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Slow Eigenvalues of Self-similar Solutions of the
Dafermos Regularization of a System of Conservation
Laws: An Analytic Approach
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The Dafermos regularization of a system of n hyperbolic conservation laws
in one space dimension has, near a Riemann solution consisting of n Lax
shock waves, a self-similar solution u=u∈(X/T ). In Lin and Schecter (2003,
SIAM J. Math. Anal. 35, 884–921) it is shown that the linearized Dafermos
operator at such a solution may have two kinds of eigenvalues: fast eigen-
values of order 1/∈ and slow eigenvalues of order one. The fast eigenvalues
represent motion in an initial time layer, where near the shock waves solu-
tions quickly converge to traveling-wave-like motion. The slow eigenvalues
represent motion after the initial time layer, where motion between the shock
waves is dominant. In this paper we use tools from dynamical systems and
singular perturbation theory to study the slow eigenvalues. We show how
to construct asymptotic expansions of eigenvalue-eigenfunction pairs to any
order in ∈. We also prove the existence of true eigenvalue-eigenfunction pairs
near the asymptotic expansions .

KEY WORDS: Conservation law; Riemann solution; Dafermos regulariza-
tion; stability; eigenvalue; eigenfunction; SLEP method; asymptotic expansion.
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1. INTRODUCTION

The Dafermos regularization [6, 35, 36, 37]

uT +f (u)X = εT uXX (1.1)
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is a diffusively perturbed system of conservation laws in one space dimen-
sion. It has many similarity solutions of the form u = u∈(X/T ). This
property is shared by the unperturbed system of conservation laws

uT +f (u)X=0, (1.2)

but not by the usual viscous regularization

uT +f (u)X= εuXX. (1.3)

Using the change of variables

x=X/T, t= lnT

the Dafermos regularization (1.1) becomes

ut + (Df (u)−xI)ux = εuxx. (1.4)

The same change of variables brings the system of conservation laws (1.2)
to (1.5)

ut + (Df (u)−xI)ux =0. (1.5)

In the new variables, the Dafermos regularization (1.4) appears to be a
natural regularization of (1.5). It has been used to compute numerically
one-parameter families of Riemann solutions [30].

A Riemann problem is an initial value problem for (1.2) with piece-
wise constant initial data

u(X,0)=
{
ul, if X<0,
ur , if X>0.

(1.6)

We consider a solution of the Riemann problem (Riemann solution) con-
sisting of n Lax shock waves with speeds s̄i , i=1, . . . , n. Let s̄0 =−∞ and
s̄n+1 =∞. Then

u(X,T )= ūi , if s̄i <X/T < s̄i+1.

The stability of solutions of (1.3) near such a Riemann solution, with
small jumps in ūi , is considered in [21].

We shall not assume that shock waves are weak; instead we shall
assume that the shock waves of the Riemann solution satisfy the viscous
profile criterion. In other words, corresponding to the ith shock wave there
is a traveling wave solution u(X,T )= qi(ξ), ξ = (X− s̄iT )/ε, of (1.3). The
function qi satisfies the traveling wave ODE

(Df (u)− sI )uξ =uξξ (1.7)

with wave speed s= s̄i , and connects ūi−1 to ūi .
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In xt-coordinates, the Riemann solution becomes a piecewise con-
stant, stationary solution u0(x) of (1.5):

u0(x)= ūi for s̄i <x < s̄i+1. (1.8)

Using geometric singular perturbation theory [13], Szmolyan proved
that near a structurally stable Riemann solution u0(x) of (1.5) that con-
sists of n Lax shock waves and rarefactions, not necessarily weak, there are,
for sufficiently small ε > 0, stationary solutions uε(x) of (1.4) [Szmolyan,
P. personal communication]. Szmolyan’s work has been extended to
other Riemann solutions [22, 29]. We will call stationary solutions of (1.4)
Riemann–Dafermos solutions.

For the Riemann solutions we consider, which have n Lax shock
waves, the corresponding Riemann–Dafermos solutions have n sharp inter-
nal layers near x= s̄i , i=1, . . . , n. In fact, u0(x) is the zeroth order expan-
sion of uε(x) in regular layers. Using the stretched variable ξ = (x −
s̄i )/ε, qi(ξ) is the zeroth order expansion of uε(x) in the ith singular layer.

Because uε(x) is a stationary solution, we wish to determine its sta-
bility by studying eigenvalues of the linearization of (1.4) at uε(x). It is
known that:

(1) The initial value problem is well-posed for any initial data near
uε(x) that approaches constants exponentially as x→±∞ [20].

(2) In the space of functions of order e−α|x|, the essential spectrum
of the linearization lies to the left of the line Re λ�−δ for some
δ>0 [20].

(3) The linearization is sectorial in the space of functions of order
e−α|x|2 [18]. Thus, from the standard theory of analytic semi-
groups [8, 12, 26], in such spaces linearized stability of the
Riemann–Dafermos solution is determined by the eigenvalues of
the linearization.

(4) If the Riemann–Dafermos solution is linearly stable, nonlinear
stability can be proved by a contraction mapping argument as in
[7, 12].

It is known that there are both fast eigenvalues, of order 1/ε, and
slow eigenvalues, of order one. This can be explained by considering
a time-dependent solution uε(x, t) near the Riemann–Dafermos solution
uε(x). Suppose that uε(x, t) has n sharp layers near the curves xiε(t). Using
ξ = (x−xiε(t))/ε near the ith singular layer, we have

εut =uξξ −
(
Df (u)−xiε(t)−

d

dt
xiε(t)− εξ

)
uξ .



4 Lin

In the initial time layer 0 � t � ε, ut = O(1/ε) near xiε(t). We therefore
expect to have fast eigenvalues λ=O(1/ε), with the support of the corre-
sponding eigenfunctions near xiε(t). After the initial time layer, ut =O(1).
The solution (if stable) will look like traveling waves in singular layers, and
convection in regular layer, where to lowest order ut + (Df (u)−xI)ux =0.
We expect to have slow eigenvalues of O(1) corresponding to this slow
motion.

Fast eigenvalues can be expressed as λ(ε)=∑∞
j=−1 ε

jλj with λ−1 �=0,
while slow eigenvalues constitute the special case λ−1 = 0. In the ith sin-
gular layer, to lowest order, an eigenvalue and corresponding eigenfunction
satisfy

λ−1U + ((Df (u(ξ))−xi0I )U)ξ =Uξξ .

If λ−1 is in the right half of the complex plane, the limiting systems in
(U,Uξ )-space at ξ = ±∞ have exponential dichotomies. If λ−1 = 0, how-
ever, the limiting systems do not have exponential dichotomies. Instead
there is an n-dimensional center space, which makes the study of slow
eigenvalues more difficult. For an introduction to exponential dichotomies
(see [5, 25, 27, 28]). A variant of exponential dichotomies with exponential
rate approaching infinity is used in Lemma 5.2.

In [20] conditions for expanding fast eigenvalues and eigenfunctions
to any order in ε were given. For slow eigenvalues, however, only the
lowest-order terms of the expansions were obtained. In this paper we
will show how to successively construct higher-order expansions of slow
eigenvalues and eigenfunctions to any desired degree, and we will prove
the existence of exact eigenvalues and eigenfunctions near the asymptotic
expansions. For an alternate approach to existence of slow eigenvalues and
eigenfunctions via geometric singular perturbation theory, see [31]. The
latter approach does not yield information about the asymptotic expan-
sions, but does provide geometric insight into the eigenvalue problem.

The assumptions used in [20] will be recalled in Section 2. For slow
eigenvalues, these assumptions are not sufficient to obtain higher-order
expansions. To construct higher-order expansions, we assume that to the
lowest-order, the eigenvalue is simple. This is equivalent to assuming that
the SLEP function to be defined in Section 4, has a simple zero. The same
condition will enable us in Section 5 to construct true slow eigenvalue-ei-
genfunction pairs corresponding to the asymptotic expansions. This con-
dition is also used in [31].

The stability of Riemann–Dafermos solutions is closely related to the
stability of Riemann solutions of conservation laws [19] and to the sta-
bility of nearby solutions of the usual viscous regularization. At this time
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our understanding of these relations is incomplete. In [20], it is explained
that the fast eigenvalues correspond to eigenvalues of individual viscous
shock solutions (traveling waves) of the usual viscous regularization, which
have been studied in [1, 9, 33, 38] and elsewhere. The slow eigenvalues are
related to inviscid stability of multiple-shock-wave Riemann solutions of
hyperbolic conservation laws, which have been studied in [2, 3, 15, 32] and
elsewhere. For a system of two equations, formulas for slow eigenvalues of
Riemann–Dafermos solutions near a Riemann solution consisting of two
Lax shock waves were obtained in [20]. In this case the condition that all
slow eigenvalues have negative real part is precisely the same as the con-
dition for BV inviscid stability of the Riemann solution. For a system of
more than two equations, the relationship is more complicated, and has
recently been elucidated by Lewicka [16].

In a suitable coordinate system, the Dafermos regularization can be
viewed as an asymptotic approximation to the usual regularization

uT +f (u)X=uXX (1.9)

for large T . Using the change of variables x =X/T, t = lnT in (1.9), we
obtain

ut + (Df (u)−xI)ux = e−t uxx. (1.10)

For large t, e−t is small. If we freeze t = t0 and let ε= e−t0 , then we have
(1.4), which is a good approximation in a time interval where e−t is close
to e−t0 . Hence the study of the stability of Riemann–Dafermos solutions
may provide information about the asymptotic behavior of solutions of
(1.10).

The remainder of the paper is organized as follows.
In Section 2, we state the assumptions of this paper and recall results

from [20].
In Section 3, we show that the slow eigenvalue problem can be

reduced to a system of equations on regular layers, coupled by jump con-
ditions derived from the singular layers between adjacent regular layers.
This approach is similar to the SLEP method introduced by Nishiura and
Fujii [23] for reaction-diffusion equations. The expansion of the eigenvalue
problem to order ε was obtained in [20]. However, the nature of the prob-
lem is more fully revealed at order ε2. We derive expansions of the eigen-
value problem to all orders in ε.

In Section 4, the SLEP system is converted to a system of abstract
eigenvalue problems. Under the assumption that −(λ0 + 1) is a simple
eigenvalue of the abstract system, where λ0 is the lowest-degree term
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in the expansion of the slow eigenvalue, we show that formal asymp-
totic expansions of eigenvalues and eigenfunctions of any order can be
constructed recursively. For this purpose we show that the abstract opera-
tor is Fredholm, and we characterize its kernel, range, and co-kernel. The
SLEP matrix and SLEP function are defined in this section. Our simplic-
ity assumption on −(λ0 +1) is equivalent to assuming that λ0 is a simple
zero of the SLEP function.

A formal asymptotic expansion of eigenvalue (eigenfunction) satis-
fies the expansion of eigenvalue equations. It becomes a true asymp-
totic expansion if there exists an exact eigenvalue nearby. Notice that the
exact eigenvalue can be constructed using only the zeroth order singular
eigenvalue. We discuss asymptotic expansions to any order in this paper
for their value in numerical approximation and for the completeness in
analysis.

In Section 5, under the same assumptions used in Section 4, we
show that the formal asymptotic expansions obtained in Section 4 are true
asymptotic expansions of eigenvalue and eigenfunction. The proof is based
on the idea of the shadowing lemma of dynamical systems, plus reduc-
tion to a SLEP system similar to the one studied in Sections 3 and 4. An
asymptotic approximation of the eigenfunction to some finite order can be
viewed as a pseudo-orbit with small residual and jump errors. Correction
terms can be constructed that cancel residual and jump errors to yield an
exact eigenvalue–eigenfunction pair. Because the linear variational equa-
tion about the approximation looks like the recursive equation for com-
puting higher-order expansions, key lemmas obtained in Sections 3 and
4 apply in this section also. Since the linear variational system around
the pseudo-orbit does not have an exponential dichotomy, one cannot use
the shadowing lemma from [4] directly. The part of the solution to which
the shadowing lemma does not apply is projected to a center space. The
reduced system turns out to be closely related to the SLEP system of
Section 4.

An important by-product of the analytic approach is that properties
of linear operators studied in this paper will be useful in solving (1.4) for
initial data near the Riemann–Dafermos solution. After a Laplace trans-
form, the linearized system in the dual variable s is closely related to the
eigenvalue problem studied in this paper. When s is not an eigenvalue, the
linear operator obtained from Laplace transform is invertible. With some
estimates on the transformed solution, the time dependent solution and its
stability can be obtained.

I am grateful to the referee for pointing out the work of Suzuki et al.
on a relation between the Evans function and the SLEP method [34].
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2. ASSUMPTIONS AND PREVIOUS RESULTS

We first define a so-called structurally stable Riemann solution of
(1.2) that consists of exactly n Lax shock waves with speeds s̄1<s̄2< · · ·<
s̄n. In the new variables (x, t)= (X/T , lnT ), this is a piecewise constant
function u0(x) having jumps at x= s̄i , i=1, . . . , n.

A Lax i-shock for (1.2) that satisfies the viscous profile criterion is a
function

u(x)=
{
u− for x <s,
u+ for x >s, (2.1)

where x=X/T , together with a solution q(ξ) of the traveling wave ODE

u̇=f (u)−f (u−)− s(u−u−), (2.2)

such that:

(L1) f (u+)−f (u−)− s(u+ −u−)=0.
(L2) The eigenvalues v−

1 < · · ·<v−
n of Df (u−) satisfy v−

i−1<s<v
−
i .

(L3) The eigenvalues v+
1 < · · ·<v+

n of Df (u+) satisfy v+
i < s <v

+
i+1.

