [(m+n)(v—1)+d,+d>+v=(m+n)v+v+ 1]-dimensional
inhomogeneous term and an unknown vector of the same dimension. It is
basic fact from the linear algebra that the existence of a solution for any
inhomogeneous term implies the uniqueness for such a system.

The proof of Lemma 4.3 has been completed. Q.E.D.

Proof of Theorem 4.1 (continued). By Lemma 4.2, we construct {Z,(t)}
which satisfies (4.1) and (4.5) with estimates (4.6) and (4.7). Thus

sup 1ISIC;SC{ sup{|filc:i=2L 1 <I<I}

I<igy

+&f " tsup{|filsi=214+1,0<IKT}

+Sup{lgxlc: 1 SISV}}
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Next we use Lemma 4.3 to solve the boundary value problem
oi(t) = A4;(7, 8) (1) =0, I<igy,
B —zivala, )+ e =h— (G(B) — 2y (241)), I<igv—1,
Bl("zl(al)+goeo)= _B +Elfl(al),
EZ(Z"(B")-l_Cve\')_ E ﬁ )
d'-z(t)=0.
Based on the estimate for sup{|Z,|.}, we have the desired estimate for the
solution z;(t). Finally, {Z,(t)+z,(t)},_, and {{,}]_, are the desired solu-

tion of (4.1)-(4.5), and the estimate for this solution follows easily from
those for {Z,(r)} and {z,(t)}. This completes the proof of Theorem 4.1.

THEOREM 4.9. There is e3> 0 such that for 0 <e<¢,, the linear bound-
ary value problem

z(t) — A (1, &) z;(1) = F (1), refa;, B, 1<i<gy, (4.1)
2B —zi (o, )+ Cei=hy, Igigsv—1, (4.2)
By(z(2)))=b,, (4.3)
By(z,(8,)=b, (4.4)
d'-z,(z,)=0, 2<igsv—1, (4.5)

admits a unique solution {z,(t)}_,, {{;};Z\. Moreover

sup |zlc+ sup [{)]

Igigy I<igv—1
<C( sup ||+ 1B +1Bsl + sup lgl.
Igigsv—1 I<igv

|
+;sup{|f,lc:i=21,l<l<1}
+ef~tsup{|filc:i=21+1,0<I<T}).

Proof. With the same mhomogeneous terms {F,}'_,, {h}:_}. b,, and
b,, apply Theorem 4.1 to get a solution {Z,(t)}:_,, {{;}]_, for the system
(4.1)~(4.5). Let

wi(t)= —T'(1, 4,) {oeos

w(t)=T"(z, B,) C.e.s
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and let
S =20+ wy(n), ) =Z(1) +w, (1),
() =2,(1), 2<ig<v—1,
v(ll]=:1+co, C :‘C—v—l+c\-a
(=0, 2<ig<v—1.

i

(4.3), (4.4) and (4.5)". However, (4.2} is not satisfied, with error terms
h‘l”: LL’O ' (el - Tl(ﬁl’ al) e())v h(vl_' 1= ‘:;-(ev, 1 T‘v(av, ﬁ\) e\,), and h:-“ = 0,
2<i<v—2. From the definition of ¢, and ¢,

It is obvious that ({z!"};_,, ““’}::1‘) thus obtained satisfies (4.1),

|T'(z,0) eo = (f*(a1), —gila;) 'gilay) [ (@) Sce ™, 120,
IT(t, 0) e, — (f"~'(b)), =g, 7' (b)) g (b)) 7T (B <ce™ . 1<0,

by virtue of the fact that e, 2P (0) and e, € ZP; (0); see Lemma 3.5 and
Lemma 3.7. From the definition of ¢, and e, ,, we have

|(f*(ar), —gia,) " 'gxa) fA(a))—e\| = O("),
778 =837 (b)) '8l B S b)) — e 1| = OGP,
Therefore
|0 = O(e?) |,
A= 0P|

Suppose that ¢, >0 is small and 0 <& <¢,, and we can apply Theorem 4.1
again with the inhomogeneous terms {F;}=0, 5,=0, 5,=0, and
{h.;}={—=h'"}. Again apply the above procedure to adjust the solution
and obtain an approximation of the solution of system (4.1), (4.2), (4.3),
(44), and (4.5)', but with

)= O 1"
1H2 = 0(e") 1A |
h'? =0, 2<igv—2,
Apply the indicated procedure repeatedly and we have
| — 0, as jo oo, I<igv—1

Y 1A < .
]
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Finally, z,=Z,+ ¥, =V, 1<i<v, and {;={+27, {7, 1<isv—L
is the desired solution of Theorem 4.9. The estimate for the solution also
follows easily. The uniqueness of the solution of Theorem 4.9 can be proved
exactly like the uniqueness of Theorem 4.1. Q.E.D.

5. FORMAL POWER SERIES SOLUTIONS
AND MATCHING PRINCIPLES

Let f(t, €) be continuous and defined on e J and |¢| < ¢y, J is an interval
in R, bounded or unbounded, open or closed, and ¢,> 0 is a constant. We
say f(t, €)= O(e™) if for any compact subinterval J, c J, there exists a con-
stant C(J,) such that | f(z, ¢)| < C(J,)|e™|, teJ,. We say that f(1, ) = o(e™)
if f(1, €)/e™ — 0 uniformly in any compact J,, as ¢ = 0. These notations are
slightly different from the standard ones which require the uniformity in the
whole interval J. We write the asymptotic expansion of (s, ¢) as

2

flte)= 3 &g, (1) (5.1)
J=0
if f(r,e)=3"o&’d(1)+O0(™*") for all m>0. It is immediately obvious
that if each (J'/d¢’) f(t, €) exists and is continuous in (,¢), then the
asymptotic expansion of f{(t, ¢) exists and is completely determined by
Taylor’s formula. Conversely, given any formal power series Zj‘?‘;osfqﬁj(t),
there exists a (nonunique) asymptotic sum f(z, ¢) such that (5.1) holds
(Borel-Ritt). By exploiting (5.1), we can define the sum, the product, and
the composition with usual functions of any numbers of formal power
series. We can also define the differentiation, integration, or the change of
variables of the formal series using (5.1).

We look for a power series solutions (Zj":osiX;(t), o' Y[(t)) in the
regular region or (3.2 0 &' ( L XZo¢ ’yi()) in the interior or boundary
layer region, which formally satlsﬁes Eq. (1 1) in the indicated region, and
satisfies boundary conditions at the initial and the terminal points.
Moreover the jumps between the outer and the inner layers are o(e”) for
all p >0 (matching of the inner and the outer expansions).

We shall denote functions with the argument (X((f), Y{(r),0), eg.
F(Xg(2), Yo(o), 0 by fi(¢); and denote functions with the argument
(x5(z), ¥i(x), 0), e.g., flx(2), ¥h(2), 0), by fi(z). Note that these notations
are different from those in Section 4.

