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STANDING WAVES FOR PHASE TRANSITIONS IN A
SPHERICALLY SYMMETRIC NOZZLE∗

HAITAO FAN† AND XIAO-BIAO LIN‡

Abstract. We study the existence of standing waves for liquid/vapor phase transition in a
spherically symmetric nozzle. The system is singularly perturbed and the solution consists of an
internal layer where the liquid quickly becomes vapor. Using methods from dynamical systems
theory, we prove the existence of the internal layer as a heteroclinic orbit connecting the liquid state
to the vapor state. The heteroclinic orbit is reproduced numerically and is also shown numerically
to be a transversal heteroclinic orbit. The proof of the existence of an exact standing wave solution
near the singular limit is based on the geometric singular perturbation theory and is outlined in the
paper.
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1. Introduction. In this paper, we study the spherically symmetric flow of liq-
uid fuel which mimics the fuel being injected into the cylinder of an internal combus-
tion engine through a cone-shaped nozzle. We investigate the evaporation of liquid
fuel in the nozzle and show that under certain conditions a steady evaporation front
can occur inside the nozzle so that the fuel emerging from the injection nozzle is in
its vapor state. In this way, the fuel vapor can mix with the air more evenly to ensure
a more complete combustion. A complete combustion will increase the fuel efficiency
and reduce the emission of engine.

The governing equations for flows involving liquid/vapor phase transitions are

(1.1)

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρ(uu) +P) = 0,

(λρ)t +∇ · (λρu) = w

γ
+∇ · (μρ∇λ),

Et +∇ · (uE + u ·P) = κΔT + L(T )∇ · (μρ∇λ),

P =

(
p+

(
2

3
ε1 − ε2

)
(∇ · u)

)
I − ε1(∇u+∇uT ),

pρ > 0, pρρ > 0, pλ > 0.

See [16]. The major symbols in the equations are as follows:

ρ u λ E P
density velocity mass fraction energy density stress-strain

of vapor tensor
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The constant μ is the diffusion coefficient of vapor, κ is the heat conduction coefficient,
ε1 and ε2 are the coefficients of shear and bulk viscosities (cf. [3, 41]), and L(T ) is the
latent heat.

The vapor production rate is w/γ, where γ is the typical reaction time and

(1.2) w = (p− pe)λ(λ − 1)ρ, p < pe.

The constant pe is the equilibrium pressure. We consider only evaporation waves in
this paper. Since 0 ≤ λ ≤ 1, the assumption p < pe is to ensure w ≥ 0.

Most liquid fuels are retrograde fluids that have sufficiently high molar specific
heat capacity. This allows us to use the isothermal case of (1.1). Assume that
the fuel is injected from the smaller end of the cone, and the cone’s boundary is
slippery, offering no resistance to tangential flows at the boundary. For the spherically
symmetric flow, (1.1) reduces to the following system:

(1.3)

ρt + (ρu)r +
2ρu

r
= 0,

(ρu)t + (ρu2 + p)r +
2ρu2

r
= ε

(
ur +

2u

r

)
r

,

(λρ)t + (λρu)r +
2λρu

r
=

1

γ
(p− pe)λ(λ − 1)ρ+ μ

(
(ρλr)r +

2ρλr

r

)
.

If η = ε2− 2
3ε1 as in (1.1), then a straightforward but rather lengthy calculation shows

that the combined viscosity ε in (1.3) is ε = η + ε1 = 1
3ε1 + ε2.

Because the typical reaction time γ, the diffusion coefficient of vapor μ, and the
viscosity ε are all proportional to the mean free path, we shall assume that

γ = ε/a, μ = εb.

To achieve a steady evaporation inside the nozzle, we look for the stationary
solution of (1.3) which satisfies the following system:

(1.4)

(ρu)r +
2ρu

r
= 0,

(ρu2 + p)r +
2ρu2

r
= ε

(
ur +

2u

r

)
r

,

(λρu)r +
2λρu

r
=

a

ε
(p− pe)λ(λ − 1)ρ+ εb

(
(ρλr)r +

2ρλr

r

)
.