(L4) q(ξ) approaches u− as ξ→−∞ and u+ as ξ→∞.

Notice that (L1)–(L3) imply that for (2.2), u± are hyperbolic equilibria,
the unstable manifold of u− has dimension n− i+1, and the stable man-
ifold of u+ has dimension i. Assumption (L4) says that these manifolds
intersect. Generically the intersection is a curve (see (S2) or (S2′)).

A solution of the Riemann problem (1.2), (1.6), that consists of n Lax
shock waves, each satisfying the viscous profile criterion is a piecewise con-
stant function

u0(x)= ūi for s̄i <x < s̄i+1, i=0, . . . , n, (2.3)

where x=X/T , together with R
n-valued functions qi(ξ), i=1, . . . , n, such

that:

(R1) ū0 =ul and ūn=ur .
(R2) For each i=1, . . . n, the triple (ūi−1, s̄i , ūi ), together with the func-

tion qi(ξ), defines a Lax i-shock.

Define a mapping G : Rn
2+2n→R

n2
by

G(u0, s1, u1, . . . , un−1, sn, un) =
(
f (u1)−f (u0)− s1(u1 −u0), . . . , f (un)

−f (un−1)− sn(un−un−1)
)
.
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Notice that

G(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn)=0. (2.4)

The Riemann solution just defined is structurally stable provided

(S1) DG(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn), restricted to the n2-dimensional
space of vectors (U0, S1,U1, . . . ,Un−1, Sn,Un) with U0 =Un = 0,
is invertible.

(S2) For each i=1, . . . , n, the unstable manifold of ūi−1 and the stable
manifold of ūi for the traveling wave ODE u̇= f (u)− f (ūi−1)−
s̄i (u− ūi−1) meet transversally along qi(ξ).

If (S1) and (S2) are satisfied, then for each set of Riemann data
(u0, un) near (ū0, ūn), there is a Riemann solution near the original one.

Condition (S1) can be restated as follows:

(S1′) If we set (U0,Un)= (0,0), then system of linear equations

(Df (ūi)− s̄i I )Ui − (Df (ūi−1)− s̄i I )Ui−1

−Si(ūi − ūi−1)=0, i=1, . . . , n,

has only the trivial solution

(S1,U1, . . . ,Un−1, Sn)= (0,0, . . . ,0,0).
A condition equivalent to (S2) is the following:

(S2′) For each i=1, . . . , n, the linear differential equation

((Df (qi(ξ))− s̄i I )U)ξ =Uξξ
has, up to scalar multiplication, a unique solution that approaches
zero exponentially as ξ→±∞. It is qiξ (ξ).

Asymptotic expansions of Riemann–Dafermos solutions have been
obtained under these conditions. Let the location of the ith layer be xi(ε),
let the solution in the regular layer (that is, not near xi(ε)) be uRε (x), and
let the solution in the ith singular layer (that is, near xi(ε)) be uiε(ξ),
where ξ = (x−xi(ε))/ε. Then

xi(ε) =
∑

εj xij , i=1, . . . , n,

uRε (x) =
∑

εjuRj (x),

uiε(ξ) =
∑

εjuij (ξ).
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At lowest order, xi0 = s̄i , ui0(ξ)=qi(ξ), and uR0 (x)= ūi is just the piecewise
constant Riemann solution of the conservation law (1.5). Furthermore, to
all orders of ε, uRj (x) is constant on each regular sublayer (xi0, x

i+1
0 ),0 �

i�n, where x0
0 =−∞, xn+1

0 =∞.
As mentioned in the Introduction, asymptotic expansions of slow ei-

genvalues and eigenfunctions to lowest order in ε were obtained in [20]
and will be outlined below.

3. REDUCTION OF THE EIGENVALUE PROBLEM TO A SLEP
SYSTEM

In this section, we derive formal expansions of the eigenvalue equa-
tions. We also show that at each order εj , the eigenvalue problem can be
reduced to a SLEP system.

Define the matrices in regular and singular layers respectively,

Df i :=Df (ūi0), x ∈ [xi0, x
i+1
0 ], i=0, . . . , n,

Df i(ξ) :=Df (qi(ξ)), ξ ∈R, i=1, . . . , n.

In the regular layer we will use Df for Df (uR0 (x)) if no confusion should
arise.

3.1. Some Lemmas

We need to study nonhomogeneous equations as in Lemmas 3.1 and
3.2. Proofs of the two lemmas are deferred to the end of the section. Let
Ek be the Banach space of continuous functions defined on R or R

± that
are O(1+|ξ |k). Let Eα,k be the Banach space of continuous functions that
are O(e−α|ξ |(1+|ξ |k). Let the norms of F ∈Ek and Eα,k be

‖F‖k = sup
ξ

(1+|ξ |k)−1|F(ξ)|,

‖F‖α,k = sup
ξ

eα|ξ |(1+|ξ |k)−1|F(ξ)|.

We assume that

0<α<min{|σDf (ūi−1
0 )−xi0|, |σDf (ūi0)−xi0| : i=1, . . . , n}.

Lemma 3.1. Consider the equation

Uξ = (Df i(ξ)−xi0I )U +G(ξ), ξ ∈R. (3.1)

If G ∈ Ek, then there exists a unique solution U ∈ Ek with U(0)⊥ qiξ (0).
Denote the solution by Û i(ξ,G). Moreover,
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(1) If there exists α > 0 such that G ∈ Eα,k for ξ > 0 or ξ < 0, then
Û i(·,G)∈Eα,k for ξ >0 or ξ <0.

(2) If G is a polynomial of order k, then as ξ → ±∞, respectively,
Û i(ξ,G) approaches two polynomials of order k.

(3) If G(ξ) approaches two polynomial of order k as ξ →±∞, respec-
tively, then Û i(ξ,G) approaches two polynomials of order k as
ξ → ±∞. In particular, if β is a constant vector, then as ξ →
±∞, Û i(ξ, β) approaches exponentially the limits

Û i(+∞, β) =−(Df i −xi0I )
−1
β,

Û i(−∞, β) =−(Df i−1 −xi0I )
−1
β. (3.2)

Lemma 3.2. Consider

Uξξ = ((Df i(ξ)−xi0I )U)ξ +g(ξ), ξ ∈R. (3.3)

Assume that there exists a positive integer k such that g∈Ek. Then

U = Û i(·,
∫ ξ

0
g(s)ds)

is a particular solution for (3.3) in Ek+1 with ‖U ‖k+1�C ‖g ‖k. The general
solution of (3.3) is

U = Û i
(

·,
∫ ξ

0
g(s)ds

)
+ Û i(·, β)+ cqiξ ,

where the parameter β ∈R
n, c∈R.

3.2. Formulation of Slow Eigenvalue Problems

Recall that to lowest order, for i = 1, . . . , n, xi0 is the location of the
ith singular layer, denoted by Si . With x0

0 = −∞, xn+1
0 = ∞, let Ri =

(xi0, x
i+1
0 ) be the ith regular sublayer. Figure 1 shows the ordering of reg-

ular and singular layers.
We look for slow eigenvalues and corresponding eigenfunctions of the

form

Figure 1. Ordering of regular and singular layers.
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λ(ε)=
∞∑
j=0

εjλj , UR(x, ε)=
∞∑
j=0

εjURj (x), Ui(ξ, ε)=
∞∑
j=0

εjUij (ξ).

(3.4)

We use UR and Ui to denote the function U in regular and singular lay-
ers, respectively. The stretched variable ξ = (x − xi(ε))/ε is used in the
ith singular layer. Denote UR(x, ε) and URj (x) on Ri by URi(x, ε) and
URij (x), respectively.

Let Ck(γ ), γ >0 be the space of continuous functions on R with con-
tinuous derivatives up to order k, for which the norm

‖U ‖Ck(γ )= sup
x

{(|U(x)|+ |U ′(x)|+ · · ·+ |∂kxU(x)|)eγ |x|}

is finite. Functions in Ck(γ ), γ >0 satisfy the decay property

|∂jU(x)|�Ce−γ |x|, j � k, in the sublayers R0 = (−∞, x1
0 ) and Rn= (xn0 ,∞)

(3.5)

for some constant C. In [20], it is shown that the initial value problem
is well-posed for initial data close to u(x, ε) in C2(γ ). We also have the
following result from [20].

Lemma 3.3.

(a) To all orders in ε, eigenfunctions UR(x, ε) that satisfy (3.5) are zero
in the regular sublayers R0 = (−∞, x1

0) and Rn = (xn0 ,∞). That is,
URij =0 for all j �0 and i=0, n.

(b) To lowest order, UR=0 in the regular layer, i.e., URi0 =0 for 0� i�n.

It is known that λ= −1 is an eigenvalue with eigenfunctions repre-
senting shifts in layer positions [20]. Therefore in this paper we assume
that λ0 +1 �=0.

Let xi(ε)= ∑
εj xij be the position of the ith singular layer and let

ξ = (x−xi(ε))/ε in Si . The linear variational equation of (1.4) around uε is

Ut + ((Df (uε)−xI)U)x +U = εUxx.
Hence the expansions of eigenvalues and eigenfunctions must formally
satisfy

(λ+1)UR + ((Df (uε)−xI)UR)x = εURxx in the regular layer,

(3.6)

ε(λ+1)Ui + ((Df (uε)−xi(ε)− εξI )Ui)ξ =Uiξξ in the singular layer Si.

(3.7)
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The expansions of eigenfunctions in inner and outer layers satisfy the
following matching principle. Let the inner expansions of the two outer
layers adjacent to xi(ε) be

∞∑
0
εj Ũ

i,−
j (ξ) =

∞∑
0

εjU
R,i−1
j (εξ +xi0 + εxi1 + ε2xi2 +· · · ),

∞∑
0
εj Ũ

i,+
j (ξ) =

∞∑
0

εjU
R,i
j (εξ +xi0 + εxi1 + ε2xi2 +· · · ).

Note that Ui,±0 =0 and U
i,±
j , j �1, is a polynomial of degree j −1.

Matching Principle: There exists α>0 such that

|Ui0(ξ)|+ |Ui0,ξ (ξ)|�Ce−α|ξ |. (3.8)

Moreover, for j �1, we have

|Uij (ξ)− Ũ i,−j (ξ)|�C(1+|ξ |j−1)e−α|ξ |, ξ �0, (3.9)

|Uij (ξ)− Ũ i,+j (ξ)|�C(1+|ξ |j−1)e−α|ξ |, ξ �0,

|Uij,ξ (ξ)− Ũ i,−j,ξ (ξ)|�C(1+|ξ |j−1)e−α|ξ |, ξ �0, (3.10)

|Uij,ξ (ξ)− Ũ i,+j,ξ (ξ)|�C(1+|ξ |j−1)e−α|ξ |, ξ �0.

If we assume that |Uij (ξ)− Ũ i,±j (ξ)| → 0 as ξ → ±∞, then the expo-
nential decay rate in (3.9) can be proved by induction. We give the rates
explicitly for convenience.

We now prove that (3.10) is a consequence of (3.9).

Lemma 3.4. If the matching conditions (3.9) are satisfied, then the
matching of Uij,ξ (ξ) with Ũ i,±j,ξ (ξ) for each j , as in (3.10), are satisfied also.

Proof. (Ũ i,+(ξ, ε), Ṽ i,+(ξ, ε)) is a solution of the system

Ũξ = Ṽ , Ṽξ = ((Df (uε)−xi(ε)− εξ)Ũ)ξ + ε(λ+1)Ũ .

(Ui(ξ, ε),V i(ξ, ε)) is a solution of the system

Uiξ =V i,V iξ = ((Df (uε)−xi(ε)− εξ)Ui)ξ + ε(λ+1)Ui.

Expanding in powers of ε, we find that 
Vj :=V ij − Ṽ i,+j is a solution of


Vj,ξ = (Df i(ξ)−xi0I )
Vj +
hij (ξ),
where by induction

|
hij (ξ)|<C(1+|ξ |j−1)e−α|ξ |, ξ �0.
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The homogeneous part of the equation has an exponential dichotomy on
R

+. We also know that |
Vj | �C(1 + |ξ |j−1) for ξ � 0, Therefore, from
Lemma 3.1,

|
Vj |�C(1+|ξ |j−1)e−α|ξ |, ξ �0.

A similar proof applies to 
Vj :=V ij − Ṽ i,−j
More generally, one can prove the following result.

Lemma 3.5. Under the matching conditions (3.8), (3.9), for any inte-
ger k�0,

∣∣∣∣ d
k

dξk
(Uij − Ũ i,±j )

∣∣∣∣�C(1+|ξ |j−1)e−α|ξ |, ξ ∈R
− or R

+.

The matching principle (3.9) requires that each Uij (ξ) asymptoti-
cally approach a limiting polynomial as ξ → ±∞. For any polynomial
p(ξ)= ∑d

i=0 ciξ
i, c0 is called the constant term and the ciξ i, i = 1, . . . , d,

are called the nonconstant terms.

Definition 3.1. Assume that limξ→±∞Uij (ξ) are two polynomials. If

the constant terms of the limiting polynomials agree with those of Ũ i,±j ,
then we say that the matching is satisfied on constant terms. If coefficients
of the nonconstant terms agree, then we say the matching is satisfied on
nonconstant terms.

Using the Taylor expansion

Ũ
i,+
j (ξ)=UR,ij (xi0)+DUR,ij−1(x

i
0)(x

i
1 + ξ)+ . . . , (3.11)

we find that the only contribution of U
R,i
j to Ũ

i,+
j is a single term

U
R,i
j (xi0). Similar expressions hold for Ui,−j (ξ). Therefore

Ũ
i,+
j (ξ)−UR,ij (xi0)=� ·o · t,

Ũ
i,−
j (ξ)−UR,i−1

j (xi0)=� ·o · t. (3.12)

Throughout this paper, � · o · t (lower order term) denotes terms that
involve lower indices and have been obtained in a recursive process (less
than j here).