5.1. Formal Power Series Solutions in the Regular Regions

Let {X,}~,and {Y,}~, be any sequences of real vectors. Consider the
formal asymptotic expansion
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f(Z e’X,, Y a’Y,,a)
y=0 i=0

= f(Xo. Y0, 00+ 3 &/{f(Xo. Yo, 0) X, + f(Xo. Yo,0) ¥,

J=1

FE(X, Y X, Y, DY (X, Yo, 00,00}, (5.2)

where F,(---) is a sum of multilinear forms on X,, Yy, ... X, _;, ¥, , and
each term has the form

DQDi?Di’f(XO, Y,,0) X5 ---X:.";{ Yi... Yf'fj{, (5.3)

where i; >0 is an integer, and k, ...k, |, h,, .., h,_y, i}, and i, are multi-
indices, satisfying k,+ --- +k; =i, hy+ - +h,_ =10, and |k |+
2kl + -+ G =Dkl + Il + 20kl + -+ (=D + i = .
Consider the recursive equations

= f(Xo(2), Yo(2), 0)

0 (54),
0= g(Xi(1), Yi(1), 0)
Xi(r) = fAX5(1), Yi(1),0) X [(2), +f Xi(1), Yi(1). 0) Yi(r)
FE G Vo XY DY Y 0
Yo (6) =g Xi(1), Y1), 0) X/(1), +g(Xi(e), Yi(1),0) Yi(ey

FGXL Y, W X LY, DR(XE, YL 0), ),

where G, comes from the Taylor expansion of g(X;_,&’X], < ¢’Y], ¢)
and each term has the same structure as (5.2) and ( 5.3).

Assume that the time that the trajectory stays near the ith slow manifold
is refa,+3¥2 1.efr '(a), b, +Zj_,er '(b)] , 1<i<I We also need to
determine {r (a)};~, and {t(b)}<,, 1<i<I, recursively. Taking into
account the perturbation of a; and b, we have to compute each X (0, 0<,
in a neighborhood of [a;, b,], say [a,—d, b,+ 6], although initially X(r)
and Y{(¢) are defined in [a,, b,] only

The Oth order term (Xy(r), Yi(z)) is known to satisfy (5.4),. If
Xo(t), o X]_ (1), Y(0), ., Y;_| have been computed, our assumption (H,)
implies that

Yi(r)= —g'(t)'g'(r) X}(t) + (a function of ¢) (5.5)"
from the 2nd equation of (5.4),. From the first equation of (5.4);, we have

Xi()= (/") ~Fi1) g(0)~'g'.(1)) X(1) + (a function of ¢).
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Using the solution map S‘(t, s} defined previously in Section 2, we have
X(1)=S5(t,a,) X}(a;) + (a function of ). (5.5)

The problem would be completely solved if we can find X;'(a,-) or Xjf(b,),
which are related by
Xi(b,) = S'(b,, a)) X'(a;) + C', (5.5)

where the constant is computable and does not depend on X; and Y;. In

order to eliminate the trivial perturbation of a shift in the time 7, which has
already been taken care of by the series 3.7, &’t{(a) and X7 , 6'7)(b), we
assume that

;- X,(1,)=0, j=1 (5.6)
where 0, is such that 8, X{(t,) #0, t,€ [a;, b;]. Equation (5.6) implies

0(a~ l) ) Xl(al) = 6’((1, I)s

! - (5.7)
B(b, i)- Xi(b) = C,(b. 1),

where 8(a, i)= S*(a,, t,)0; and 6(b, i)=S*(b,, t,)0,, and * denotes the
adjoint of an operator. C,(a,i) and C;(b,i) are computable without
knowing X/ and Y;.

Equations (5.5) and (5.7) shall be employed in the matching procedure
to determine X}(a,)(X;(b,)), t,_,(a), and t,_,(b) recursively.

5.2. Formal Series Solutions for the Interior Lavers

The equation for the interior layer is

X'(t)=¢f(x(t), p(1), €)s
Y1) = glx(t), y(1), &),

(5.8)

where 7 =0 corresponds to r=b,+3 7, sfrj".(b) in the outer layer Z,(¢) and
t=a;,,+327 ,¢t;" (a) in the outer layer Z,_ ,(r). We look for the formal
series expansion (X%, e/xi(t), X<, e/¥(1)), 1 <i<I—1, which formally
satisfies (5.8) and matches with Z,(¢z) (and Z,, (1)) as 1> —o0 (1 = ).
We have the recursive equations

xh(t) =0,
_ o (59,
yo(t) = glxo(1), yolt), O).

We have assumed that x)(r) (=constant x{) and yy(r) are given,
yi(r) > G (xING ™ (x[)) as 1—> —o0 (1 0):
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xi(7) = flxg, ¥o(r), 0), (5.9),
vi(T) = g (xh, ¥o(1) 0) xi(7) + g,(x5, vo(1), 0) yi(1) + g.(x5. ¥o(t), 0),
Xi(o) =fin) X () + i)y ()

+ F, (X, v X, ¥ (1), DS (G, po(7), 0), -0),
yi(r) = g'(r) xj(t) + gu(x) ¥i(r)

+Gx p e X V(1) DPg(XG, yo(1),0), ), 22,

Let the growth condition at 7= + be

y,(r) € Eg(0, j). (5.10)
We also require that

¥;(0) L yo(0). (5.11)

Assume x, pi, .., xi_ ., y. | have been obtained, then from the first equa-
} 0r Yo -1 i1
tion of (5.9),,

x}(t)=x;(0)+ (a function of T which is in E(0, /)), (5.12)
vi(r)=£.(t) yj(t) + §'(r) x;(0) + (a function of  in E(0, j)). (5.13)

In order that (5.13) has a solution yj(r)eE(O,j), we need to choose xj".(O)
such that

[" wi0)*{£(0) x}(0) + (a function of 1)} dr =0,

—x
or

4;-Xi(0)=d'. (5.14)

If (5.14) is valid, there exists a unique solution y)(t) of (5.13) satisfying
both (5.10) and (5.11) for all 1 <i<I—1, 1 <J; see Lemma 3.6.
5.3. Formal Series Solutions for the Boundary Layers.

The formal series solution (3.7, xj(t), 32, ¥;(t)), i=0 or [, satisfies
ti.e same equations (5.9),, (5.9),, and (5.9); as the interior layers do. The
growth conditions are

_“:)(T)EER*(O’j)ﬁ (515)
vi(t)e Eq-(0, j). (5.16)
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Let i =0 first. Assume that x?, 39, .., x/_|, »/_| have been computed, and
we have from (5.9); that

x9(1)=x(0) + (a function of T which is in Eg-(0, j)), (5.17)

19(1) = g%t) »7(x) + 8%x) xP(0) + (a function of 7 in Eg-(0, j)). (5.18)

In order to satisfy (5.15), we have (Lemma 3.5)

()= 0°(2.0) 03(0) 19(0)+ | 0%z, 9) 020) §3(o) do - x}(0)
4 0

+[ 0% 0) 0%40) £2(0) do - x2(0)

o

+ (functions of T in ER - (0, j)), (5.19)
~ 0 ~ -~

¥2(0)=0%0) 3%(0) + | 00, 6) 0%0) §%(0) do - x}(0)
+ (a vector in Z0°(0)).