The radius of the cone is in the range r1 ≤ r ≤ r2. Since ε is a small parameter, the
system is singularly perturbed. We look for solutions of (1.4) with an internal layer at
r0 ∈ (r1, r2). More specifically, there is an “intermediate variable” η = εβ, 0 < β < 1,
such that the domain [r1, r2] splits into three parts:

(1.5)
[r1, r2] = I1 ∪ I0 ∪ I2, where

I1 = [r1, r0 − η], I0 = (r0 − η, r0 + η), I2 = [r0 + η, r2].

The vapor fraction of the flow is λ ≈ 0 in I1 and λ ≈ 1 in I2, while a sudden change
from λ ≈ 0 to λ ≈ 1 occurs in I0. The interval I0 is called the internal layer (or the
fast, singular layer), while I1 and I2 are called the slow layers (or the regular, outer
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layers). We also call the solutions in I1 ∪ I2 and I0 slow (or regular) and fast (or
internal) layers.

The intermediate variable satisfies the property η → 0 as ε → 0, so in the singular
limit I0 becomes a point at r0. Define the stretched variable (or the fast time) ξ =
(r − r0)/ε. Let the internal layer I0 in the stretched variable be denoted as

(1.6) I0(ξ) = (−η/ε, η/ε).

As ε → 0, I0(ξ) → (−∞,∞). This allows us to consider the limits of the internal layer
as ξ → ±∞ in the asymptotic matching of internal and regular layers. The choice of
intermediate variable is not unique. In some papers η = ε| log(ε)| was used.

We assume that the fluid moves along the radius direction, i.e., u > 0. In the
following figure, the internal layer appears as a thin line at r = r0:

u

2

1

r = r 

r = r 

λ=0 λ=1

r = r 0

A brief review of relevant literature is in order. The validation of the model
(1.1) was checked in [13] and [16] by comparing the phenomena observed in actual
experiments in [12], [39], and [40] to the behavior of the one-dimensional isothermal
case of (1.1) in Lagrange coordinate

(1.7)

vt − ux = 0,

ut + p(λ, v)x = εuxx,

λt =
1

γ
w(λ, v) + βλxx.

The existence and nonexistence of phase-changing traveling waves of various types
were shown in [13], [15], and [17] for the isothermal case. The proof of the existence
of these traveling waves was much simplified by Fan and Lin in [18]. Fan and Corli [9]
showed the existence and uniqueness of the solution of Riemann problem for inviscid
(1.7) with ε = γ = β = 0. Amadori and Corli established the existence of global
solutions to the initial value problem of (1.7) for a class of initial data of large total
variations. They also showed the convergence of solutions in the zero reaction time
limit [1, 2]. Trivisa, in [41], proved the existence of variational solutions of the system
(1.1) under various assumptions.

Although the spherically symmetric flow of (1.1) has not been studied before,
previous research on spherical waves in gas dynamics can certainly shine light on
the spherically symmetric solutions of (1.1) involving phase transitions. Slemrod [38]
proved the existence of solutions of the spherically symmetric piston problem via van-
ishing similarity viscosity. Yang [44] studied the spherically symmetric Euler equations
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with initial data being small perturbations of a constant state and constructed the
solutions by Glimm’s scheme. Hsiao, Luo, and Yang [26] established the global exis-
tence of spherically symmetric banded variation (BV) solutions for the damped Euler
system. Chen et al. [6] considered the spherically symmetric piston problem where
they constructed a global entropy solution by using the shock capturing approach and
the method of compensated compactness.

The spherically symmetric flow can be regarded as a special type of nozzle flow.
The studies of nozzle flow were pioneered by Courant and Friedrichs [10] and Liu
[32]. Many authors have studied the transonic flows in nozzles; see the recent articles
[5, 7, 8, 29, 42, 43] and references cited therein. Hong, Hsu, and Liu [23, 24] and Liu
and Oh [25] used the dynamical systems approach to study one-dimensional standing
wave solutions of gas flows in a nozzle with variable cross-sectional area a(x). When
applied to the spherically symmetric nozzle, a(x) = cx2, their system is approximately
but not the same as the first two equations of our system (1.4). While all these papers
studied the gas flow in a nozzle, we shall consider fluid flow in a nozzle with phase
changes in this paper, using the dynamical systems approach.