From UR0 ≡ 0 for all x, we find that Ũ i,±0 (ξ)≡ 0. It can be shown by
mathematical induction that Ũ i,±j (ξ) is a polynomial of degree j −1.

We now expand (3.6) and (3.7) in powers of ε.
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At the lowest order ε0, we obtain

(λ0 +1)UR0 + ((Df i −xI)UR0 )x =0 in the sublayer Ri, (3.13)

((Df i(ξ)−xi0I )Ui0)ξ =Ui0ξξ in the singular layer Si. (3.14)

Expansion of eigenvalues and eigenfunctions up to order ε has been
discussed in [20]. In particular, using the conditions for structural stability,
it is shown that at order ε0,

UR0 (x)≡0, Ui0(ξ)= ci0qiξ (ξ), i=1, . . . , n.

At order ε1, we have

(λ0 +1)U1 + ((Df i −xI)U1)x =0 in Ri, (3.15)

(λ0 +1)Ui0 + ((D2f (qi)ui1 − (xi1 + ξ)I )Ui0)ξ + ((Df i(ξ)−xi0I )Ui1)ξ =Ui1ξξ in Si .

(3.16)

The matching principle yields

Ui1(ξ)→
{
UR1 (x

i
0−) ξ→−∞,

UR1 (x
i
0+) ξ→∞.

Let 
i = ūi0 − ūi−1
0 . Then

∫ ∞
−∞ qiξ dξ =
i . Integrating (3.16), we have

the jump condition of UR1 at xi0:

(λ0 +1)ci0

i + (Df i −xi0I )UR1 (xi0+)− (Df i−1 −xi0I )UR1 (xi0−)=0, i=1, . . . , n.

(3.17)

It is shown in [20] that if we can find

(λ0, c
1
0, . . . , c

n
0 ,U

R
1 (x))

satisfying (3.15), (3.17) with UR1 (x) = 0 on R0 ∪ Rn, then there exist
Ui1(ξ),1� i�n, that satisfy (3.16) and matching condition (3.9).

Although the expansion at order ε2 is a special case of εj , j �2, it is
presented in detail to help illustrate the idea.

At order ε2, we have

(λ0 +1)UR2 +λ1U
R
1 + ((Df i −xI)UR2 )x + (D2f (ūi0)ū

i
1U1)x =UR1xx,

(3.18)

(λ0 +1)Ui1 +λ1U
i
0 + ((Df i(ξ)−xi0I )Ui2)ξ + ((D2f (qi)ui1 −xi1 − ξ)Ui1)ξ

+((D3f (qi)(ui1)
2/2+D2f (qi)ui2 −xi2)Ui0)ξ =Ui2ξξ . (3.19)
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At order εj , we have

(λ0 +1)URj +λj−1U
R
1 + ((Df i −xI)URj )x =Wi

j , (3.20)

(λ0 +1)Ui
j−1 +λj−1U

i
0 + ((Df i(ξ)−xi0I )Uij )ξ +Hi

j (ξ)=Uijξξ . (3.21)

Wi
j and Hi

j involve terms with indices lower than j only, and can be
expressed as Taylor polynomials of URik ,U

i
k, k� j −1.

We can think (UR1 ,U
i
0) as an eigenfunction for system (3.15), (3.16)

corresponding to the eigenvalue (λ0 +1). In System (3.20), (3.21), we solve
for (URj ,U

i
j ) with a undetermined parameter λj−1 that is multiplied to the

eigenfunction (UR1 ,U
i
0). If this system defines a Fredholm operator, then

to construct higher order expansions, we need conditions that ensure the
eigenvalue λ0 +1 is simple (or at least semi-simple). However, we will not
show that this linear system is Fredholm. Instead, we will show in the
next section that the system can be reduced to a lower dimensional sys-
tem (SLEP) and that the reduced system is Fredholm. The simpleness of
λ0 +1 will be imposed on the reduced lower dimensional system.

3.3. Reduction of the Eigenvalue Problem to a SLEP System

As is done in [20] at order ε, we first want to show that for any order
εj , systems (3.20), (3.21) and the matching condition (3.9) can be reduced
to a system of equations in regular layers and a set of jump conditions
across singular layers. The reduced system is similar to the SLEP system
introduced by Nishiura and Fujii [23].

Observe that the nonhomogeneous terms in (3.19) are O(1). Natu-
rally, we look for |Ui2(ξ)| =O(1 + |ξ |). Using Lemma 3.2 and induction,
we can show that |Uij (ξ)|=O(1+|ξ |j−1).

As ξ → ±∞, Ui2(ξ) must match with Ũ
i,±
2 (ξ), which is a first-order

polynomial on each side of xi0±. In Lemma 3.6, we show that the match-
ing of coefficients of the first-degree powers of ξ is automatically satisfied.
Only the constants must be matched at each recursive step.

At the expansion of order ε2, we assume that Ui1 =Ui⊥1 +ci1qiξ , where
Ui⊥1 has been uniquely obtained with Ui⊥1 (0)⊥qiξ (0) while ci1 is undeter-
mined. By integrating (3.19) and matching the constant terms, we obtain
the jump condition of UR2 (x) at x=xi0:

(λ0 +1)ci1

i +λ1c

i
0


i + (Df i −xi0I )UR2 (xi0+)− (Df i−1 −xi0I )UR2 (xi0−)=J i2 .

Here J i2 involves Ui0,U
i⊥
1 and UR1,x(x

i
0±) only and is a special case of

(3.23).
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As ξ → ±∞,Uij (ξ) must match with Ũ
i,±
j (ξ), which by induction is

a polynomial of order j − 1 on each side of xi0. Meanwhile, since Hi
j

is a Taylor polynomial of Uik, k � j − 2 and Ui⊥
j−1, by induction it can

be shown that Hi
j (ξ) approaches polynomials at ξ =±∞, respectively. By

Lemma 3.2, Uij (ξ) approaches polynomials as ξ → ±∞. In Lemma 3.6,
we will show that the matching of coefficients of the nonconstant terms
is automatically satisfied. From Lemma 3.2, the solution of (3.21) can be
expressed as

Uij = Û i
(

·,
∫ ξ

0
((λ0 +1)Uij−1 +λj−1U

i
0 +Hi

j )dξ

)
+ Û i(·, βij )+ cij qiξ .

(3.22)

The parameters βij and cij are undetermined.
By the induction assumption, Ui

j−1 and Hi
j (ξ) approaches polynomi-

als of degree j −2 as ξ→±∞.
In this paper we often encounter functions that approach polynomi-

als as ξ→±∞, and we are interested in the constant terms of the limiting
polynomials. For convenience, we introduce the following notation. Let Qc

be an operator that projects a polynomial to its constant term, i.e.,

Qc(c0 + c1ξ +· · ·+ clξ k)= c0.

If g(ξ)→P(ξ)= c0 + c1ξ +· · ·+ clξ k as ξ→−∞ or ∞, then define

Qc(g(±∞)) :=Qc(P )= c0.

We now introduce a recursive procedure that reduces the coupled
inner-outer system to a system of equations in outer layers {Ri}n+1

0 cou-
pled with a set of jump conditions between two adjacent outer layers
Ri−1,Ri, i = 1, . . . , n. The reduced system is called the SLEP system fol-
lowing Fujii and Nishiura. We will derive the equations in Ri and the
jump conditions. We also will show inductively that if the SLEP system
can be solved, then we can find Ui�, i=1, . . . , n, in the inner layers so that
the matching conditions (3.9), (3.10) are satisfied. To this end we need
two lemmas. The first shows that the matching of nonconstant terms is
always satisfied. The second shows that the matching of constant terms
can be achieved by choosing a parameter in solving the inner systems for
Ui� . In fact, we derive the jump conditions across singular layers based on
the matching of constant terms only. (Otherwise we would have too many
jump conditions, each for a particular power of ξ .)
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Define J ij as follows:

−J ij : = Qc

(∫ ∞

0
Hi
j (ξ)dξ

)
−Qc

(∫ −∞

0
Hi
j (ξ)dξ

)

+(λ0 +1)(Qc(U
i⊥
j−1(∞))−Qc(U

i⊥
j−1(−∞))

+(Df i −xi0I )Qc(Ũ
i,+
j (xi0)−UR,ij (xi0))

−(Df i−1 −xi0I )Qc(Ũ
i,−
j (xi0)−UR,i−1

j (xi0))

−Qc(Ũ
i,+
j,ξ (x

i
0)− Ũ i,−j,ξ (xi0)). (3.23)

By (3.12), Ũ i,+j (xi0) − U
R,i
j (xi0) and Ũ

i,−
j (xi0) − U

R,i−1
j (x0) only involve

lower-order terms. Also by differentiating (3.11), we find that Ũ i,+j,ξ (x
i
0)−

Ũ
i,−
j,ξ (x0) only involves URk,x for k� j−1. Thus J ij can be calculated from

terms with indices lower than j .
The jump condition on URj at xi0 comes from the matching of

constant terms:

(λ0 +1)cij−1

i +λj−1c

i
0


i

+(Df i −xi0I )URj (xi0+)− (Df i−1 −xi0I )URj (xi0−)=J ij . (3.24)

Lemma 3.6. Assume that the expansion of eigenfunctions (URj ,U
i⊥
j ,

cij , λj ), j � �− 2, and (UR
�−1,U

i⊥
�−1) have been computed such that they sat-

isfy systems (3.20), (3.21) and the matching principle (3.9), (3.10) up to j �
�−1. If (UR� , λ�−1, c

i
�−1) have been obtained that satisfy (3.20), (3.24) with

any J ij , and Ui� is a solution of (3.21) as in (3.22) with any βi� and ci�, then
the matching as in (3.9), (3.10) with j=� is always satisfied for nonconstant
terms. Moreover,

d

dξ
(Ui�(ξ)− Ũ i,±� (ξ))→0, ξ→±∞.

Proof. Except for the constant terms, we show that other
higher-order terms in Ui�(ξ)− Ũ i,±� (ξ) are always matched, regardless the
choice of βi�. The proof here is similar to [10, 17].

Consider the formal expansion of Ũ (ξ, ε), the inner expansion of
outer solutions. we find that Ũ i,+� satisfies an equation similar to that of
Ui� :

(λ0 +1)Ũ i�−1 +λ�−1Ũ
i
0 + (Df i −xi0I )Ũ i�)ξ + H̃ i

�(ξ)= Ũ i�ξξ ,
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where H̃ i
� can be expressed as a Taylor polynomial of Ũ ij , j ��−1. Com-

paring the above with (3.21), we find that the difference 
U :=Ui� − Ũ i�
satisfies


Uξξ = ((Df i(ξ)−xi0I )
U)ξ + (λ0 +1)(Ui�−1 − Ũ i�−1)

+λ�−1(U
i
1 − Ũ i1)+Hi

�(ξ)− H̃ i
�(ξ)+ ((Df i(ξ)−Df i)Ũ i�(ξ))ξ .

(3.25)

By the induction assumption, the forcing term Hi
�(ξ) approaches

H̃ i
�(ξ) exponentially as ξ→∞. Also observe that Df i(ξ)→Df i as ξ→∞.

From Lemmas 3.2 and 3.1,


U =Ui�(ξ)− Ũ i,+� (ξ)→ constant as ξ→∞.

Similarly,

Ui�(ξ)− Ũ i,−� (ξ)→ constant as ξ→−∞.

Therefore the matching of nonconstant terms is satisfied for any βi�.
Integrating (3.25), we find that 
Uξ(ξ) approaches constants as |ξ |→

∞. The constants must be zero, or 
U(ξ) would not have constant limits
as |ξ |→∞.

Lemma 3.7. Under the same hypotheses as Lemma 3.6, if (UR� , λ�−1,
ci
�−1) is a solution to the reduced system (3.20), (3.24) for j =�, with J i� as

in (3.23), then we can choose βi� so that the solution Ui� of (3.21) as in (3.22)
satisfies the matching principle (3.9), (3.10) with j =�.

Proof. Assume that we have constructed (URj (x),U
i
j (ξ)), j � �− 1,

and λj , j � �− 2, that satisfy the formal equations and matching condi-
tions, except for the term Ui

�−1, which has the form

Ui�−1 =Ui⊥�−1 + ci�−1q
i
ξ ,

where Ui⊥
�−1 satisfies Ui⊥

�−1(0)⊥qiξ (0) and is determined but ci
�−1 is still

undetermined. We look for (UR� ,U
i
�, λ�−1) that satisfies (3.20), (3.21) and

the matching condition (3.9) at j =�. At the same time we also determine
ci
�−1.

In the next section, we solve for UR� (x), λ�−1 from (3.20) with j = �
and the jump condition (3.24) with J i� defined in (3.23). Here we assume
that this is done and we construct the inner expansion Ui� that satisfies
(3.21) and the matching condition (3.9) at j =�.
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Substituting J i� from (3.23) into (3.24) with j =�, and using

Qc(U
i
�−1(∞))−Qc(U

i
�−1(−∞))=Qc(U

i⊥
�−1(∞))−Qc(U

i⊥
�−1(−∞))+ ci�−1


i,

we have

Qc

(∫ ∞

0
Hi
�(ξ)dξ

)
−Qc

(∫ −∞

0
Hi
�(ξ)dξ

)

+(λ0 +1)(Qc(U
i
�−1(∞))−Qc(U

i
�−1(−∞))

+λ�−1(U
i
0(∞)−Ui0(−∞))

+(Df i −xi0I )Qc(Ũ
i,+
� (xi0))

−(Df i−1 −xi0I )Qc(Ũ
i,−
� (xi0))

=Qc(Ũ
i,+
�,ξ (x

i
0)− Ũ i,−�,ξ (xi0)). (3.26)

Now solve (3.21) for Ui� . Using Lemma 3.2, the solution can be expressed
as (3.22) with j =�. The limits of ci�q

i
ξ (ξ), ξ→±∞, are both zero and do

not affect the matching. Therefore the value of ci� cannot be determined
from the expansion to order ε�.