From the Taylor expansion of B/ (Y &x7(0), ¥ &/y}(0), &) =0, we have the
recursive equations

By(x3(0), ¥5(0),0)=0,
Bl.\'(xgv }’8(0), 0) X?(O) + Bl»r(xg9 .Vg(o )9 0) )‘10(0)
+ B, (x9, ¥20), ., x2_ 1, ¥?(0), .., D*B,(x3, ¥9(0),0), ..)=0, (5.20)
where B,; has the same structure as F,. By our assumption X7y e ¥7_1(0)

are known and By, is a given vector in R%. Substitute (5.19) into (5.20),
and we have

{Bu +8,- J'o 00, 0) Qo) £3(0) da} x7(0)
+B,,-0%0) y%(0)+ C?=0, (5.21)

where C;’e R“ can be explicitly computed.

Let M,, M, be two linearly independent subspaces. Define the projection
P(M,,M,) in the space M, ®M, with H¥"P(M,,M,)=M, and
RP(M,, M,)=M,. As was pointed out immediately after (H;s) in
Section 2,

{(x’ }'): XE€ LC(O)’ y= Go(x)} < L%/‘Bl
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Therefore (5.21) reduces to
B,(P(R(0)®span f(X;(a,), Y,(a,), 0), L(0)) x%(0),
02(0) y9(0) — G°P(L(0), R.(0)
@span f(Xg(a,), Yo(a,).0)) xP(0)+C2=0.  (522)

Since R.(0)@span f(X (a,), Yi(a,), Yo(a,), 0)® #Q°0) is complemen-
tary to "%, and 4, is surjective, we can solve (5.22) to obtain

P(R.(0)®span f(Xg(a,), Yola,),0), L(0)) x°0)=C°  (5.22)
07(0) y7(0) = G°P(L(0), R.(0)
®span f(X,(ay), Ys(ay), 0)) x)(0) =dy. (5.22)"

Similarly, the same argument applies to (x/(t), y{(t)) and we conclude
that based on B,(X ¢’x/(0), X ¢’1/(0), £) =0, (5.16), and (Hjs), we are able
to obtain

P(L ()@ span f(X Yi(b;), 0), R(D) x/(0))=C+", (5.22)"
0.(0) y4(0)— G'+ ‘P(Rc(n, LD
@span f(X§(b,), Y4(b,),0)) x/(0)=d". (5.22)"

5.4. Matching of the Interior and Boundary Layers with the outer Layers

The matching principle employed here is due to Van Dyke (see
Eckhaus [5]). Since =0 in the interior or boundary layers is identified
with r=5b,+3% | e/t)(b)in Z,(t) and t=a,,,+ 3 &’t/* (a) in Z, (1)
of the outer layers after a change of variable we have the so-called inner
expansion of the outer layers,

<b+ Z e +£r>

k=1

¢'z;(1, b, 1), (5.23)

u'[\/]x
'M“*

=3

0

~.

[

Mx

,‘( i +£r> z &'z, (1, a, i), (5.24)

\
I
<

where Z=(X,Y), z=(x, y)eR”xR". Observe that in computing
xi(t, b, i), Xg, oy Xj(2), Ti(b),.,Ti(b) are needed. Assume that
Xoo o X[ 1(1), 1(b) . T;_,(b) are known, and we have
x;(0, b, i) = X} (b)) + X§(b,) Ti(b) + ---
= X;(b))+ f(Xy(b)), Yi(b,), 0) Ti(b) + ---, (5.25)

where --- stands for a known vector.

505 84 2-11
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Since (5.23) formally satisfies the first two equations of (2.1), we have
x,(1, b, i) = £ X5(b)), Yo(b,), 0) x;_ (7, b, i)
+fi(Xobs), Yo(by), 0) v (1, b, i)
+ F (X0, Y15 e X, 22, V225 -0 D(XE(B)), Yi()), 0), ),
Vi1, b, i) =g dXg(by), Yi(b;), 0) x,(1, b, ) (5.26);
+8.(Xg(b.), Yo(b)), 0) yiz, b, i)
+ G, (X1, Vison X, 15 ¥y -0 DPG(X{(D,), Yi(D)), 0), ).
It is clear that each z,(t, b, i}e Ex-(0, j) and z,(1, a, i) € Ex +(0, j). Recall

that xj(z) and yj(r)e Eg-(0, j) if 1 i<, and xj(t) and y)(7) € Ex-(0, j) if
0 <i<I—1. The matching principles from (2.13) are

zit)—zi(t, by i) e Ex (7, j) if 1<iglI; (5.27)
)=zt a i+ 1) eEgs(y, j),  if 0<i<i—1. (5.28)

If j=0, then zy(t, b, i)=Z(b;) and zy(1, 4, i+ 1)=Z§*'(a;, ). Obviously
in this case (5.27) and (5.28) are valid, due to the hypotheses on
zH(t) = (x}, ¥4(r)). Assume that (5.27) and (5.28) are valid for 0<;<
Jjo— 1. We show that by choosing the proper subsidiary conditions we may

have (5.27) and (5.28) for j= j,. Comparing the Ist equations of (5.26),
and (5.9),, we have

xi(t) = x,(1, b, iy = x}(0) — x,(0, b, i)

J

+f {a function of ¢ which isin Eg (7, j— 1)} do, 120, 1</< I
0

In order to have xi;'.(r)—xj(r, b, i)e Eg-(y, j), we must have

x(0) —x,(0, b, i) + | “ {a function of ¢ which is in Eg (3, j— 1)} do=0.
0

Rewrite it as
xH0)— Xj(b,)— f(X4(b,), Yi(b)), 0) Ti(b)=Ci(b, i),  1<i<], (5.29)
where we have employed (5.25). Similarly, we obtain
XH0) = X" Nai ) = SX§ @i ), Yot (@i ), 0) 75" Ha)
=Cj(a, i+ 1), 0<i<I-1, (5.30)

in order to have xj".(t)—xj(r, a,i+1)e Eg+(y, j). Both C,(b,i) and
C,(a, i+ 1) are explicitly computable.
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Next , assuming that (5.27) and (5.28) are valid for the x-component, we
claim that (5.27) and (5.28) are valid for the y-component without any
additional subsidiary conditions. The proof is based on a comparison of
the second equations of (5.9), and (5.26); and an application of Lemma 3.5.
Details may be found in Lin [197], thus shall not be rendered here.