The main contributions of this paper are as follows. We have characterized the
conditions for the existence of the supersonic and subsonic standing waves. We have
proved the existence of the internal layer for the limiting system with ε = 0 in The-
orems 4.2 and 4.3. We have shown that under suitable boundary conditions there
exists a unique standing wave solution for small nonzero ε in Theorem 6.2 and Propo-
sition 6.2. We have introduced a numerical method which is suitable for computing
the internal layer solutions. We have also verified numerically that the heteroclinic
orbit representing the internal layer is a transverse heteroclinic orbit in Theorem 5.1.
The transversality condition is important to ensure the existence of a standing wave
solution when ε is small and positive.

The outline of this paper is as follows. In section 2, we define the slow and fast
times and recast the system into slow and fast systems. In section 3, we define the
slow manifold and study the flow on the slow manifold. The most technical part of
the paper is section 4, where we prove the existence of a heteroclinic solution for the
fast system that connects pure liquid state λ = 0 to pure vapor state λ = 1. The
heteroclinic solution is the singular limit of the internal layers as ε → 0. Sketches of
the standing waves are given in Figures 3.2 and 4.2. In section 5, we present numerical
simulation of the heteroclinic orbit proved in section 4. We introduce a multiple-step
numerical shooting method which overcomes a technical problem in the numerical
simulation. The numerical computation of the orbits also shows that the heteroclinic
orbit is a transverse heteroclinic orbit; cf. Figures 5.5 and 5.6. In section 6 we present
the main existence theorem of the standing waves when ε > 0. The standing wave
solution is near the union of three singular limit solutions, part of which is the two
slow layers defined on I1 ∪ I2 as in section 3, and part of which is an internal layer
defined on I0 as in section 4. The proof of Theorem 6.2 is based on the exchange
lemma [22, 4, 36] from the geometric theory of singular perturbations and can also be
proved by a functional analytic method as in [30, 21, 31]. We give only an outline of
the proof in this paper.

2. Change of variables and definitions of the fast and slow systems.
Since ε is a small parameter, we shall use the singular perturbation method to simplify
the system. In the geometric singular perturbation theory, it is customary to convert
(1.4) into an autonomous system. Let s = r be an independent variable so that
dr/ds = 1. Substituting into (1.4), the corresponding autonomous system in the slow
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time s ∈ [r1, r2] is

(2.1)

rs = 1, ms = −2m

r
,

(mu+ p)s +
2mu

r
= ε

(
us +

2u

r

)
s

,

(mλ)s +
2mλ

r
=

a

ε
(p− pe)λ(λ − 1)ρ+ εb

(
(ρλs)s +

2ρλs

r

)
.

A quick introduction to the singular perturbation method can be found in [33, 28].
Not only the domain [r1, r2] splits into three regions: I1∪I0∪I1; the unknown variables
also split into slow variables and fast variables. When ε = 0, such decomposition
reduces the dimension of the system in both fast and slow layers.

The slow variables are those whose C1 norms are bounded as ε → 0. Since both
u and λ will have sudden jumps near r0 ∈ (r1, r2), they are not slow variables.

The original variables in the phase space with respect to the slow time s are
(ρ, u, u̇, λ, λ̇). Define the new phase variables (m,n, u, λ, θ) as follows:

(2.2)
m := ρu, n := εu̇− ρu2 − p(λ, ρ),

u = u, λ = λ, θ := εbρλ̇.

At any r1 ≤ s̄ ≤ r2, let ξ = (s − s̄)/ε be the fast time. Any function f in slow
time can be expressed in the fast time as f(s) = f(s̄ + εξ). Denote ḟ = df/ds and
f ′ = df/dξ. Then

n := u′ − ρu2 − p(λ, ρ), θ := bρλ′.