Plug Ui� as in (3.22) into (3.21) and apply the integral operator
∫ ξ

0 ·dξ
to (3.21). Observing that all the terms approach polynomials as ξ→±∞,
and keeping only the constants in the limit, we find the jump of constants
between the two limits is:

Qc

(∫ ∞

0
Hi
�(ξ)dξ

)
−Qc

(∫ −∞

0
Hi
�(ξ)dξ

)

+(λ0 +1)(Qc(U
i
�−1(∞))−Qc(U

i
�−1(−∞))

+λ�−1(U
i
0(∞)−Ui0(−∞))

+(Df i −xi0I )Qc(U
i
�(∞))

−(Df i−1 −xi0I )Qc(U
i
�(−∞))

=Qc(U
i
�,ξ (∞)−Ui�,ξ (−∞)). (3.27)

Recall that from the last statement of Lemma 3.6,

QcU
i
�,ξ (∞)=QcŨ

i,+
�,ξ (x

i
0), QcU

i
�,ξ (−∞)=QcŨ

i,−
�,ξ (x

i
0).

Comparing (3.26) and (3.27), we have

(Df i −xi0I )(Qc(U
i
�(∞))−Qc(Ũ

i,+
� (xi0)))

= (Df i−1 −xi0I )(Qc(U
i
�(−∞))−Qc(Ũ

i,−
� (xi0))). (3.28)
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We choose βi� so that the constant terms of Ui�(+∞) and Ũ i,+� (ξ) are
matched. To this end, observe that from (3.22),

Qc(U
i
�(∞))

=Qc(Û
i(∞,

∫ ξ

0
((λ0 +1)Ui�−1 + (λ�−1 +1)Ui0 +Hi

�)dξ))+ Û i(∞, βi�).

The first term above is independent of βi�, but the second term Û i(∞, βi�)

=−(Df i−xi0I )−1βi�. There is a unique value of βi� such that Qc(U
i
�(∞))=

Qc(Ũ
R,+
� ). Choosing this βi�, we have Qc(U

i
�(∞)) − Qc(Ũ

i,+
� (xi0)) = 0.

From (3.28), we have Qc(U
i
�(−∞))−Qc(Ũ

i,−
� (xi0))= 0. The matching of

constant terms at both ends has been achieved.

We summarize the reduction to a SLEP system in Theorem 3.8. Note
that the original SLEP method of Fujii and Nishiura dealt with the low-
est-order expansion of eigenvalues and eigenfunctions, whereas we give a
recursive procedure for expansions to any desired order.

Theorem 3.8. Assume that the expansions of eigenfunctions (URj ,U
i⊥
j ,

cij , λj ), j � �− 2, and (UR
�−1,U

i⊥
�−1) have been computed such that they sat-

isfy systems (3.20), (3.21) and the matching principle (3.9), (3.10) up to j �
�−1. If (UR� , λ�−1, c

i
�−1) is a solution to the reduced system (3.20), (3.24) at

j =�, with J i� as in (3.23), then there exists a unique βi� so that the solution
Ui� =Ui⊥� + ci�qiξ of (3.21) as in (3.22) satisfies the matching principle (3.9),
(3.10) with j =�. The parameters ci�, i=1, . . . , n remain undetermined.

Remark 3.1. In [20] we defined V (x)= (Df (uR0 (x))−xI)URj (x). Then
V (x) is piecewise C1 and has a jump at each layer position xi0. The singu-
lar layer simply provides a delta function type forcing to the equation in
the regular layer (3.20). This was the point of view of Nishiura and Fujii,
who introduced the SLEP system [23]. The idea of SLEP is also used in
[10, 17].

Proof of Lemma 3.1. Since the homogeneous part of the limiting
systems of (3.1)

Uξ = (Df i −xi0I )U, Uξ = (Df i−1 −xi0I )U,
has real nonzero eigenvalues, the homogeneous part of (3.1) has expo-
nential dichotomies on R

±, respectively [5, 25]. Let the the principal
matrix solution be denoted S(ξ, η) and the stable and unstable projections
related to the dichotomies be Ps(ξ)+Pu(ξ)= I . Solutions on R

± can be
expressed as
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U(ξ)=S(ξ,0)φs(0)+
∫ ξ

0
S(ξ, η)Ps(η)G(η) dη+U+(ξ), ξ �0,

U(ξ)=S(ξ,0)φu(0)+
∫ ξ

0
S(ξ, η)Pu(η)G(η) dη+U−(ξ), ξ �0,

where

U+(ξ) =
∫ ξ

∞
T i(ξ, η)Ps(η)G(η) dη,

U−(ξ) =
∫ ξ

−∞
T i(ξ, η)Pu(η)G(η) dη,

φs(0) = Ps(0)U(0), φu(0)=Pu(0)U(0).
The solution U(ξ), ξ ∈R can be found by matching U± at ξ=0 as follows.

To have U(0−)=U(0+), we need

U+(0)+φs(0)=U−(0)+φu(0).
Since that unstable subspace of the dichotomy on R

− and the stable sub-
space of the dichotomy on R

+ intersect transversely, we can find φu and
φs such that

φs(0)−φu(0)=U−(0)−U+(0).

The choice of (φu,φs) is unique if we require that U+(0)+φs(0)⊥qiξ (0).
The proof of (1) is left to the reader.
To prove (2), assume that G is a polynomial of order k. Let Ũ+ be

the polynomial solution to the equation

Uξ = (Df i −xi0I )U +G. (3.29)

Let 
U = Û (·,G)− Ũ+. Then

(
U)ξ = (Df i(ξ)−xi0I )(
U)+ (Df i(ξ)−Df i)Ũ+.

Since for ξ �0 the forcing term for the equation of 
U is

(Df i(ξ)−Df i)Ũ =O(e−α|ξ |(1+|ξ |k)),
we have |
U |=O(e−α|ξ |(1+|ξ |k)), ξ �0.

Similarly, let Ũ− be the polynomial solution to

Uξ = (Df i−1 −xi0I )U +G.
We have |Û i(ξ,G)− Ũ−|=O(e−α|ξ |(1+|ξ |k)), ξ �0.

The proof of (3) can be achieved by combining the results of (1) and
(2). (3.2) can be derived by observing that Df i(ξ)→Df i as ξ → ∞ and
Df i(ξ)→Df i−1 as ξ→−∞ in (3.1).
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Proof of Lemma 3.2. Let G(ξ) = ∫ ξ
0 g(s)ds. Then G(ξ) � C(1 +

|ξ |k+1). Integrating (3.3), we have

Uξ = (Df i(ξ)−xi0I )U +G(ξ)+β.

The general solution of (3.3) can be obtained from the superposition
principle.

4. EXPANSIONS OF EIGENVALUE AND EIGENFUNCTIONS

The procedure of recursively computing URj , λj and ci
j−1 that satisfy

(3.20) and (3.24), with J ij defined by (3.23), is equivalent to a system of
eigenvalue problems of abstract operators. In (H1) below, the simpleness
of the eigenvalue will be imposed on the abstract problem. Generaliza-
tion to the case that the eigenvalue is semi-simple is straightforward in the
abstract setting and will not be discussed in this paper.

Let H be the linear space of sequences of n-vectors

H :={{hi}n1|hi ∈R
n}.

Let H1 be a subspace of H defined as:

H1 :={{ci
i}n1|ci ∈R}.

Let E be the linear space of n+ 1 continuous functions each defined
on Ri = [xi0, x

i+1
0 ], i=0, . . . , n:

E :={{Ui}n0|Ui(x) is continuous on Ri,U0 ≡0,Un≡0}.

Let E1 be a subspace of E defined as

E1 :={{Ui}n0 ∈E |Ui ∈C1(Ri)}.

Let L : (E1,H1)→ (E,H) be a linear operator defined as follows:

If ({Ū i}n0, {J̄ i}n1)=L({Ui}n0, {ci
i}n1),
then Ū i(x)= ((Df i −xI)Ui(x))x
and J̄ i = (Df i −xi0I )Ui(xi0)− (Df i−1 −xi0I )Ui−1(xi0).
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Let URil (x)= URl (x), x ∈ Ri . Then the eigenvalue problem can be recast
into

(L+ (λ0 +1)I )({URi1 }n0, {ci0
i}n1)=0, (4.1)

(L+ (λ0 +1)I )({URi2 }n0, {ci1
i}n1)+λ1({URi1 }n0, {ci0
i}n1)
= ({Wi

2}n0, {J i2}n1), (4.2)

(L+ (λ0 +1)I )({URij }n0, {cij−1

i}n1)+λj−1({URi1 }n0, {ci0
i}n1)

= ({Wi
j }n0, {J ij }n1). (4.3)

Here ({Wi
j }n0, {J ij }n1) as in (3.20), (3.23) denotes terms that involve indices

lower than the j th order. We assume that
(HI) The operator L has a simple eigenvalue −(λ0 + 1) with ({URi1 }n0,
{ci0
i}n1)a as an eigenvector.

We will show that from (H1) all the higher order expansions of the
eigenvalue equation can be solved successively and λj−1 can be uniquely
determined in the εj th expansion.

In the next subsection, we will show that L is Fredholm. We will
introduce the SLEP matrix M(λ) and the SLEP function p(λ)=det M(λ).
We will show that (H1) is equivalent to that p(λ) has a simple zero at λ0.

4.1. Preliminaries

We now discuss properties of L + (λ0 + 1)I and show that it is a
Fredholm operator. Let �i(y, x, λ0) be the principal matrix solution for
the system in Ri :

(λ0 +1)U + ((Df i −xI)U)x =0, x ∈Ri. (4.4)

Let V = (Df i −xI)U , and Qi(y, x, λ0) be the principal matrix solution for
the associated system

(λ0 +1)(Df i −xI)−1V +Vx =0. (4.5)

Clearly, we have

�i(y, x, λ0)= (Df i −yI)−1Qi(y, x, λ0)(Df
i −xI).

Let �i(x, y, λ0) be the principal matrix solution for the adjoint system to
(4.4).

(λ∗
0 +1)ψ− (Df i −xI)∗ψx =0, x ∈Ri. (4.6)
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It turns out that (4.6) is the adjoint system for both (4.4) and (4.5) in the
sense that

d

dx
〈(Df i −xI)U,ψ〉= d

dx
〈V,ψ〉=0.

We have the following results:

Lemma 4.1. For any ξ ∈Ri and p∈C(Ri), the general solution for the
nonhomogeneous equation in Ri

(λ0 +1)U + ((Df i −xI)U)x =p(x)
can be expressed as

U(x)=�i(x, ξ, λ0)U(ξ)+
∫ x

ξ

�i(x, η, λ0)(Df
i −ηI)−1p(η) dη.

For x, y ∈Ri , we have

�i(x, y, λ0)=Qi∗(y, x, λ0).

Moreover, �i can be expressed by �i , viseversa.

�i(x, y, λ0)= (Df i −xI)−1,∗�i∗(y, x, λ0)(Df
i −yI)∗,

�i(y, x, λ0)= (Df i −yI)−1�i∗(x, y, λ0)(Df
i −xI).

The proof of Lemma 4.1 shall be omitted.
We will extend the domain of Qi and �i to R×R. Define

Q(xi0, x
j

0 , λ0)=Qi−1(xi0, x
i−1
0 ;λ0) . . .Q

j (x
j+1
0 , x

j

0 , λ0), i >j.

For i < j , let Q(xi0, x
j

0 , λ0)=Q(xj0 , xi0, λ0)
−1. Finally let Q(xi0, x

i
0, λ0)= I .

For xi0 �x�xi+1
0 , x

j

0 �y�xj+1
0 , let

Q(y, x.λ0)=Qj(y, x
j

0 , λ0)Q(x
j

0 , x
i+1
0 , λ0)Q

i(xi+1
0 , x.λ0).

Finally, let

�(x, y, λ0)=Q∗(y, x, λ0).

Let ci ∈R, i=1, . . . , n and bi, gi ∈R
n, i=0, . . . , n. Motivated by (3.17),

define

G: ({ci}n1, {bi}n−1
1 )→{gi}n1,

gi = (λ0 +1)ci
i + (Df i −xi0)bi − (Df i−1 −xi0)�i−1(xi0, x
i−1
0 , λ0)b

i−1.

For convenience, we assume that b0 =bn=0. Since the domain and range
of G are both n2-dimensional, G is Fredholm with index 0.
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We have the following obvious lemma:

Lemma 4.2. ({Ui}n0, {ci
i}n1) is an eigenfunction of L with respect to
the eigenvalue −(λ0 +1) if and only if

({ci}n1, {Ui(xi0+)}n−1
1 )∈ker(G).

Let

H2 :={G({0}n1, {bi}n−1
1 ), for all bi ∈R

n}.
One can show that H2 consists of all the jumps coming from solutions of
the homogeneous equation (4.4). The space H2 is n(n− 1) dimensional,
i.e., with ci ≡ 0,G maps {bi}n−1

1 injectively into H. This can be shown by
using Schecter’s condition on structural stability of Riemann solutions. (If
the mapping from {bi}n−1

1 to the jumps were not one-to-one, then there
would be a Riemann solution with zero Rankine–Hugoniot jump at each
shock.) Observe that H1 = {G({ci}n1, {0}n−1

1 ) for all ci ∈ R}. It should be
clear that the dimension of ker(G) is the dimension of H1 ∩H2.