5.5. Determine the jth Order Expansions in the Interior, Boundary, and
QOuter Layers

It remains to compute X/(a,), X;(b;), 7i(a), and 7}(b) for 1<i<], and
x;'(O), 0 <i< I The equations to be satisfied are

X!(h)=S"b,,a) X!(a)+C}, 1<i<], (5.5)
0(a, i)-X'(a)=Cyla i), 1<i<], 57
(b, i) - Xi(b)=Cy(b, i), 1<i<],
where 8(a, i) - /(X (a,), Yi(a,), 0)#0 and 0(b, i) - f(X!(b,), Y!(b,), 0)#0;
4,-x(0)=di, 1<i<I-1 (5.14)

P(R(0)®span f(X{(a,), Yi(a,), 0),0), L(0)) x%0)=C?,  (5.22)'

P(L(I)@span f(X{(b,), Yi(b,),0),0), R(D) x/(0)=C/+", (5.22)"

Xi(0)— Xi(b,)— f(X!(b,), Yi(b), 0)Ti(b)=C,(b,i), 1<i<I, (529)
Xi(0) = X" (a,, )= f(Xia;, ), Yila, 1), 0) T (a)

=Cj(a, i+1), ogigI-1. (5.30)

Let P(a, i) (P(b, i)) be the projection in R™, with the range being TM, _,
(TM;) for 1<i<I, and the kernel being span f(Xi(a,), Yi(a,),0)
(span f(X§(b;), Yi(b;), 0)). From (5.29) and (5.30) we have

Pa, i+ 1)(x}(0) = X" (a,.,))
=Pla,i+1)C/la, i+ 1), 0<igi—1, (5.31)
P(b, i)(xji(O)—Xf(bi))=P(b, i) C,(b, 1), I<igl (5.32)
From (5.14),
4,(I—-P(b, 1)) x;(0)=d .

We can solve (I— P(b, i))xj.(O) from this. Similarly, we can solve
(I—P(a, i+ 1)) xj(0). Let

(1—P(b, i})) x}(0) = d;(b, i), I<igI—1, (5.33)
(I—P(a, i+ 1)) x{(0)=d/(a,i+1), 1<i<I-1 (5.34)
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Subtract (5.32) from (5.31), and we have

P(b, i) X{(b))— P(a. i+ 1) X;" (a,,,)=C,, I<ig<I- 1
We compute

P(R.(0), L.(0) +span f(X,(a;), Yo(a;), 0)) x7(0)
and

P(span f(Xg(a,), Yo(ay), 0). R(0) + L (0)) x)(0)
from (5.22)". We then obtain
P(R(0), L(0)) P(a, 1) X (ay)
from (5.31). Similarly, we obtain
P(L(I), R(I)+span f(Xq(b,), Yo(b)), 0)) x(0),
P(span f(Xq(b,), Y;(b)), 0), R(D) + L (D)) x/(0),
P(Lc(D), RAT)) P(b, 1) X/(b,).
Observe that we have the obvious formulas
P(b, i) S'(b;, a;)= P(b, i) §'(b;, a,) Pla, i), 1<i<],

P(ba l) Si(bia ai”.ﬁ?l’lu.ib= Si(bi’ ai; TMi’ TMI— l)a 1 s ls[a
P(Rc(l)’ Lc(l)) Si(bi’ ai; TMH TMI'— l)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
(5.40)

(5.41)

=Si(bi$ a; TMi’ TMI—I)P(RC(I_ 1)’ Lc(l— 1))’ I<i<I

Therefore from (5.5) we have

=8(b;, a;; TM;, TM, ) P(R(i— 1), L.(i— 1)) P(a, i) X}(a;)

+ P(Ri), L (i) P(b, 1) C].

Similarly, we have

P(L(i—1), R(i—1)) P(a, i) X}(a,)

=Sla;, b;; TM, _, TM;) P(L (i), R(i)) P(b, i) X(b))
—P(L(i—1), R(i—1)) P(a, i) S(a,, b)) C,
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from which we compute
P(R(i), Lc(i)) P(b, i) X(b;)
and
P(R(i), L(i)) Pa, i+ 1) X" Y(a,, ), 1<igI-1, (5.42)
based on (5.38), where (5.35) has been employed. We can also compute
P(L (i), R(i)) P(b, i) X[(b,)
and
P(L (i), R(D) Pla, i+ 1) X{*a,,\), I<i<I—1, (543)

based on (5.41), where (5.35) has also been employed. Add the results of
(5.42) and (5.43), and we obtain

Pla,i+1)X/*Y(a,, ), 0<igI-1
and
P(b, i) X(b)), I<igl (5.44)
From (5.31) and (5.32), we obtain
Pla,i+1)xj(0), 0<i<I—1
and
P(b, i} x}(0), 1<igl (5.45)
From (5.33) and (5.34), we obtain
x(0), 1<i<I-|,
P(span f(Xo(a,), Yo(a,),0), TM,) x](0) and P(span f(X4(b,), Y{(b,),0),
TM,) x!(0) may be obtained from (5.22) and (5.22)"". Therefore we obtain
x?(O) and xj’(O). This completes the calculation of
x;(O), 0<iglI (5.46)
Let us write
X}(a;)=P(a, i) X(a,) + p;(a, i) f(X{(a)), Yi(a,), 0),
Xj(b))=P(b, i) X[(b)) +p,(b, i) f(X{(b,), Yi(b,),0).



368 XIAO-BIAO LIN

It is clear that p;(a, i) and p,(b, i) may be obtained form (5.7), and this
completes the calculation of

X/(a), X(b), 1<ILI (5.47)

I

Finally, we compute
t{a), Tib), 1<1<] (5.48)

from (5.29) and (5.30).

Let us recall how (546), (547), and (5.48) imply {xi(t)}/_,,
{3} iz, {Xj(1)}io,, and {¥j(1)}i_,. X(r) may be obtained from (5.5)
and Y,(z) from (5.5)". xj(r) may be obtained from (5.12) for 1 <i<I—1
and y(t), L <i<[I-—1, is uniquely solvable from (5.13), (5.10), and (5.11)
since (5.14) is valid. From (5.18)', to compute y)(t) we need 02(0) ¥%(0),
which can be obtained in (5.22)". Similarly Q{(0) y/(0) can be obtained in
(5.22)" and yj(t) is computable.

6. PROOF OF THE MAIN RESULTS

We have obtained in Section 5 the formal power series expansions for the
outer layers 3> ( e/X (1), X2, &’Y (1), 1<i<I 1€ [a,;, b/], and the formal
power expansions for the interior and boundary layers 3 77 ,&/x(t),
> oevit), 1eR, 1<i<I—1,7eR” fori=0, teR "~ for i=1 The inner
and outer layers are matched through the determination of the formal
power series 3 | &t;(a) and ¥ | ¢’t;(b) which serve as the perturbation
of a;, and b;, 1 £i<I The matching is achieved through the asymptotic
matching principle described in Section 2. First the inner expansions of the
outer layers are calculated in (2.12), then the auxiliary parameters are

determined so that (2.13) is satisfied for all j >0, 1 <i< L

Proof of Theorem 2.1. Since (5.4); is obtained from the Taylor expan-
sion of (2.1), it is clear that the residual error for the truncations of the
outer expansion {(X7_,&/X!(t), X7 ,e'Y(1)): te[a,+X]_, e/ti{a)+ ¢,
bi+3X7_,e’ti(b)—¢€”1}i_, is O(e?*") in the slow variable t. Therefore in
the fast variable t the residual error is O(¢”*?) for the equation of x and
O(e”+") for the equation of y.