In this paper, we consider only the case ρ, u > 0 for all s ∈ [r1, r2]. Then the change
of variables in (2.2) is invertible:

u = u, ρ = m/u, λ = λ, λ′ = θu/(bm),

u′ = n+mu+ p(λ,m/u).

The second equation of (2.1) can be integrated to yield m(r) = M/r2, where M
is an arbitrary constant. This reduces the number of variables by one. In the new
phase space, (r, n) are the slow variables and (u, λ, θ) are the fast variables. Using
the slow time s, the slow system in the new variables is

(2.3)

ṙ = 1,

ṅ =
2mu

r
−
(
2εu

r

)
s

,

εu̇ = n+mu+ p(λ,m/u),

ελ̇ =
θu

bm
,

εθ̇ = −aw +
θu

b
− 2εθ

r
,

where w is defined in (1.2).
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Using the fast time ξ = (s− r0)/ε) the fast system in the new phase variables is

(2.4)

r′ = ε,

n′ =
2εmu

r
−
(
2εu

r

)
ξ

,

u′ = n+mu+ p(λ,m/u),

λ′ =
θu

bm
,

θ′ = −aw +
θu

b
− 2εθ

r
.

When the standing wave is in the outer layers I1 ∪ I2, (u̇, λ̇, θ̇) = O(1). Letting
ε → 0 in (2.3), we have a systems of algebraic-differential equations in I1 ∪ I2:

(2.5)

ṙ = 1,

ṅ =
2mu

r
,

0 = n+mu+ p(λ,m/u),

0 =
θu

bm
,

0 = −aw +
θu

b
.

The limit of (2.4), as ε → 0, satisfies

(2.6)

r′ = 0,

n′ = 0,

u′ = mu+ p(λ,m/u) + n,

λ′ =
θu

bm
,

θ′ = −aw +
θu

b
.

(HH) Assume that there is a connected open set in (m,n, u) space such that for
both λ = 0 and 1, the equation

n+mu+ p(λ,m/u) = 0

can be uniquely solved by a smooth function u = u∗(m,n, λ).
We now define a singular standing wave solution as the union of three functions

defined on I1, I0, and I2, respectively. Under the condition (HH), from the last three
algebraic equations of (2.5) we can solve (λ, θ, u) as functions of (m,n):

λ = 0 or 1, θ = 0, u = u∗(m,n, λ).

Let (r1(s), n1(s)), s ∈ [r1, r0] be a solution of the first two equations of (2.5), where
u = u∗(m,n, λ = 0). Let λ1(s) ≡ 0, θ1(s) ≡ 0, u1(s) = u∗(m(s), n1(s), λ = 0). Then
Y1(s) := (λ1, θ1, u1, r1, n1)(s) is the part of the singular standing wave on I1.

Let (r2(s), n2(s)), s ∈ [r0, r2] be a solution of the first two equations of (2.5),
where u = u∗(m,n, λ = 1). Let λ2(s) ≡ 1, θ2(s) ≡ 0, u2(s) = u∗(m(s), n2(s), λ =
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1). Then Y2(s) := (λ2, θ2, u2, r2, n2)(s) is the part of the singular standing wave
in I2. The slow variables do not have jumps across r0. Therefore we require that
n1(r0) = n2(r0), r1(r0) = r2(r0). Since dr/ds = 1, without loss of generality, let
r1(s) = r2(s) = s.

Finally, from the first two equations of (2.6), the variables (r, n) = (r0, n0) are
constant in the fast time ξ. Let (u0(ξ), λ0(ξ), θ0(ξ)), ξ ∈ (−∞,∞) be a heteroclinic
solution of the last three equations of (2.6), connecting (u0(−∞), λ0(−∞), θ0(−∞)) =
(u−, λ−, θ−) to (u0(∞), λ0(∞), θ0(∞)) = (u+, λ+, θ+). We assume that the asymp-
totic matching conditions are satisfied:

(2.7)
u− = u∗(m0, n0, λ = 0), u+ = u∗(m0, n0, λ = 1),

λ− = 0, λ+ = 1, θ± = 0.