We now introduce a matrix, similar to the SLEP matrix in Lin and
Schecter [20] and Nishiura and Fujii [23] that helps to determine the
kernel and co-kernel of G.

Assume that G({ci}n1, {bi}n−1
1 )=0. Define

ki = (Df i −xi0I )bi for i=1, . . . , n−1, k0 =kn=0.

Then from

(Df i −xi0I )bi = (Df i−1 −xi0)�i−1(xi, xi−1
0 ;λ0)b

i−1 − (λ0 +1)ci
i,

we have

ki =Qi−1(xi0, x
i−1
0 ;λ0)k

i−1 − (λ0 +1)ci
i. (4.7)

From (4.7),

ki =−(λ0 +1)
i∑

j=1

cjQ(xi0, x
j

0 , λ0)

j ,

kn =−(λ0 +1)
n∑
j=1

cjQ(xn0 , x
j

0 , λ0)

j =0.

Definition 4.1 (SLEP matrix and the SLEP function). The SLEP
matrix M(λ0) is the n × n matrix whose j th column is the vector
Q(xn0 , x

j

0 , λ0)

j . The SLEP function p(λ)=det M(λ).
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Note that kn=0 implies that {ci}n1 is a right eigenvector of M(λ0):

M(λ0){ci}n1 =0 with p(λ0)=0.

Once {ci}n1 is determined, {bi}n−1
1 can be calculated through {ki}n−1

1 .
We now characterized the co-kernel of G. Let {di}n1 ∈ H such that

{di}n1⊥ range G.

n∑
1

(λ0 +1)ci〈di,
i〉+
n∑
1

〈di, (Df i −xi0)bi − (Df i−1 −xi0)

×�i−1(xi0, x
i−1
0 ;λ0)b

i−1〉=0.

The above is valid for all vectors ({ci}n1, {bi}n−1
1 ). Recall we assume that

λ0 + 1 �= 0. If we let bi ≡ 0 for all i, then we have 〈di,
i〉= 0, i= 1, . . . , n.
Consequently,

n∑
1

〈di, (Df i −xi0)bi − (Df i−1 −xi0)�i−1(xi0, x
i−1
0 , λ0)b

i−1〉=0.

Therefore, {di}n1 is a vector in H determined by

{di}n1⊥H1 +H2.

Notice that the above also implies that the dimension of the linear space
of such {di}n1 is the dimension of H1 ∩H2, which is the dimension of ker
G.

Using ki = (Df i −xi0I )bi , the conditions on {di}n1 can be expressed as

n∑
1

〈di, ki −Qi−1(xi0, x
i−1
0 , λ0)k

i−1〉=0.

Recall that Qi∗(x, y, λ0)=�i(y, x, λ0). Therefore,

n∑
1

〈di −�i(xi0, xi+1
0 , λ0)d

i+1, ki〉=0.

Since ki is arbitrary, we have the system that determines {di}n1 up to a
scalar multiple:

〈di,
i〉=0, i=1, . . . , n,

di −�i(xi0, xi+1
0 , λ0)d

i+1 =0, i=1, . . . , i−1.
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Then if dn is known, di, i�n can be obtained from

di =�(xi0, xn0 ;λ0)d
n. (4.8)

Since 〈di,
i〉=0, i=1, . . . n, we have

〈dn,Q(xn0 , xi0;λ0)

i〉=0, i=1, . . . , n.

This means that dn is a left eigenvector of the matrix M(λ0). Once we
have calculated dn, the other vectors di, i = 1, . . . , n− 1 can be obtained
by using (4.8).

We summarize the results in the following lemma.

Lemma 4.3. −(λ0 + 1) is an eigenvalue of L iff p(λ0) = 0. Then
({ci}n1, {bi}n−1

1 ) is in the kernel of G iff

M(λ0){ci}n1 =0 with p(λ0)=0,

bi =−(λ0 +1)(Df i −xi0I )−1
i∑

j=1

cjQ(xi0, x
j

0 , λ0)

j .

Furthermore, {di}n1 is orthogonal to the range of G iff

(dn)
∗M(λ0)=0,

di =�(xi0, xn0 ;λ0)d
n, i <n.

Lemma 4.4. Assume that p(λ0)=0. Then ({zi(x)}n0, {di}n1) is orthogonal
to the range of L+ (λ0 +1)I if and only if

{di}n1⊥Range(G)
and {zi}n0 satisfies the adjoint equation (4.6)

(λ∗
0 +1)zi − (Df i −xI)∗zix =0, i=1, . . . , n−1

with zi(xi+1)=di+1. Moreover, zi(xi0+)= zi−1(xi0−).
Proof. If 〈(L + (λ0 + 1)I )({Ui}n0, {ci
i}n1), ({zi(x)}n0, {di}n1)〉 = 0 for all

({Ui}, {ci}), then

0 =
n−1∑

1

∫ xi+1

xi
〈(λ0 +1)Ui + ((Df i −xI)Ui)x, zi〉dx

+
n∑
1

〈(Df i −xiI )Ui(xi)− (Df i−1 −xiI )Ui−1(xi)+ (λ0 +1)ci
i, di〉.
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Let Ui ≡0. Then since ci is arbitrarily, we have

〈
i, di〉=0, i=1, . . . , n.

Integrating by parts, we have

0 =
n−1∑

1

〈(Df i −xI)Ui(x), zi(x)〉|xi+1

xi

−
n−1∑

1

∫ xi+1

xi
〈Ui, (λ∗

0 +1)zi − (Df i −xI)∗zix〉dx

+
n∑
1

〈(Df i −xiI )Ui(xi)− (Df i−1 −xiI )Ui−1(xi), di〉.

If Ui ∈C∞
c (x

i, xi+1), i=1, . . . , n−1, then we find that zi must satisfies the
adjoint equation (4.6):

(λ∗
0 +1)zi − (Df i −xI)∗zix =0, i=1, . . . , n−1.

The boundary terms satisfy

0 =
n−1∑

1

(〈(Df i −xi+1I )Ui(xi+1), zi(xi+1)〉−〈(Df i −xiI )Ui(xi), zi(xi)〉)

+
n∑
1

〈(Df i −xiI )Ui(xi)− (Df i−1 −xiI )Ui−1(xi), di〉

=
n∑
1

〈(Df i −xiI )Ui(xi), (di − zi(xi))〉

−
n∑
1

〈(Df i−1 −xiI )Ui−1(xi), (di − zi−1(xi))〉.

Since Ui(xi) and Ui−1(xi) can be arbitrary constants, we have

zi−1(xi)= zi(xi)=di, i=1, . . . , n.

Define z(x)= zi(x) for x ∈ [xi, xi+1]. Then z is continuous on [x1
0 , x

n
0 ].

z(xi)=di =�(xi, xn, λ0)d
n. (4.9)

Using 〈
i, di〉=0 for all i, and �∗ =Q, we have

〈
i,�(xi, xn, λ0)d
n〉 = 0,

〈Q(xn, xi, λ0)

i, dn〉 = 0.
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By the definition of M(λ0), we have

dn∗M(λ0)=0. (4.10)

That is, dn is a left eigenvector for the matrix M(λ0). Based on Lemma
4.3, it follows from (4.10) and (4.9) that {di}n1 is orthogonal to the range
of G.

Definition 4.2. Let K(λ0) be the linear space of continuous functions
defined on [x1

0 , x
n
0 ] such that if z∈K(λ0) then

(1) z is piecewise continuously differentiable and satisfies the adjoint
equation (4.6) on Ri, i=1, . . . , n−1;

(2) {z(xi0)}n1 is orthogonal to the range of G.

From the definition, it is clear that z∈K(λ0) if and only if

z∗ (xn0 )M(λ0)=0,

z(x)=�(x, xn0 , λ0)z(x
n
0 ).

We can state the basic properties of L+ (λ0 +1)I as follows:

Theorem 4.5. −(λ0 +1) is an eigenvalue for the operator L iff p(λ0)=
0. Then L + (λ0 + 1)I is Fredholm with the index zero. The condition for
({Ui}n0, {ci
i}n1) being an eigenvector is

M(λ0){ci}n1 =0,

Ui(xi0)=−(λ0 +1)(Df i −xi0I )−1
i∑

j=1

cjQ(xi0, x
j

0 , λ0)

j ,

Ui(x)=�i(x, xi0, λ0)U
i(xi0), xi0 �x�xi+1

0 .

Furthermore,
({Wi}n0, {J i}n1

) ∈ R (L+ (λ0 +1)I ) if and only if for all z ∈
K(λ0),

n∑
1

〈z(xi0), J i〉+
n−1∑

1

∫ xi+1
0

xi0

〈z(x),Wi(x)〉dx=0.

Proof. The kernel part of the theorem follows from Lemmas 4.2 and
4.3. If

({Wi}n0, {J i}n1
)∈R (L+ (λ0 +1)I ), then

(λ0 +1)Ui +
(
(Df i −xI)Ui

)
x
=Wi, (4.11)

(λ0 +1)ci
i + (Df i −xi0I )Ui(xi0)− (Df i−1 −xi0I )Ui−1(xi0)=J i.
(4.12)
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Let bi =Ui(xi0). Then

Ui(x)=�i(x, xi0)bi +
∫ x

xi0

�i(x, η)(Df i −ηI)−1Wi(η) dη.

Plug into (4.12), we have

(λ0 +1)ci
i + (Df i −xi0I )bi − (Df i−1 −xi0I )�i−1(xi0, x
i−1
0 )bi−1

= (Df i−1 −xi0I )
∫ xi0

xi−1
0

�i−1(xi0, η)(Df
i−1 −ηI)−1Wi−1(η)dη+J i.

(4.13)

The above has a solution iff the right-hand side of (4.13) is in the range of
G, i.e., for each {di}n1 that is orthogonal to the range of G as in Lemma
4.3, we have

0 =
n∑
1

〈di, J i + (Df i−1 −xi0I )
∫ xi0

xi−1
0

�i−1(xi0, η)(Df
i−1 −ηI)−1Wi−1(η)dη〉

=
n∑
1

〈di, J i〉+
n∑
1

∫ xi0

xi−1
0

〈(Df i−1 −ηI)−1,∗�i−1,∗(xi0, η, λ0)

×(Df i−1 −xi0I )∗di,Wi−1(η)〉dη.

Define

zi(η) = (Df i −ηI)−1,∗�i∗(xi+1
0 , η, λ0)(Df

i −xi+1
0 I )

∗
di+1, xi0 �η�xi+1

0

= �i(η, xi+1, λ0)d
i+1.

Then

0 =
n∑
1

〈di, J i〉+
n∑
1

∫ xi0

xi−1
0

〈zi−1(η),Wi−1(η)〉dη

=
n∑
1

〈di, J i〉+
n−1∑

1

∫ xi+1
0

xi0

〈zi(η),Wi(η)〉dη.

The functions {zi}n−1
1 can be glued together to be a continuous func-

tion z defined on [x1
0 , x

n
0 ]. We clearly have z∈K(λ0).

The following lemmas characterizes the condition that −(λ0 + 1) is a
simple eigenvalue of L.
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Lemma 4.6. The eigenvalue −(λ0 +1) of L is semisimple if and only if
for any eigenfunction

({URi1 (x)}n0, {ci0}n1
)
, there exists at least one z∈K(λ0)

such that
n−1∑

1

∫ xi+1
0

xi0

〈z(x),URi1 (x)〉dx �=0.

Proof. If there exists one z∈K(λ0) such that

0 �=
n∑
1

〈z(xi0), ci0
i〉+
n−1∑

1

∫ xi+1
0

xi0

〈z(x),URi1 (x)〉dx

then
({URi1 (x)}n0, {ci0}n1

)
is not on the range of L + (λ0 + 1)I . Since

〈z(xi0),
i〉=0 for all i, the desired result follows.

Lemma 4.7. The condition that −(λ0 +1) is a simple eigenvalue of L is
equivalent to that the SLEP function p(λ)=det M(λ) has a simple zero at
λ=λ0.

Proof. Let the ith column of M(λ) be Mi (λ).

M(λ)= (M1(λ),M2(λ), . . . ,Mn(λ)) .

Without loss of generality, let λ0 = 0. We assume that the geometric mul-
tiplicity of λ=0 for the matrix M(0) is one since this is the consequence
of either p′(0) �=0 or −(λ0 +1) is a simple eigenvalue of L.

Let {ci}n
i=1, {ej }nj=1 be the right and left eigenvectors of M(0), unique

up to scalar multipliers. Without loss of generality, we assume that c1 =1.
Then Mj (0), j =2, . . . , n are linearly independent and

{ej }⊥ span{Mj (0)}nj=2.

We have the following decomposition

M(λ){ci}=α(λ){ej }+
n∑
j=2

βj (λ)Mj (0).

Since the left-hand side is O(λ) we have

α(λ)=O(λ), βj (λ)=O(λ), j =2, . . . , n.

det M(λ) = det(M(λ){ci},M2(λ), . . . ,Mn(λ))

= det

⎛
⎝α(λ){ej }+

n∑
j=2

βj (λ)Mj (0),M2(λ), . . . ,Mn(λ)

⎞
⎠ .
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Since the first column is of O(λ), if we replace Mj (λ) by Mj (0), we have:

p(λ) = O(λ2)+det

⎛
⎝α(λ){ej }+

n∑
j=2

βj (λ)Mj (0),M2(0), . . . ,Mn(0)

⎞
⎠

= O(λ2)+det(α(λ){ej },M2(0), . . . ,Mn(0))

= O(λ2)+α(λ)det({ej },M2(0), . . . ,Mn(0)).
d

dλ
p(0) = α′(0)det({ej },M2(0), . . . ,Mn(0)).