Similarly, (5.9), is obtained from the Taylor expansion of (2.1) in the fast
variable 7, thus for the truncations of the inner expansion {(X7_,&’x}(t),
T2 oelyin)): te[—€ef e '] for 1<i<I—1, te[0,&7'] for i=0
and te[—¢#~',0] for i=1}, the residual error is O(¢”*') in every
compact subinterval which does not depend on ¢ For a uniform estimate
for |t/<e?~', recall that x{(1)e E(0,j) and F,e E(0, j), therefore the
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residual error for the equation of x is O(glet|?) = O(¢* * ') and the residual
error for the equation of y is O(|er|”* ') = O(e#'#+ ). If translated into the
slow variable ¢, the residual error is (O(e?”), O(¢#»* 1)) in the equation of
(x, y), respectively.

The boundary error is B,(x, y,e)=0(e”*"), i=1, 2, following from the
Taylor expansion of B;(x, y, €), i=1, 2, easily.

The jump error may be obtained with the aid of 3.7 ;¢'z/(7, a, i) (or
Y /o&z;(t, b, D). For example,

p P p
Y 7] (b,+ Y s"ri(b)—s”)— Y elzi(—ef )
e k=1

j=0

<

14 P 14
Y sz;<b,-+ Y SkT;((b)—S‘C)— Y elzi(—1,b,0)
1=0

k=1 i=0

T=¢h-!

+

P P
Y ez (—1,b,i)— Y &zi(—1)
j=0

j=0

<Cle-e#71?" +hot. < Cle|fr+Y,

=gl

from the matching principle (2.12) and (2.13).

Proof of Theorem 2.2. Let the formal approximation obtained from a
truncation of the formal power series expansion be denoted by

r

Y &Z](en), i=2l 1<I<],

S~
I
™M= 1

e'zi(t), i=2+1, 0<iI<],
0

J

where -,(1, p) = (x,(1, p), v (1, p)), 1 <i<v, etc. From Theorem 2.1,

def

x;(t, p) —ef (xi(7, p), ¥z, p), &)= fi(1)
_{0(51’”) if i=21 1<iIL],
TloEf Yy it i=2+1, 0<ILI:

yilt, pY — g(x {1, p), yilt, p), €) = gi(t)

_{0(5“1) if i=21 1<i<],
oy i i=20+1, 0<I<I;
def

Zi(ﬂis p)_zl+l(al+l’ [7) = hi=0(8ﬂ(p+li);
def 7

B'l(xl(ala p)? yl(alﬂ p)vg) = bl :0(8p+1);

By(x (B, p), vu(B., 1) €) € By =0(" 1),
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where z,(t, p) is defined for te [a;, §,], 1 <i<v=2I+1, with

) w=ajet BP0 @)+ Bo=bife+ B e ()~
1fl—2l 1<ILT;

(i) a,=—ef~1 B=efVifi=21+1, 1<I<I—1;

(iii) a, =0, =€, 2, =~ and §,=0.

Write the exact solution as (x,(t, p)+x,(t), »,(1, p) + v,(1)), where
te o, + do;, B;+ A8,]. We assume do,=AB,=0if i=2/+1, 0<I< I The
equation for z,(t) = (x,(1), y;(7)) is

xi(r), = Ef(.\‘,-(f, p) + .\',—(T), }'i(f, p) + }',(T), 8)
—&f(x,(7, p), yilr, p), &) = fi(1), (6.1),
y () =glxi(t, p)+x,(7), yi(z, p)+ pi(2). €)

— glx,(z, p), yi(1, p), &) — g:(1), 1<igy, (6.1),

2Bt AB) =z (o + Aoy )
=20 H A2, p)— 2B+ 4B, p),  1<i<v—1, (6.2)
Bi(xi(ays p)+ x(2y), 3oy, p)+ yi(ey), €)=0, (6.3)
By(x,(B., p)+ x(B.), »(By, p)+ ¥.(B.), ) =0, (6.4)
d-z,(t,)=0, 2<igv—1, (6.5)

where d’ and t,, 1 <i<v, are defined in Section 4. We shall use the results
of Section 4, and to this end write the equation in the linear variational
form:

Fori=2/, 1</<1,

x,(t) —ef ' (et) x;—ef '(eT) ¥, = F 1, (6.1);
[ri(e)+ gi(er) " 'g'(e) x,(1)]
— g e[ yi(r) + gller) T 'gier) X, (1) ] = F L, (6.1),

where
Fr=F (fis Xy ¥ir €)
=&f(xi(1, p) + x,(1), ¥i(t, p)+ yilz), €)
—&f(xi(T, p), yilr, p) €)= fi(1)
—&eD_f(x,(1, p), yi(1, p), &) z,(1) + &(D.f(x,(1, p), yilz, p), €)
—D_f(x,(1,0), y,(1,0),0)) z,(7)
=O0(elz® + &z + | £1]);
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Fo=F (& X1, ¥is €)

= g(x;(t, p)+ x:(7), yil7, p)+ yi(1), 8)
— &(x;(z, p), yilz, p)€)
—D.glx,{z, p), yilz, p), &) z,(1) + (D g(xi(1, p), y.(7, p) &)
—D. g(x;(7,0), y,(1,0),0)) z,()
~git)+ [gler) 'gilen)] x,(7)
+ gilet) gt {ef (x,(1; p) + xi(1), yilt, p)+ yilt), )
—&f (xi(x, p) yilt, p) e} = filn)}
O( z,»l‘+8|2,-| +lgl+1£l)
Fori=2/+1,0<I<1,

x () =#], 6.1}/
yi(t) = g(t) xi(1) — gifx) yi(r)=F L, (6.1),
where

Fir=F (fir X ¥ir €)
=¢f(x,(t, p)+x,(7), yi(z, p)+ y;(1), €)
—&f(x;(7, p), yilz, p), &) — fil7)
=0(elz)| + il
F o= g(x;(1, p)+ x,(1), yilz, p)+ yi (1), 8) —

_D: g(x,(‘r, p)a _V,(T, p)v 8) zi(T)

g(x;(z, p), y.(t. p), €)

+[D:g(x(z. p), yi(z, p), €} — D. g(xi(1, 0), y,(7,0),0)] z(7)

— g:(7)
=0(|2i|2+6ﬁ|zil +1gd).