The function Y0(ξ) := (r0, n0, u0, λ0, θ0)(ξ) is the part of the singular standing wave
on I0(ξ) = (−∞,∞); cf. (1.5) and (1.6).

Definition 2.1. The union of singular limit solutions Y1, Y0, and Y2 on I1, I0(ξ),
and I2 as defined above is called a singular standing wave solution.

3. The limiting slow system and solutions on the slow manifolds.

3.1. The limiting slow system and the slow manifold. The solutions of the
last three algebraic equations of (2.5) form a two-dimensional slow manifold. Since
u �= 0, we have θ = 0 and w = 0. From w = 0 and p < pe, we have λ = 0 or 1. The
slow manifold has two disjoint components corresponding to λ = 0 and 1. Each of
them will be called a slow manifold if no confusion should arise:

(3.1)
S0 :={λ = 0, θ = 0, n+mu+ p(0,m/u) = 0},
S1 :={λ = 1, θ = 0, n+mu+ p(1,m/u) = 0}.

For λ = 0 or 1, the manifold can be expressed as

n = n(m,λ, u) := −mu− p(λ,m/u).

Using pρ > 0, pρρ > 0, we have

∂n

∂u
= −m+ pρ · m

u2
,

∂2n

∂u2
= −pρρ

(m

u2

)2

− 2pρ
m

u3
< 0.

Therefore, if m̄ > 0, λ = 0, 1 are fixed, as a function of u, n(m̄, λ, u) is concave down-
ward. Define the m̄ section of S0 and S1 as the following one-dimensional manifolds:

S0(m̄) := S0 ∩ {m = m̄}, S1(m̄) := S1 ∩ {m = m̄}.

Due to pρ > 0 and pρρ > 0, when u → 0, n(m,λ, u) → −∞. It is also obvious that
when u → ∞, n(m,λ, u) → −∞. Therefore for each (λ,m) there exists a maximum
for n(m,λ, u) that occurs at the point where ∂n/∂u = 0. It is easy to see that at the
maximum we have u2− pρ = 0. See Figure 3.1 for the graphs of a sequence of S0(m),
where the pressure function is p = 0.2 ∗ ρ2.

Thus, in the (m,u, n) space the graphs of S0 and S1 are single humped folds, and
each has a maximum on the m section Sj(m), where u2 = pρ.
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–12

–10

–8

–6

–4

–2

0
1 1.5 2 2.5 3 3.5 4

u

Fig. 3.1. Cross-sectional view S0(m) of the slow manifold for the fixed λ = 0. From top to
bottom are the graphics for n = n(m, u) with m = 0.5, 1, 2, 3, 4.

Definition 3.1. If u2 − pρ < 0, then we say that the wave is subsonic. If
u2 − pρ > 0, then we say that the wave is supersonic. The surface where u2 − pρ = 0
is called the sonic surface.

Each slow manifold Sj , j = 0, 1 has two smooth branches separated by the sonic
surface:

S−
j = Sj ∩ {u2 − pρ < 0}, S+

j = Sj ∩ {u2 − pρ > 0}.
If we specify whether it is on the supersonic or subsonic branch, then for λ = 0, 1,

u can be expressed as functions of (r, n). The limiting slow manifolds become

(3.2)
S−
j :={λ = j, θ = 0, u = u−(m(r), n, λ = j)},

S+
j :={λ = j, θ = 0, u = u+(m(r), n, λ = j)}.

On each two-dimensional manifold S±
j condition (HH) is satisfied. With the slow

variables (r, n) as coordinates, the limiting slow system becomes

(3.3)

ṙ = 1,

ṅ =
2mu±(m(r), n, λ)

r
, λ = 0, 1.

3.2. Solutions for the slow system. System (3.3) involves the function u±(m,
n, λ) so it is not easy to get much qualitative information from it. Because the
change of variables n ↔ u is nonsingular on each branch S±

j , j = 0, 1, we could
use the variables (r, u) or (r, ρ) as coordinates on the slow manifold. Recall that
m := ρu = Mr−2, where M > 0 is any given constant.