Assume that
∑
j |ej |2 =1. Then

α(λ)={ej }∗M(λ){ci}.
Differentiating and setting λ=0, we have

d

dλ
α(0)={ej }∗ d

dλ
M(0){ci}. (4.14)

Let V (x)= ∂λQ(x, xi0,0)
i . Then

V ′ + (λ0 +1)(Df −xI)−1V + (Df −xI)−1Q(x, xi0,0)

i =0

with the initial condition V (xi0)=0. Thus

V (xn0 )=−
∫ xn0

xi0

Q(xn0 , y,0)(Df −yI)−1Q(y, xi0,0)

idy.

From (4.14), and using Theorem 4.5 for URi1 (x), we have

− d

dλ
α(0) =

n∑
i=1

〈{ej },
∫ xn0

xi0

Q(xn0 , y,0)(Df −yI)−1Q(y, xi0,0)

ici〉dy

=
n−1∑
i=1

〈�(y, xn0 ,0){ej },
∫ xn0

xi0

(Df −yI)−1Q(y, xi0,0)

ici〉dy

=
n−1∑
i=1

∫ xi+1
0

xi0

〈z(y),
i∑

j=1

(Df −yI)−1Q(y, x
j

0 ,0)

jCj 〉dy

= −(λ0 +1)−1
n−1∑

1

∫ xi+1
0

xi0

〈z(x),URi1 (x)〉dx.

Here z∈K(0). The final result follows from Lemma 4.6.
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4.2. Solving the SLEP Recursively

Assume that λ0 is a simple root for the SLEP function p(λ). From
Lemma 4.7, Hypothesis (H1) is satisfied. To solve (4.1), we let {ci0}n1 be a
right eigenvector of M(λ0). Then from Theorem 4.5,

URi1 (xi0) = −(λ0 +1)(Df i −xi0I )−1
i∑

j=1

c
j

0Q(x
i
0, x

i
0, λ0)


j ,

URi1 (x) = Q(x, xi0, λ0)U
Ri
1 (xi0).

The kernel of M(λ0) is one-dimensional. Therefore, K(λ0) is also one-
dimensional.

We then proceed by induction. If (4.3) has been solved for j � k− 1,
then to solve (4.3) for j =k, we need to select λk−1 so that

λk−1({URi1 }n0, {ci0
i}n1)− ({Wi
k−1}n0, {J ik−1}n1)

is in the range of L+ (λ0 +1). Let z be a nonzero vector in K(λ0). From
Theorem 4.5,

λk−1

∫ xn0

x1
0

〈z(x),UR1 (x)〉dx (4.15)

−
n∑
1

〈z(xi0), J ik−1〉−
n−1∑

1

∫ xi+1
0

xi0

〈z(x),Wi
k−1(x)〉dx=0.

Since −(λ0 +1) is a simple eigenvalue, based on Lemma 4.6, we have

∫ xn0

x1
0

〈z(x),UR1 (x)〉dx �=0.

Thus, λk−1 can be solved from (4.15). With this λk−1, there exists a non-
unique ({URik }n0, {cik−1


i}n1).
To uniquely determine ({URik }n0, {cik−1


i}n1), we assume that

n∑
1

cik−1c
i
0 =0.

This is a unnatural restriction on eigenfunctions. Multiplying an arbitrary
analytic function α(ε) to the eigenfunction, we recover all the eigenfunc-
tions associated to the eigenvalue −(λ0 +1).
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5. EXISTENCE OF TRUE EIGENVALUE/EIGENFUNCTIONS

Assume that we have the expansion of the slow eigenvalue up to
εm−1, and the associated eigenfunction up to εm,m� 1. Let 0<β < 1 be
an arbitrary constant. Define the inner layer I iε :={x|xi0 − εβ �x�xi0 + εβ}
and the outer layer Oi

ε :={x|xi0 + εβ � x� xi+1
0 − εβ}. For brevity, let ai =

xi0 + εβ, bi =xi+1
0 − εβ so that Oi

ε = [ai, bi ]. In the classical singular pertur-
bation theory, εβ is so called an intermediate variable [11, 24]. Note that
in the x variable, the length of inner layers goes to zero as ε→ 0, but in
the stretched variable ξ = (x − xi0)/ε, the length O(εβ−1) goes to infinity
as ε→0. Therefore, the dynamics in both inner and outer layers are dom-
inated by the exponential dichotomies using the variable ξ .

Define the approximation of eigenvalue/eigenfunctions by

λap =
m−1∑

0

εjλj , m�1,

URap =
m∑
0

εjURj , for all x ∈Oi
ε,

Uiap =
m∑
0

εjUij , −εβ−1 � ξ � εβ−1, xi0 + εξ =x ∈ I iε .

Notice that Ui0 = qiξ (ξ),U
R
0 ≡ 0. In the expression Uij = Ui⊥j + cij q

i
ξ , the

terms Ui⊥j , j �m, and cij , j �m−1, are determined while cim is still unde-
termined. Without loss of generality, let cim=0.

Gluing the approximations in outer and inner layers together in the
order of

O0
ε , I

1
ε ,O

1
ε , I

2
ε , . . . , I

n
ε ,O

n
ε ,

we have a so called pseudo orbit with small residual and jump errors:

(λap+1)URap+ ((Df (uε)−xI)URap)x − εURap,xx = εhR, in Oi
ε,

ε(λap+1)Uiap+ ((Df (uε)−xi(ε)− εξ)Uiap)ξ −Uiap,ξξ = εhi, in I iε ,

Uiap(−εβ−1)−URap(xi0 − εβ)=−δUi,−, (5.1)

Uiap,ξ (−εβ−1)− εURap,x(xi0 − εβ)=−δUi,−ξ ,

URap(x
i
0 + εβ)−Uiap(εβ−1)=−δUi,+,

εURap,x(x
i
0 + εβ)−Uiap,ξ (εβ−1)=−δUi,+ξ .
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The residual and jump errors satisfy

εhR =O(εm+1), εhi =O(εm+1|ξ |m+1)=O
(
εβ(m+1)

)
,∣∣∣δUi,±∣∣∣+

∣∣∣δUi,±ξ
∣∣∣�Ce−αεβ−1

(εβ−1)m.

If m�1 and 1/2<β<1, then

hR =O(εm), hi =O(ε2β−1+β(m−1))→0, ε→0.

The exact eigenvalue/eigenfunctions satisfy

(λex +1)URex + ((Df (uε)−xI)URex)x = εURex,xx,
ε(λex +1)Uiex + ((Df (uε)−xi(ε)− εξ)Uiex)ξ =Uiex,ξξ .

Write the exact eigenvalue/eigenfunctions as approximations plus correc-
tion terms:

λex = λap+λ,
URex = URap+ εUR, x ∈Oi

ε,

Uiex = Uiap+ εUi + εmciqiξ (ξ), x ∈ I iε .

We easily find that the equations for (λ,UR,Ui) can be written as a linear
variational system with forcing terms:

(λ0 +1)UR +λUR1 + ((Df (uR0 )−xI)UR)x − εURxx
=−hR +NR(UR,λ, ε), (5.2)

(λ0 +1)ciqiξ (ξ)+λUi0 + [(D2f (qi)ui1 − (xi1 + ξ)I )ciqiξ ]ξ

+((Df (qi)−xi0I )Ui)ξ −Uiξξ =−hi +Ni(Ui, λ, ci, ε). (5.3)

Equation (5.2) is valid in outer layers Oi
ε,0 � i � n while (5.3) is valid

in inner layers I iε ,1 � i � n. The nonlinear terms NR,Ni are small if
(UR,Ui, λ, ci, ε) are small.

NR(UR,λ, ε) =O(ε|UR|C1 + ε|λ|),
Ni(Ui, λ, ci, ε) =O(εβ |Ui |C1 + ε|λ|+ ε|ci |+ |ci ||λ|).
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Jump conditions that cancel the jump errors of approximations
between two adjacent inner and outer layers are prescribed:

Ui(−εβ−1)−UR(xi0 − εβ)= δUi,−,
Uiξ (−εβ−1)− εURx (xi0 − εβ)= δUi,−ξ ,

UR(xi0 + εβ)−Ui(εβ−1)= δUi,+,
εURx (x

i
0 + εβ)−uiξ (εβ−1)= δUi,+ξ . (5.4)

As before, boundary conditions for x→±∞ must be satisfied:

(U,Ux)=O(e−γ |x|), x ∈O0
ε ∪On

ε (5.5)

In Theorem 5.7, the nonlinear system (5.2)–(5.5) will be solved by the con-
traction mapping principle. To this end, we consider the following linear
nonhomogeneous system with the same jump and boundary conditions
(5.4) and (5.5):

(λ0 +1)UR +λUR1 + ((Df (uR0 )−xI)UR)x − εURxx =−hR(x), (5.6)

(λ0 +1)ciqiξ (ξ)+λUi0 + [(D2f (qi)ui1 − (xi1 + ξ)I )ciqiξ ]ξ

+((Df (qi)−xi0I )Ui)ξ −Uiξξ =−hi. (5.7)

The usual way of writing (5.6) as first-order systems, i.e.,

Ux =V, Vx = . . . ,
does not work well in our case because the variables (U,V ) do not capture
the fast–slow behavior of the singularly perturbed problem. If a system
is autonomous, following the general instruction of [14], Section 1.6, the
slow variable should correspond to eigenspaces of zero eigenvalues while
the fast variable should correspond to eigenspaces of nonzero eigenvalues.
If we write our equation in outer layers using ξ = (x − x̄)/ε, x̄ ∈Oi

ε , the
homogeneous part of the equation becomes

((Df (uR0 )− (x̄+ εξ)I )UR)ξ −URξξ =0.

We find that the system is slow varying and can be approximated by an
autonomous system. If we freeze x= x̄ in the coefficients by letting ε=0,
the above system has n zero eigenvalues and n eigenvalues with nonzero
real parts. If ε is small, the slow varying equation also admits a splitting
of center subspace of dimension n and a hyperbolic subspace of dimen-
sion n. This wonderful theorem in a more general form can be found in
[5] and can also be proved by geometric singular perturbation theory after
adding equations ẋ= ε, ε̇=0 to the system.
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By calculating eigenvalues and eigenvectors for ε = 0. We find that
the eigenspace that corresponds to eigenvalues with nonzero real parts is
spanned by (U,Uξ ) = (rj , νj rj ), any (U,Uξ ) in such space must satisfy
εUx − (Df (uR0 )− xI)U =Uξ − (Df (uR0 )− xI)U = 0. We thus introduce a
new variable

V R := εURx − (Df (uR0 )−xI)UR =URξ − (Df (uR0 )−xI)UR, x ∈Oi
ε.

For simplicity, the symbol Df or Df i represents Df (uR0 ) (constant
matrix) in outer layers Oi

ε and Df (qi(ξ)) in inner layers I iε . When ε= 0,
the eigenspace that corresponds to zero eigenvalues is (U,Uξ )= (U,0). If
we make the change of variable


UR =UR + (Df −xI)−1V R = (Df −xI)−1Uξ

then the eigenspaces corresponding to zero and nonzero eigenvalues are

{(
UR,V R)|
UR =0} and {(
UR,V R)|V R =0},

respectively. Using (
UR,V R), the system in Oi
ε becomes (5.23) and (5.24)

(with λ = 0) which captures the fast-slow behavior and exponential tri-
chotomies of the dynamics. This new coordinates will be used in proving
Lemma 5.3.

In inner layers, define

V i :=Uiξ − (Df −xi0I )Ui, x ∈ I iε .

The counter part of 
UR is undefined in inner layers. Therefore, for the
coupled inner and outer system such as in Lemma 5.6, we will retain the
variable U together with the new variable V as state variables.

We need to derive the jump conditions for V R and V i , between outer
and inner layers. Let uε be the exact Dafermos viscous shock solution. At
each x=xi0 + εβ , by (5.4), we have

εURx (x)− (Df (uε(x))−xI)UR(x)s−[Uiξ (ε
β−1)− (Df (uε(x))−xI)Ui(εβ−1)]

= δUi,+ξ − (Df (uε(x))−xI)δUi,+.

Replacing Df (uε(x
i
0 + εβ)) by Df (uR0 (x

i
0 + εβ)) in Oi

ε , and by
Df (qi(εβ−1)) in I iε , we have

V R(xi0 + εβ)−V i(εβ−1)

= δUi,+ξ − (Df (uε(x))−xI)δUi,+ +Ni,+(UR,Ui), (5.8)
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where x=xi0 + εβ , and the small term Ni,+ is

Ni,+ = [Df (uR0 )−Df (uε)]UR + [Df (uε)−Df (qi)]Ui =O(ε(|UR|+ |Ui |)).
Similarly,

V i(−εβ−1)−V R(xi0 − εβ)
= δUi,−ξ − (Df (uε(x))−xI)δUi,− +Ni,−(UR,Ui), (5.9)

where x=xi0 − εβ , and the small term Ni,− is

Ni,− = [Df (uε)−Df (uR0 )]UR + [Df (qi)−Df (uε)]Ui =O(ε(|UR|+ |Ui |)).
Dropping Ni,± in (5.8) and (5.9), we consider the following jump con-

ditions for the variables V R and V i :

V R(xi0 + εβ)−V i(εβ−l )= δV i,+
:= δUi,+ξ − (Df (uε(x))−xI)δUi,+, (5.10)

V i(−εβ−1)−V R(xi0 − εβ)= δV i,−
:= δUi,−ξ − (Df (uε(x))−xI)δUi,−. (5.11)

For brevity, we denote W = (U,V ) and δWi,± = (δUi,±, δV i,±). See
(5.4), (5.10), and (5.11) for these jumps.