To compute the jumps we shall need the following estimates for i=2/,
1 €/< I, which can be verified directly:

Zil<Czl+ Ifil+ &),
|z, p)'I S CE2,
|2:( 0)' — z:(+, p)| < Cé?,
2B =zl ) + 2,8, 0) 4B,
— 02,4, 0) da;, = H#, I<igv—1 (6.2)
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where
H'=Hh;, =, AB;, Awy L €)
=z;(B) =z, il ) — (2,(B: + 4B)
=i+ Aoy )
il Aoy, p)— (B + 4B, p)
~Ziyi@ o pY+ 2B p)— by
—Ziv 1@y 10 pY Aoy 2By, p) AP,
+ [2B,, 0) —z,(B;, p)' 1 4B,
+ Lzl ) =z (2,40, 0) ] das
=O0(Iz;| [4B,] + 127 | 1dot, | +127( -, p)
X AR + 127, ( p) oy, 1+ (A
+12:05 0) = 2,0, pYHAB + 121414 0) — 2501 (5 p) |44 ()
=O(h| + (| 4B,| + 4o, 1)+ 2 (148 + | o, )
Tzl 1A+ gD AB + 1z il + 1 il + 8o 1D Ao 4 ]).
Recall that Ado;=48,=0 for i=2/+1, 0<I<I Therefore either
(B, 0)Y =¢f'(eB;), i=2l, or z,, (%, ,0) =¢f "+ (e, ,), i+ 1 =2l Define

(i=edP, (or —eda,, ), e;=f"(ef,) (or f'*'(ew,,,)) for i=2I (or
i+1=2l), and we can rewrite (6.2) as

(B =z la )+ e, = A7 (6.2)"

with = O(|h| + &[]+ 1812 + (1e)(|zal + |l + [ &240) 1C1)-
The boundary equations can be written as
Elzl(a:)=bl9 (6.3)
Ez-"\-(ﬁv)=b29 (6.4)
where
b,=b,(5,,z,,&)=[D.B(x,(2;, 0), y,(a,,0),0)
= D_B(x(«y, p), yar, p), y1, P)8)] zi(ay)
— By — {Bi(x,(0, p)+ x:(01), yaley, p)+ paley), &)
— B,(x,(xy, p), yilay, p), )
—D.By(x,(ay, p) yi(ay, p), e} zi(a,)}
= Olelz,| + |z//* + 1B,]);



HETEROCLINIC BIFURCATION 373

b,=b,(5,, z,. &)= [D.B:(x,(B,,0), v.(B,,0),0)
— D.By(x,(B,, p), ¥.(B,, P, &)1 2,(B,)— b,
— {Bay(x,(B., p)+ x.(B.), y.(B., PY+ B, €)
— By(x,(B., p), ».(B., P). €)
— D.By(x(B., p) By p) &) 2(B.) ]
=0(e)z,| + 12,17 + B,]).

We look for solutions of the system (6.1);, (6.1),, (6.1)7, (6.1);, (6.2)",
(6.3), (6.4), and (6.5) in the Banach space

v—1

(l'llizl» :}‘71 Hc[a_oﬁ‘i‘O]XHRm"'",

=1 =1

where 6 > 0, with the e-dependent norm defined as

1 1 .
[-Il.== sup Izil(‘l[‘x,—o'.ﬂ,+6]+_ sup ¢l

Isigywy Ilsigsv—1
Let an open subset ('s(¢) be defined as
Cole)={{z.}i i (GH 20z (Gl <05
Applying Theorem 4.9 to our system we have an abstract equation
(= 2= (U F ), F i {120 b by)
=0z} W (G e Ui {ehio B2 B By).
(6.6)

We observe that although Theorem 4.9 only gives the solution for the
linear equation is 7€ [a,, §;], however, z,(t) extends to [a;— 3, f,+ 3],
here o/ ' is the extended solution map. Moreover, estimates for
SUP1 <i<.|Zilcifa-5.5,+57 €an be easily obtained from the estimate in
Theorem 4.9 and the equation itself. We look for a fixed point of the
mapping
v—1
b: n C'la,—9d,p,+01x[| R"*"2

i=1 =1

Now for any 0 << 1, if p= 1 is such that f(p+ 1)> 1, we have

I#(0,0, {f:}, {<g:}. {h:}, By, B,
_0(|h| 151 |E_| I8, Ifl, N af,l,»=z,+l>

€ P P g2 h

=0(£B(p+l)—-l).
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It is also straightforward to verify that if § >0 is sufficiently small, then
there is ¢, > 0 such that if ¢ < ¢,

D: (s(e) > Csle)

and is a contraction in the indicated norm. Therefore, we have a unique
fixed point ({z,}'_,, {{;};Z}) in Cs(¢). Moreover

SUp |zl cipz-s.p+01t  SUP G =0’ "),

I<igy I<igv—1
Observe that in order to form a solution of (2.1), we need ¢ to be suf-
ficiently small such that da,,, (or 48,)=(1/e){;= 0PV 1)< 5. It is
also clear that

0 = Oeraal <& Y (140, +]4B,]) = O 7+ 1), (6.7)

i=1

We can now define

v

ZeaetlD) =\ {2l alt), t=¢1, € [0, + o, B, + 4B,1),

=]

where
zlexact(r)=zi(7:’ p)+zi(r)~ re[ac,-+Aoc,, BI+AB!]

To obtain the estimates for dist(z....(f), 2(¢, p)), we have to choose for
each t in the domain of z{_,(7) (or z,(1, p)} a 1, in the domain of z,(t, p)
(or z._,.(7)) such that

|Zi(119 P)_Zéxact(f)l (Or |z£xac1(Tl)_2i(T’ P)I)

is small. For rtela,+4a,f;+48, 10 [, 8], let 1,=t and we
have |z, (r P)— i) <lz)l.. Otherwise choose |[t,—1t|=]|da,| (or
[4B1)=0(F7*+*V =1 and thus |z,(7, p)—z. (1)) = O(#'"* 1) (or
|28 T) — zi(1y, p)| = O(eFP+ D)), Here recall z,(, p) = O(e) for i=2l.

We have proved (2.16) for large p such that B(p+1)>1. For an
arbitrary integer p >0, we can choose p so large that B(p+1)>p+ 1.
Accordingly dist(zeyae (1), 2(f, §))= O(e'?* "), It is straightforward to verify
that

diSt(Z(T, P), z(t, ﬁ)) = O(gﬂ(PH')_

Therefore the desired result in (2.16) follows. To prove (2.17), we need the
estimates

dist(Zcomp(t, P) —2(1, p)) = O(eP7 1)), (6.8)
dist(Zcomplfs §) — Zeomplls P)) = O(c'7 1), (6.9)
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The estimate in (2.17) then follows easily. To show (6.8), we only need to
compate Zoomp (4, p) (see (2.14)) with z(1, p) on [a,+3)_ ¢ r (a),
b;+3¥ 7, &/ti(b)], which is further divided into regular and boundary
regions with the length of the boundary layers being . We then use the
property of 32 oe'z,((t—a)e—X/_, ¢ 't)(a), a i), ie, it is close to

(t) in the boundary layer near r=a;,, and is close to
pr=0 sf:j’:* "((t—a,)Je—Xr_, &'~ 't)(a)) in the regular layer and the bound-
ary layer near t=54,. Similar consideration is also given to another term
2ot ((t=b)e—=27r ¢ ’.(b), b. i) in Z om, (1, p). Estimate (6.9) can
be proved by the same argument. Let o corresponding to p be denoted by
w(p). From (6.7) we have |0(p) — Wegaerl = O(#7*1). 1t is easy to show
that |w(p) — w(p)| = O(e'?*"'). Thus (2.18) follows easily. Q.E.D.