Lemma 3.2. On each supersonic or subsonic branch of the slow manifold, S±
0 or

S±
1 , defined as λ = 0, 1, θ = 0, u = u±(m(r), n, λ), the equations for u, ρ are

u̇

u
(u2 − pρ(λ,m/u)) =

2pρ(λ,m/u)

r
,

ρρ̇(u2 − pρ(λ, ρ)) =
−2m2

r
.
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In particular,
(1) If u2 > pρ, then u̇ > 0, ρ̇ < 0;
(2) If u2 < pρ, then u̇ < 0, ρ̇ > 0;
(3) ṅ > 0 on both super and subsonic branches.
Proof. It is easy to derive (3) from (3.3) directly.
From the first equation of (1.4), we have

u(ρu)r +
2ρu2

r
= 0.

Subtracting this from the second equation and letting ε = 0 and r = s, we have

(3.4) mu̇+ ṗ = 0.

Since λ̇ = 0 if λ = 0, 1, we have ps = pρρ̇. From (3.4), we have

(3.5) muu̇+ pρuρ̇ = muu̇+ uṗ = 0.

From the first equation of (1.4) again, we have

(3.6) uρ̇+ ρu̇ =
−2m

r
.

Combining (3.5) and (3.6), we obtain an equation for u(s):

muu̇− pρ(ρu̇+ 2m/r) = 0,

uu̇− pρρu̇/m− 2pρ/r = 0.

(3.7)
u̇

u
(u2 − pρ) =

2pρ
r

.

From (3.6), we have

mρu̇ = −2m2

r
−muρ̇.

Combining the above with (3.4), we obtain an equation for ρ(s):

mρu̇+ ρpρρ̇ = 0,(−2m2

r
−muρ̇

)
+ ρpρρ̇ = 0.

ρρ̇(u2 − pρ) =
−2m2

r
.(3.8)

Equations (3.7) and (3.8) are precisely the first two equations in this lemma. Inequal-
ities (1) and (2) of the lemma then follow easily.

Theorem 3.3. For λ = 0 or 1, each of the two branches of the slow manifold is
invariant under the slow flow. In particular, the sonic surface cannot be reached by
the reduced flow on the slow manifold in forward time.

Proof. Let d = u2 − pρ, which measures the signed distance to the transonic
surface. Then d < 0 or d > 0 on the subsonic or supersonic branch of S±

0 and S±
1 .

Using Lemma 3.2, we have

(3.9)

ḋ = 2u · u̇− pρρ · ρ̇

=
4u2pρ
rd

+
2m2pρρ
rdρ

.
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ρu  = p

un

n = − mu

λ =1

λ = 0

2  

Fig. 3.2. Since pλ > 0 the manifold S0 is strictly above S1. Subsonic and supersonic internal
layers connecting λ = 0 to λ = 1 are depicted as two thin arrows. The slow layers defined on I1 ∪ I2
are plotted as thick arrows on the slow manifold. The dotted line is the sonic surface.

From this we have

d

ds
(d2) =

8u2pρ
r

+
4m2pρρ

rρ
> 0.

Thus, d2 increases only in forward time, i.e., if d > 0, then ḋ > 0, and if d < 0, then
ḋ < 0. This proves the theorem.

The sonic surface intersects with λ = 0 and λ = 1 in two lines. Based on
Theorem 3.3, the lines are unstable with respect to the flows on the slow manifolds.

From Lemma 3.2, u̇ > 0 on the supersonic branches and u̇ < 0 on the subsonic
branches; also ṅ > 0 for both super and subsonic flows. These informations give a
good description of the variables (u, n) in slow layers.

In Figure 3.2, for a fixed m, cross sections of the slow manifolds S0(m) and S1(m)
are plotted. If m = m0, the internal layer solutions defined on I0 may exist and are
plotted as thin horizontal arrows where (m,n, r) are fixed. The direction of the arrow,
i.e., the signs of u′, will be discussed in the next section. The slow layers defined on
I1 ∪ I2, are plotted as thick arrows. They are not on the curve S0(m0) or S1(m0),
because the m components of the solutions are not constant on I1 ∪ I2.