Proposition 5.1. Consider the first order nonhomogeneous systems
(5.12)−(5.15) that is equivalent to (5.6) and (5.7). The coupled system in
outer and inner layers is augmented by the jump conditions (5.16), (5.17) and
boundary conditions (5.18):

εURx = (Df −xI)UR +V R, (5.12)

V Rx = (λ0 +1)UR +λUR1 +hR(x), (5.13)

Uiξ = (Df −xi0I )Ui +V i, (5.14)

V iξ = [(λ0 +1)ci +λci0]qiξ (5.15)

+[(D2f (qi)ui1 − (xi1 + ξ)I )ciqiξ ]ξ +hi(ξ),
WR(xi0 + εβ)−Wi(εβ−1)= δWi,+, (5.16)

Wi(−εβ−1)−WR(xi0 − εβ)= δWi,−, (5.17)

(UR,V R)=O(e−γ |x|) f or x ∈R0,Rn. (5.18)

The unknown parameters λ and {ci} must also be solved from the system.
Then there exists a unique solution (UR,V R, {Ui}, {V i}, λ, {ci}) that satis-
fies the system. Moreover,
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|UR| + |V R|+ |{Ui}|+ |{V i}|+ |UR,0|γ +|UR,n|γ +|V R,0|γ +|V R,n|γ
+ |λ|+ |{ci}|�C

(
|{δWi,+}|+ |{δWi,−}|+ |hR|+ εβ−1|{hi}|

)
.

The proof of Proposition 5.1 depends on several lemmas and shall be
deferred to the end of this section when all the lemmas are stated and
proved. Among them, Lemma 5.3 treats nonhomogeneous systems without
the concern of prescribed jumping conditions; Lemma 5.6 treats homoge-
neous systems with prescribed jumping conditions and boundary condi-
tions at R0,Rn. By adding results from the two lemmas, the entire system
is solved by the superposition principle.

Let C(γ ) be the space of continuous functions such that the norm

‖U‖γ = sup
x

{|U(x)|eγ |x|}<∞,

where the sup is taken over the domain O0
ε or On

ε . Let L1(γ ) be the space
of locally integrable functions such that the norm

‖U‖L1(γ )=
∫

|U(x)|eγ |x| dx <∞,

where the integral is in the domain O0
ε or On

ε .

Lemma 5.2.

(i) Let T (x, y) be the principal matrix solution for the following equa-
tion in Oi

ε,1� i�n−1 :

εUx − (Df −xI)U =h(x). (5.19)

If ε>0 is sufficiently small, then the system has exponential dichot-
omy on Oi

ε with super exponential decay rate, i.e., there exist pro-
jections Pu(x)+Ps(x)= I , exponent α/ε >0 and a constant K that
is independent of ε, such that

T (x, y)Ps(y)=Ps(x)T (x, y),
|T (x, y)Ps(y)|�Ke−α(x−y)/ε, x�y,
|T (x, y)Pu(y)|�Ke−α(y−x)/ε, y�x.

Moreover, in Oi
ε , the rank of Pu is n− i and the rank of Ps is i.

(ii) Consider the same equation (5.19) in O0
ε or On

ε . Then the solution is
unstable in O0

ε and stable in On with super exponential decay rate:

|T (x, y)|�Ke−α|x−y|/ε f or
x�y ∈O0

ε ,

x�y ∈On
ε .
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(iii) For each λ0 ∈C, let �(x, y) be the principal matrix solution for the
following equation in O0

ε and On
ε :

Vx + (λ0 +1)(Df −xI)−1V =h(x). (5.20)

Then the homogeneous part of the system has very slow growth rate
either forward or backward in these layers, That is, for any δ > 0,
there exists K(δ)>0 such that

|�(x, y)|�K(δ)eδ|x−y|, x, y ∈O0
ε ∪On

ε .

Moreover, for h ∈C(γ ), or h ∈L1(γ ), δ < γ , there exists a unique
solution V ∈C(γ ). The following estimates hold

|V |γ �C|h|γ , |V |γ �C|h|L1(γ ).

Proof. We prove Part (iii) only. There exist �>0 such that for |x|��,
we have |(λ0 +1)(Df −xI)−1|<δ. Thus, for x, y�� or x, y<−�, we have
|�(x, y)| �K(δ)eδ|x−y|. The same estimates hold for x, y ∈O0

ε ∪On
ε with

maybe a larger K(δ), uniformly for 0<ε<ε0. For clarity, consider On
ε . Let

V (x)=
∫ x

∞
�(x, y)h(y)dy.

Assuming that δ < γ . Using the exponential estimate for |�(x, y)|, it is
elementary to verify that V ∈C(γ ) if h∈C(γ ) or L1(γ ) and the desired
estimates hold.

We say that a solution of (5.19) satisfies the standard boundary con-
dition on Oi

ε = [ai, bi ] if

Ps(a
i)U(ai)=0, Pu(b

i)U(bi)=0.

Lemma 5.3. Let λ=0. In outer layer, for each h∈C(Oi
ε),1� i�n−1,

system (5.12), (5.13) has a unique solution (UR,i, V R,i)= FR,i(hR) if UR,i

satisfies the standard boundary condition on Oi
ε and V R,i(ai)=0. Moreover

FR,i is a bounded operator and the solutions satisfy

|UR|+ |V R|�C(ε|hR|+ |hR|L1), |
UR|�Cε(|hR|+ |hR|L1).

In inner layers, assume λ=0, ci=0. For each hi ∈C(I iε ), system (5.14), (5.15)
has a unique solution (Ui,V i)=FS,i(hi) that satisfies Ui(0)⊥qi(0),V i(0)=
0. Moreover FS,i is a bounded operator and the solution satisfies:

|Ui |+ |V i |�Cεβ−1|hi |.
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Proof. The proof for system (5.14), (5.15) in inner layers shall be
omitted.

In outer layers, if ξ =x/ε variable is used so that εUx =Uξ , then the
length of the outer layer is O(1/ε). If one uses variational of constant for-
mula on (5.12) and (5.13) to get a solution with forcing term, then the
desired estimates on the solution will not be satisfied. Exponential dichot-
omies must be used in the proof.

Consider the auxiliary equations

εUx − (Df −xI)U =h1(x), (5.21)

Vx + (λ0 +1)(Df −xI)−1V =h2(x). (5.22)

Using the standard boundary condition and exponential dichotomy on the
first equation and the variation of constants formula on the second equa-
tion, we have the unique solutions

U =F1(h1), V =F2(h2),

F1 :C(Oi
ε)→C(Oi

ε), F2 :L1(Oi
ε)→C(Oi

ε),

|U |�C|h1|, |V R|�C|h2|L1 .

Using (
UR,V R), (5.12), (5.13), with λ=0, become

ε
URx − (Df −xI)
UR = ε[G(
UR,V R)+ (Df −xI)−1hR], (5.23)

V Rx + (λ0 +1)(Df −xI)−1V R = (λ0 +1)
UR +hR. (5.24)

Here

G(
UR,V R) = (λ0 +1)(Df −xI)−1
UR

+[(Df −xI)−1
x − (λ0 +1)(Df −xI)−1(Df −xI)−1]V R.

System (5.23), (5.24) can be written as a fixed point problem


UR1 = εF1(G(
U
R,V R)+ (Df −xI)−1hR),

V R1 =F2((λ0 +1)
UR1 +hR).

The mapping defined by (
UR,V R)→ (
UR1 , V
R
1 ) is a contraction if

ε is sufficiently small. Therefore, there is a unique fixed point (
UR,V R)
which is also a solution to the coupled system (5.23), (5.24).

Since F1 is a bounded operator, we have |
UR|�Cε(|
UR|+ |V R|+
|hR|). This simplifies to

|
UR|�Cε(|V R|+ |hR|).
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On the other hand since F2 is a bounded operator,

|V R|�C1(|
UR|+ |hR|L1)�C1(Cε(|V R|+ |hR|)+|hR|L1).

Thus |V R|�C(ε|hR|+ |hR|L1). Plug back into the estimate for |
UR|, we
have |
UR|�Cε(|hR|+ |hR|L1).

Finally |UR|�C(|
UR|+ |V R|)�C(ε|hR|+ |hR|L1).

Lemma 5.4.

(i) In the semi-infinite outer layers R0 and Rn, let h1 ∈C(γ ) and φ ∈
R
n. Then there exists a unique solutions U ∈C(γ ) for the boundary

value problem

εUx = (Df −xI)U +h1,

{
U(x1

0)=φR,0u , x ∈R0,

U(xn0 )=φR,ns , x ∈Rn. (5.25)

(ii) Let h2 ∈C(γ ) or L1(γ ). Then there exists a unique solutions V ∈
C(γ ) for the single equation without boundary conditions

Vx + (λ0 +1)(Df −xI)−1V =h2. (5.26)

(iii) For hR ∈ C(γ ) ∩ L1(γ ), consider the nonhomogeneous boundary
value problem

εUx = (Df −xI)U +V,
{
U(x1

0)=0, x ∈R0,

U(xn0 )=0, x ∈Rn. (5.27)

Vx = (λ0 +1)UR +hR. (5.28)

Then, there exists a unique solution (U,V )∈C(γ ) such that

|U |γ +|V |γ �C(ε|hR|γ +|hR|L1(γ )).

Moreover, let 
UR =U + (Df −xI)−1V , then

|
UR|γ �Cε(|hR|γ +|hR|L1(γ )).

Proof. We shall only prove the case x∈O0
ε only. The proof is a mimic

of that of Lemma 5.3.
For brevity, let a0 =−∞, b0 =x1

0 − εβ,O0
ε = (−∞, b0).

Proof of Part (i): The unique solution U ∈C(γ ) of (5.25) can be writ-
ten as

UR,i(x)=
∫ x

b0
T (x, y)Pu(y)h1(y)dy+T (x, b0)φR,0u .
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Using exponential dichotomy on O0
ε , we have

U =F1(h1, φ
R,0
u ), |U |γ �C(|h1|γ +|φR,0u |).

Proof of Part (ii): The unique solution V ∈C(γ ) of (5.26) can be writ-
ten as

V R,i(x)=
∫ x

−∞
�(x, y)h2(y)dy.

Using exponential estimate in O0
ε we have

|V R|γ =F2(h2), |V R|�C|h2|γ or C|h2|L1(γ ).

Proof of Part (iii): Using (
UR,V R), (5.27), (5.28), become

ε
URx − (Df −xI)
UR = ε[G(
UR,V R)+ (Df −xI)−1hR], (5.29)

V Rx + (λ0 +1)(Df −xI)−1V R = (λ0 +1)
UR +hR. (5.30)

Here

G(
UR,V R) = (λ0 +1)(Df −xI)−1
UR

+[(Df −xI)−1
x − (λ0 +1)(Df −xI)−1(Df −xI)−1]V R.

System (5.29), (5.30) can be written as a fixed point problem


UR1 = εF1(G(
U
R,V R)+ (Df −xI)−1hR,0),

V R1 =F2((λ0 +1)
UR1 +hR).

The mapping defined by (
UR,V R)→ (
UR1 , V
R
1 ) is a contraction if ε

is sufficiently small. Therefore, there is a unique fixed point (
UR,V R)
which is also a solution to the coupled system (5.23), (5.24).

Since F1 is a bounded operator, we have |
UR|γ � Cε(|
UR|γ +
|V R|γ +|hR|γ ). This simplifies to

|
UR|γ �Cε(|V R|γ +|hR|γ ).
On the other hand since F2 is a bounded operator,

|V R|γ �C1(|
UR|γ +|hR|L1)�C1(Cε(|V R|γ +|hR|γ )+|hR|L1(γ )).

Thus |V R|γ �C(ε|hR|γ +|hR|L1(γ )). Plug back into the estimate for |
UR|,
we have |
UR|γ �Cε(|hR|γ +|hR|L1(γ )).

Finally |UR|γ �C(|
UR|γ +|V R|γ )�C(ε|hR|γ +|hR|L1(γ )).
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Lemma 5.5. Consider the system of V -equations in Oi
ε,0� i�n and I iε ,

1� i�n, with hR =0 and hi =0:

V Rx + (λ0 +1)(Df −xI)−1V R =λUR1 ,
V iξ = [(λ0 +1)ci +λci0]qiξ + [(D2f (qi)ui1 − (xi1 + ξ)I )ciqiξ ]ξ ,

V R(xi0 + εβ)−V i(εβ−1)= δV i,+,
V i(−εβ−1)−V R(xi0 − εβ)= δV i,−,
V R =O(e−γ |x|) f or x ∈R0, Rn.

Then the above system has a unique solution (V R, {V i}, {ci}, λ). Moreover,

|V R|+ |{V i}|+ |{ci}|+ |λ|�C(|{δV i,−}|+ |{δV i,+}|).

Proof. Let 
iε :=qi(εβ−1)−qi(−εβ−1). The second equation in I iε can
be integrated once to yield

V i(εβ−1)−V i(−εβ−1)= [(λ0 +1)ci +λci0]
iε +O(e−αεβ−1 |ci |).