7. SINGULARLY PERTURBED PERIODIC SOLUTIONS

Problems concerning the existence of periodic solutions to the singularly
perturbed system

X=f(x, y, &)

(7.1)
ey =g(x, v, &),

xeR™ and yeR”, are closely related to the boundary value problem (1.1).
We shall use all the notations in Section 2. As in Section 2, assume that the
Oth order slow manifold &, 1<i</, is hyperbolic near (Xi(t), Yi(t)),
te[a; b,], which is a solution of (2.2), i.e., we assume condition (H,) as
in Section 2. Again the dimensions of the stable and unstable spaces of g,
are denoted by d- and 4", which are independent of 1<i< /I Assume
that x{=X{(b)=Xi""(a;,,), 1<i<I where Xi*Ya,,,) is Xl(a,);
(x4, ¥o(1)), TeR, 1 <i< 1, is a heteroclinic solution of (2.3), connecting &,
to &, 1, where &, is #. The outer layers {(X((¢), Y5(1)), t€[a;, b,]},
1<i</, and the inner layers {(x}, y5(z)),7eR}, 1<i<I, thus form a
closed cycle. We expect that under some additional conditions there exists
a unique periodic solution of (7.1) near the Oth order closed cycle when
>0 is small.

Consider the linear homogeneous equation (2.5) and the adjoint
equation (2.6). Assume that yy(r)" and (1), teR, 1 <i< |, are the only
bounded solutions of (2.5) and ( 2 6), respectively, up to a scalar multiple.
Assume (H,) and (H,) as in Section 2, but with 1 <i< 1 We need to define
the hyperbolicity of the closed cycle of the reduced flow on %, %, .., %,
Let S'(#, s) be the solution map for the linear equation (2.11). Define
S'(15, tl;ZZ? 2y) for [t,5,]=la;,b,] and X, @ f(Xi(1,), Yi(1,),0)=
2, ®f(X(1,), Yi(22), 0)=R" just like those in Section 2.
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DerFINITIONS.  Let TM; = {xeR" |4, -x=0} for 1<i<I, TM;=TM,.
The periodic solution \//_, (Xi(¢), t€ [a;, b;]) of (2.20) is said to be hyper-
bolic if the composite map H,’=, S'(b;,a;; TM,, TM, _|): TMy— TM, is
hyperbolic.

The main assumption of this section is:

(H,,s) The periodic solution \/!_, (X4(1), € [a;, b;]) of (2.20) is
hyperbolic.

Observe that (H, ,4) implies the existence of a stable space L (0) and an
unstable space R.(0) of the map [1‘_,S'(b;,a;; TM;,, TM,_,) with

L.(0)®R.(0)=TM,. We can define L(i) and R (i), | i<, just as in
Section 2. We also remark that the linearized flow around the periodic
solution \//_ (X{(1), te [a;, b,]) of (2.20) has an exponential trichotomy
with a one-dimensional center space spanned by {Xi(¢)}/_,. Here we need
a generalization of the concept of the exponential trichotomy to piecewise
continuous linear systems. Exponential trichotomy on the slow manifold
was used to study singularly perturbed periodic solutions by Bettelli and
Lazzari [31].

THEOREM 7.1. Suppose that {Xi(1), Yo(t)}i_,, t€l[a;, b.], is given
which satisfies (2.2) and {x{, yo( ),,_, is given which satisfies (2.3) and
(H,)-(H, ,a) as made in this section are satisfied. Then there exist formal
power series:

(1) ,'J?—‘OGJXJ[([ ’ jy:—_OEIY;(’), lslgl’ te[ai’ bi],
(i) X7 ,exi(1), T 2oeyi(r), 1<i</, teR, and
("1) Z;C_;()Sjrji(a)s )I_;Ogj.r;(b), 1 g’sla

with the functions X (1), Y (1), xi(z), yi(t) and the constants tj(a), 1)(b)
computable by systems of linear equations and the auxiliary constants for the
solutions of the linear equations determined by the asymptotic matching
principle.

Moreover, for any integer p>0 and 0 < f <1, if z(t, p) and z oy (t, p) are
defined as in Section 2, with °(r) =4 ”(r), for te [0, w], and are periodic
with period w=3Y1_, {(b;— 2,—1 e/(tj(b) —ti(a))}, then z(t, p) and
Zeomplts P) are formal approxzmatzons of (7.1). The jump errors for z(t, p)
are O(e#7* VY while z omp(t, p) is continuous. The residual errors for z(t, p)
and z omplt, p) are as listed in Theorem 2.1.

Finally, there is ¢4 >0 such that for 0 <g¢ <eg,, there exists a unique exact
periodic solution z...(t) of system (7.1) with period @ ,,ci, |0 — Dexael =
0(¢), and dist(z ... (1), 2(t, p)) = O(e). We have the estimates
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dist(zoaelt), 2(1, p)) = O(H 7+ M),
dist(z ,ai(1), Zeomplt, P)) = O(e?™ n,

Iw_wexacl| = O(EP+ ' ).

The proof of Theorem 7.1 is similar to the proof of Theorems 2.1 and 2.2,
or even simpler at certain points. We still need a splitting on each TM,,
L (i)® R.(i)=TM,, which comes from the hyperbolicity of the solution

[_(X§(2), te[a; b,]), (see Hy,g)). When computing the higher order
expansions, there is no need to consider matching of y variables, however,
there are matching conditions which determine X;(a,), Xj(b,), ti(a), Ti(b),
and x}(0) for 1 <i<[, j> 1. The solvability of a system of algebraic equa-
tions which determines X(a;), etc., relies on the hyperbolicity of the linear
composite map [[/_, S(b;, a;; TM,;, TM, |): TMy— TM,. In order to
show the validity of the formal series expansions we consider a linear
periodic system

Z,-(T),—A,—(T,E)Z,(T)=F,-(T), TEEa,-, Bi]’
2By =z ilo )+ ei=hy, (7.2)
d'-zi(t,)=0,

for —oo <i< 2. System (7.2) is a linearization to (7.1) for 1 <i<2/ just
as system (4.1), (4.2), and (4.5) is to system (2.1). For 1>/ and i> 2], the
coefficients of (7.2) come from a 27 periodic extension in the index i.
System (7.2) can be solved by the method of iteration, just as system
(4.1)-(4.5) in Section 4. Again the essential role is played by the hyper-
bolicity in the variables, x and ), similar to the situation in Section 4.
Details shall not be rendered here.

We remark that hypothesis (H, ,,) can be weakened. Theorem 7.1 is
valid if [1/_, S'(b,, a;; TM,, TM,_,): TM,— TM, is nondegenerate, ie.,
one is not an eigenvalue for that map. However, we would not have a
splitting TM,= L (i)® R_(i).

ExampLE. Consider the traveling wave solution of the FitzZHugh-
Nagumo equation which satisfies a system of ordinary differential equa-
tions in R?,

u'=u, (7.3)
v'=0v—[f(u)—w]l, (74)
w' =¢e0"(u—yw). (7.5)

For ¢=0, w' =0, w is a parameter for Egs. (7.3) and (7.4). The function
f(u) has the qualitative form of a cubic polynomial, and for definiteness, we
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take f(u)= —u(u— B)(u— 1), where 0 < < 1. For w <w < w, the equation
f(u)—w=0 has three zeros, u,(w) <uy(w) < u,(w). See Fig. 3.

LEMMA 7.2. There is 0,>0 such that for 0<0<86,, system (71.3), (7.4)
possesses a unique heteroclinic solution connecting (u(w),0) to (uy(w), 0)
if w=w(0). Here w,(0) is a C* function, w (6) <0 for 0<0<8,,
w1(80) =0, and w(0) is such thar [N f(u) —w (0)] du=0. Also for
0<0<8,, system (1.3), (7.4) possesses a unique heteroclinic solution connec-
ting (uy(w),0) to (u(w),0) if w=wy(0). Here wy0) is a C* function,
wy(0) >0 for 0<0<8,, and w,(0)=w(0).

For the cubic polynomial f(u)= —u(u— B)(u—1), 0<f < i. The lemma
can be proved by computing the heteroclinic solution and the parameter
w,(8) explicitly; see Casten, Cohen, and Lagerstrom [2]. The same results
also hold for the more general cubic type function f(u). A proof can be
obtained by phase-plane analysis; see Smoller [27].

Let we (o, w) and consider the equilibria (#,(w), 0) and (u,(w), 0) for
(7.3) and (7.4). Since df(u,) <0 and df(u,) <0, it is clear the (u,,0) and
(u,, 0) are saddle points with eigenvalues

0 /0% —4df(u)
e 7.6
2 —_— 2 k ( )
where u = u,(w) or u,(w). If #>0 and W e (, ) are such that system (7.3)
and (7.4) has a heteroclinic solution (&(t), (1)) connecting (u,(W), 0) to
(u,(W), 0) or (uy(W), 0) to (u,(%), 0), the conditions on (8, w) near (8, W)
for system (7.3) and (7.4) to have a hetroclinic solution near (é(t), #(t))

u1(ws)

ul(wl) 7 > \u2(w1)

FIGURE 3
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can be obtained by the method of Lyapunov-Schmidt with application of
exponential dichotomies (Palmer [23], see also Hale and Lin [13]). Since
the unstable manifold for (u,(#), 0) or (u,(¥w), 0) is of dimension one, if
(@(t), 8(z)) is a heteroclinic solution from (u,(w),0) to (u,(w), 0) (or
(u5(w), 0) to (u,(w), 0)), then (#(z)’, ¥(r)’) spans the one-dimensional space
of bounded solutions of the linearized equations of system (7.3) and (7.4)
around (#(t), &(t)),

$1= 0>,
$>=0¢, —df(a()) ¢,.

Under these conditions, it can be shown that (6, w) has to satisfy a bifurca-
tion equation

G0, w)=0,

whose solution near (8, #) corresponds to a unique heteroclinic solutions
near (i(t), #(t)). Moreover,

60((?9 ’”:fi W (1) 3(c) dr, (17)
G0, w)
= j (e (7.8)

and here (¥ (1), ¥,(t)) is the unique bounded solution, up to a scalar mul-
tiple of the adjoint system

Y () —df(i(t)) ¥o(1)
Ya(t) + (T +0‘//

07

Observe that if X(t) is a fundamental matrix of a linear equation,
(X~ !(z))* is a fundamental matrix of its formal adjoint equation. Let (%))
form one column of the fundamental matrix X(t) of the linearization of
system (7.3) and (7.4). We readily find that a column of (X~!(1))* is
(det X(1))~'(70G"). Since det X(1) = ce®, without loss of generality, ¢ =1,
we have ¥ ()= —d(t)" e and Y,(t)=i(t) e °. Substituting into (7.7)
and (7.8) we have

0GB, W) * o,
o _Lx [5(c)]% e * dr>0

oG, w) = e e~ % du, case 1,
ow _J_x e Tilr) dr—{ “e " du, case 2.

505 84°2-12
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Case 1 (or case 2) occurs if (é(t), B(t)) connects (u,(w), 0) to (uy(w), 0)
(or (uy(w),0) to (u,(w),0)). Therefore 0G(P, w)/dw>0 in casel and
AG(8, w)/ow <0 in case 2.

Remark 7.3. According to the partial derivatives of G(8, w), G(6, w)=0
has a C* solution w=w(60) locally, with dw(6)/d6 <0 in case 1, and
dw(0)/d0>0 in case2. Based on this, Lemma 7.3 can be proved by
homotopy continuation, starting from the easiest case #=0. We shall not
elaborate it here.

Let 6€(0,68,) be fixed, ¢ be a small parameter. The fast system
(7.3)—(7.5), when ¢=0, has a heteroclinic solution connecting (u,(w), 0) to
(uy(w), 0) if w=w(8). It also has a heteroclinic solution connecting
(uy(w), 0) to (uy(w), 0) if w=w,(6). Note that w,(8) > w(6).

Assume also that y >0 is small so that the point (u,(w,), ) lies under
the line u =yw. We now consider the slow system of equations

du
e—=u,

dt

dv
szlt=0v—f(u)+ W,
dw_
dr

“Nu—yw), t=er.

If =0, the flow on the slow manifold & = {v=0, f(u)=w} is governed
by

v=0,
w=f(u),
dw

—=0""u—yw), t=c¢r

dt

Clearly, the slow flow connects (u,(w, ), w,) to (uy(w,), w,) and
(u,(w5), w,) to (u,(w,), w,) along &. Together with the fast flow which
connects (u;(w,), 0) to (u,(w,), 0} (in the ¥—v plane) and (u,(w;), 0) to
(u,(w,), 0), we have a closed cycle. We shall verify that all the hypotheses
of Theorem 7.1 are satisfied. The hyperbolicity of the two branches of slow
manifold {(u, v, w)| W <w<w, v=0, u=u,(w), i=1,2}, ie, (H,), follows
from the eigenvalues of the equilibria, as in (7.6).

Hypothesis (H,) follows from dG(0, w,(68))/ow #0, i=1,2. The slow
manifold % is one-dimensional and the flow on & passes (u;(w;), 0, w)),
i, j=1, 2, at nonzero speed, thus (H,) is also satisfied. Finally, (H, ;4) is
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trivially satisfied since & is one dimensional. Therefore Theorem 7.1 applies
to this example. We have shown the following

THEOREM 7.4. For each 0<8<8,, there is £*(0)>0 such that for
0 <e<e*(0), system (1.3)—(7.5) possesses a unique periodic solution near the
closed cycle formed by two pieces of heteroclinic orbits and rwo pieces of
orbits of the slow flow as indicated in Fig. 3. The computation of asymptotic
expansions and the exact solution can be achieved by using Theorem 7.1, with
the error estimates also given in Theorem 7.1.

The results in Theorem 7.4 are known and have been proven by the
topological method (Carpenter [1]) and asymptotic method (Casten ef al.
[2]). The purpose of presenting this example is to illustrate how our
method can be effectively applied to practical problems. Other types of
traveling waves in the FitzHugh-Nagumo equation as well as the
Hodgkin-Huxley equation can be treated as various boundary value
problems in the same spirit.
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