The small factor e−αεβ−1
comes from qiξ (ξ) for ξ = eβ−1. The small term

can be handled by contraction mapping principle and shall be omitted for
convenience. Consider

V i(εβ−1)−V i(−εβ−1)= [(λ0 +1)ci +λci0]
iε. (5.31)

Combining this with δV i,− and δV i,−, we find that

V R(xi0 + εβ)−V R(xi0 − εβ)= [(λ0 +1)ci +λci0]
iε + δZi, (5.32)

where

δZi := δV i,− + δV i,+.

In the spirit of the SLEP method, the whole system reduces to a sys-
tem in outer layers coupled with jump conditions:

V Rx + (λ0 +1)(Df −xI)−1V R =λUR1 ,
V R(xi0 + εβ)−V R(xi0 − εβ)= [(λ0 +1)ci +λci0]
iε + δZi.

Let

ZR := (Df −xI)−1V R.
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We have V R= (Df −xI)ZR. The system in outer layers can be written as

((Df −xI)ZR)x + (λ0 +1)ZR =λUR1 ,
(Df −xI)ZR(xi0 + εβ)− (Df −xI)ZR(xi0 − εβ)

= [(λ0 +1)ci +λci0]
iε + δZi. (5.33)

If we substitute 
iε by 
i + qi(εβ−1)− qi(∞)+ qi(−∞)− qi(−εβ−1)

and add the following equations to (5.33)

(Df −xI)Zi(xi0+)− (Df −xI)Zi(xi0 + εβ)

=−
∫ xi0+εβ

xi0

[λUR1 +hR − (λ0 +1)ZR(y)]dy,

(Df −xI)Zi(xi0 − εβ)− (Df −xI)Zi(xi0−)

=−
∫ xi0−

xi0−εβ
[λUR1 +hR − (λ0 +1)ZR(y)]dy,

we have

(Df −xI)Zi(xi0+)− (Df −xI)Zi(xi0−)
= [(λ0 +1)ci +λci0]
i + δZi +N(λ, ci,ZR),

where

N(λ, ci,ZR) = [(λ0 +1)ci +λci0](qi(εβ−1)−qi(∞)+qi(−∞)−qi(−εβ−1))

−
∫ xi0−

xi0−εβ
[λUR1 − (λ0 +1)ZR(y)]dy

−
∫ xi0+εβ

xi0

[λUR1 − (λ0 +1)ZR(y)]dy

is a small term.
Consider a simplified problem

((Df −xI)ZR)x + (λ0 +1)ZR =λUR1 ,
(Df −xI)Zi(xi0+)− (Df −xI)Zi(xi0−)= [(λ0 +1)ci +λci0]
i + δZi.

Note that from Lemma 5.4, Z0 and Zn can be solved first without the
jump conditions. Then to solve for Zi , 1 � i�n− 1, replacing Z0, Zn by
zeros, and consider the abstract system

L({ZRi}n0, {ci
i}n1) + (λ0 +1)({ZRi}n0, {ci
i}n1)
+ λ({URi1 }n0, {ci0
i}n1)= ({Wi}n0, {J i}n1),
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where

J i = δZi, 2� i�n−1,

J 1 = δZ1 +ZR(x1
0 − εβ),

J n = δZn−ZR(xn0 + εβ).
By the result of Section 4, the above system has a unique solution,
denoted by

(ZR,λ, {ci})=F({δZi}).
Then the original system can be written as a fixed point problem:

(ZR,λ, {ci})=F({δZi}+N(λ, {ci},ZR)).
By contraction mapping principle, the above has a unique solution.

Lemma 5.6. Consider the linear homogeneous system

εURx = (Df −xI)UR +V R, (5.34)

V Rx = (λ0 +1)UR +λUR1 , (5.35)

Uiξ = (Df −xi0I )Ui +V i, (5.36)

V iξ = [(λ0 +1)ci +λci0]qiξ + [(D2f (qi)ui1 − (xi1 + ξ)I )ciqiξ ]ξ (5.37)

with jump conditions and boundary conditions:

WR(xi0 + εβ)−Wi(εβ−1)= δWi,+, (5.38)

Wi(−εβ−1)−WR(xi0 − εβ)= δWi,−, (5.39)

(UR,V R)=O(e−γ |x|) f or x ∈R0,Rn. (5.40)

Then there exists a unique solution to the homogeneous system with the pre-
scribed boundary condition and jump conditions. Moreover,

|UR|+ |V R|+ |{Ui}|+ |{V i}|+ |UR,0|γ +|UR,n|γ +|V R,0|γ +|V R,n|γ
�C(|{δWi,−}|+ |{δWi,+}|).

Proof. As before, let 
UR =UR + (Df −xI)−1V R. The second equa-
tion (5.35) of the system is equivalent to

V Rx + (λ0 +1)(Df −xI)−1V R = (λ0 +1)
UR +λUR1 . (5.41)

The proof is divided into three steps:
[Step 1:] Dropping (λ0 + 1)
UR in (5.41), we have a simplified

equation for V R. This is coupled with (5.37) to be a system of V -equa-
tions, and will be solved with jump and boundary conditions (5.38)–(5.40).
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We will determine approximate values of λ and ci,1 � i � n at this stage
also. The result is stated in Lemma 5.5.

[Step 2:] With (V R,V i) obtained from Step 1, we solve a coupled sys-
tem of U -equations with jump and boundary conditions:

εURx = (Df −xI)UR +V R,
Uiξ = (Df −xi0I )Ui +V i,
UR(xi0 + εβ)−Ui(εβ−1)= δUi,+,
Ui(−εβ−1)−UR(xi0 − εβ)= δUi,−,
UR =O(e−γ |x|) for x ∈R0,Rn.

For brevity, let ai = xi0 + εβ , bi = xi+1
0 − εβ . Then Oi

ε = {ai � x � bi}. See
Fig. 2 for the illustration of symbols used in this proof.

In Oi
ε using exponential dichotomies, we have

UR,i(x)=
∫ x

ai
T (x, y)Ps(y)V

R,i(y)dy+
∫ x

bi
T (x, y)Pu(y)V

R,i(y)dy

+T (x, ai)φR,is +T (x, bi)φR,iu .

Let I iε = I iε (�)∪ I iε (r) where

I iε (�)= (−εβ−1,0), I iε (r)= (0, εβ−1).

In each of the subintervals I iε (�) and I iε (r), using exponential dichotomies,
we have

Ui(ξ) =
∫ ξ

−εβ−1
S(ξ, η)Ps(η)V

i(η)dη+
∫ ξ

0
S(ξ, η)Pu(η)V

i(η)dη

+S(ξ,−εβ−1)φS,is (�)+S(ξ,0)φS,iu (�), ξ ∈ I iε (�)
Ui(ξ) =

∫ ξ

0
S(ξ, η)Ps(η)V

i(η)dη+
∫ ξ

εβ−1
S(ξ, η)Pu(η)V

i(η)dη

+S(ξ, εβ−1)φS,iu (r)+S(ξ,0)φS,iu (r), ξ ∈ I iε (r).

–1 –1

–1 –1 –1

Figure 2. Notations for the initial data φR,iu , etc. The solutions passing through them decay
exponentially in the direction indicated by the arrows.
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To satisfy the jump conditions, we need

φR,is −φS,iu (r) =
∫ εβ−1

0
S(εβ−1, η)Ps(η)V

i(η)dη−
∫ ai

bi
T (ai, y)Pu(y)V

R,idy

+S(εβ−1,0)φS,is (r)−T (ai, bi)φR,iu + δUi,+,

φS,is (�)−φR,i−1
u =

∫ bi−1

ai−1
Ps(y)V

R,i−1(y)dy−
∫ −εβ−1

0
S(−εβ−1, η)Pu(η)V

i(η)dη

+T (bi−1, ai−1)φR,i−1
s −S(−εβ−1,0)φS,iu (�)+ δUi,−.

On the right-hand sides, if (φS,is (r), φ
R,i
u ) of the first equation and

(φ
R,i−1
s , φ

S,i
u (�)) of the second equation are given, then using transverse

intersections of stable and unstable subspaces, we can calculate terms on
the left-hand sides: (φR,is , φ

S,i
u (r)) of the first equation, and (φS,is (�), φ

R,i−1
u )

of the second equation. Then from the lemmas, we have (UR,i,US,i), from
which the terms on the right-hand sides: φS,is (r), φ

R,i
u , φ

R,i−1
s , φ

S,i
u (�) can be

calculated again. The above can be viewed as an fixed point problem:

(φR,is , φR,iu , φS,iu (�), φS,is (r)) → (φR,is , φR,iu , φS,is (�), φS,iu (r))

→ (UR,i,US,i)

→ (φR,is , φR,iu , φS,iu (�), φS,is (r)). (5.42)

Owing to the exponential decay of

S(εβ−1,0)φS,is (r), T (bi−1, ai−1)φR,i−1
s ,

T (ai, bi)φR,iu , S(−εβ−1,0)φS,iu (�)

the process in (5.42) is also a contraction mapping. Therefore it has a
unique fixed point (φR,is , φ

R,i
u , φ

S,i
u (�), φ

S,i
s (r)), which can be used to deter-

mine (UR,i,US,i).
With (UR,Ui,V R,V i, λ, ci) from Steps 1 and 2, (5.41) is satisfied

without the term (λ0 + 1)
UR. Now using this UR and V R, define

UR =UR + (Df (uR0 )−xI)−1V R. We show that 
UR is small in suitable
norms. We can verify that


URξ − (Df −xI)
UR = εG(V R,λ).

Where

G(V R,λ) = [(Df −xI)−1
x − (λ0 +1)(Df −xI)−1(Df −xI)−1]V R

+λ(Df −xI)−1UR1 .
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Using the exponential dichotomy in Oi
ε , we have


UR(ξ) =
∫ x

ai
T (x, y)Ps(y)ε[G(V R,λ)](y)dy

+
∫ x

bi
T (x, y)Pu(y)ε[G(V R,λ)]dy

+T (x, ai)Ps(ai)
UR(ai)+T (x, bi)Pu(bi)
UR(bi). (5.43)

By definition,

|
UR|� |UR|+ |(Df −xI)−1||V R|�C(|{δWi,−}|+ |{δWi,+}|).
If we observe that

|G(V R,λ)|�C(|V R|+ |λ|)�C(|{δWi,−}|+ |{δWi,+}|),
then the sup norms of the two integrals of (5.43) are bounded by
Cε(|δWi,±|). Therefore, their L1(x) norms are bounded by Cε(|δWi,±|).
Due to the large negative exponential rate −α/ε, the two boundary terms,

T (x, ai)Ps(a
i)
UR(ai)+T (x, bi)Pu(bi)
UR(bi)

are bounded by ε|
UR|�Cε(|δWi,±|) in L1(x) norm.
In summary

|
UR|∞ �C(|{δWi,−}|+ |{δWi,+}|),
|
UR|L1(x)�Cε(|{δWi,−}|+ |{δWi,+}|).

Step 3: Consider the following system in Oi
ε :

εŪRx = (Df −xI)ŪR + V̄ R,
V̄ Rx + (λ0 +1)(Df −xI)−1V̄ R = (λ0 +1)
ŪR + (λ0 +1)
UR.

Using Lemma 5.3 with (λ0 + 1)
UR as a forcing term, the above system
has a solution that satisfies

|ŪR|+ |V̄ R|�C(ε|
UR|+ |
UR|L1)�Cε(|{δWi,−}|+ |{δWi,+}|).
By adding (ŪR, V̄ R) to (UR,V R) obtained in Steps 1 and 2, the new

(UR,V R) will satisfy (5.34) and (5.35). However, the jump conditions are
not satisfied and the error of which is bounded by

|(ŪR, V̄ R)|�Cε(|{δWi,−}|+ |{δWi,+}|)� 1
2
(|{δWi,−}|+ |{δWi,+}|),

if ε is sufficiently small.
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The process of calculating (UR,V R,Ui,V i, λ, ci) from jump condi-
tions, that is the three steps as in the proof of this lemma, can be repeated
infinitely many times, each time reducing the jump error by at least 1/2.
The limit of the iteration process is a true solution of system of this
lemma.

Proof of Proposition 5.1. The proof can be obtained by combining
the results of Lemmas 5.3 and 5.6.

Theorem 5.7. Assume that Hypothesis (H1) is satisfied, or equiva-
lently, λ0 is a simple root for the SLEP function p(λ) (Lemma 4.7),
there exist unique eigenvalue and eigenfunctions near the approximation
(λap,U

R
ap, {Uiap}).

Proof. Let the solution mapping of Proposition 5.1 be

(UR,V R, {Ui}, {V i}, λ, {ci})=F({δWi,+}, {δWi,−}, hR, {hi}).

Then the eigenvalue problem (5.2)–(5.5) can be expressed as

(UR,V R, {Ui}, {V i}, λ, {ci})
=F({δWi,+}, {δWi,−}, hR +NR(UR,λ, ε), {hi +Ni(Ui, λ, ci, ε)}).

(5.44)

Using the estimates on NR(UR,λ, ε), Ni(Ui, λ, ci, ε) and Proposition
5.1, we find if 1/2<β <1, then ε2β−1 � 1. Equation (5.44) can be solved
by the contraction mapping principle to obtain a unique solution.

Finally, it is easy to verify from the contraction mapping that

‖(UR,V R, {Ui}, {V i}, λ, {ci})‖�C(‖{δWi,+}, {δWi,−}, hR, {hi})‖
�C(εm+ εβ(m+1)−1 + e−αεβ−1

(εβ−1)m�Cεβ(m+1)−1.

As ε→ 0, (UR,V R, {Ui}, {V i}, λ, {ci})→ 0. The exact eigenvalue and
eigenfunctions are asymptotically O(εβ(m−1)+2β−1) near the approxima-
tions λap, URap, and {Uiap}.
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