In Figure 3.1 several curves Sj(m) corresponding to several m are plotted. As
time s increases, the m(s) value decreases so the solution should move from curves
with lower n to greater n. Notice that the direction of change of u with respect to s
agrees with Figure 4.2 in the next section.

3.3. Boundary and initial value problems for the slow system. We shall
restrict ourselves to either the super or the subsonic case. Let n1(s), n2(s), r1 ≤ s ≤ r2
be the solution of the following equations:

ṅ1 =
2mu±(m,n1, (λ = 0))

r
,(3.10)

ṅ2 =
2mu±(m,n2, (λ = 1))

r
.(3.11)

Lemma 3.4. If the orbits of (3.10) and (3.11) meet at (r0, n0), then (d/ds)n1(r0)
�= (d/ds)n2(r0), i.e., the intersection is transversal in the (r, n) plane.

Proof. Prove by contradiction. If the curves meet tangentially, then

(d/ds)n1(r0) = (d/ds)n2(r0).
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From the differential equations for n1(r) and n2(r) and the fact m(r) is a continu-
ous function, m(r0−) = m(r0+), we have u±(m(r0), n(r0), 0) = u±(m(r0), n(r0), 1).
Therefore ρ(r0−) = ρ(r0+). Using ∂p/∂λ > 0, we would have p(λ = 0, ρ−) < p(λ =
1, ρ+). Let (u±, n±,m±, p±) be the values of (u, n,m, p) on S1 and S0, respectively.
Then from u− = u+, n− = n+,m− = m+, and

(3.12) n = −mu− p(λ,m/u),

we have p− = p+, contradicting to p(λ = 0, ρ−) < p(λ = 1, ρ+).
Remark 3.1. Based on Lemma 4.1 in the next section, if an internal layer solution

can exist at the intersection point r0, we must have u− < u+ for a subsonic internal
layer and u− > u+ for a supersonic internal layer. Therefore, at the point r = r0, we
have

(d/ds)n1(r0) < (d/ds)n2(r0) for a subsonic internal layer,

(d/ds)n1(r0) > (d/ds)n2(r0) for a supersonic internal layer.

We now look for conditions on (r0,m0, n0) so that there exists a piecewise smooth
function

n(s) =

{
n1(s), s ∈ [r1, r0],

n2(s), s ∈ [r0, r2],

where n1 and n2 satisfy (3.10) and (3.11) with n1(r0) = n2(r0) = n0. Defined on
Ij , j = 1, 2, nj(s) shall be used to construct the outer layers of the singular standing
wave.

Let r0 be the position of the internal layer with r1 < r0 < r2. From m0 = Mr−2
0 ,

we can calculate M and hence m(s) = Ms−2 for all s. We assume that n0 < 0 satisfies
the following condition:

(3.13) n0 < max
u>0

n(m0, λ = 1, u).

Since maxu>0 n(m0, λ = 1, u) < maxu>0 n(m0, λ = 0, u), condition (3.13) guarantees
(m0, n0) is in the domain of u±(m0, n0, λ = 0) and u±(m0, n0, λ = 1). We need
that condition to obtain two points on the slow manifolds S0 and S1 that have the
same (m0, n0) coordinates and can stay on the same side of the sonic surface, either
supersonic or subsonic. In the future the two points shall be connected by the internal
layer illustrated as the thin arrow in Figure 3.2. With n0 determined, we define

u1(r0) = u±(m0, n0, λ = 0), u2(r0) = u±(m0, n0, λ = 1),

ρ1(r0) = m0/u1(r0), ρ2(r0) = m0/u2(r0).

Then with (uj(r0), ρj(r0)) as initial conditions, we can calculate (uj(s), ρj(s)), j = 1, 2,
from Lemma 3.2, at least for a short time s > 0 for (u2(s), ρ2(s)) and s < 0 for
(u1(s), ρ1(s)).

For s not small, it turns out that there is no need to impose any condition on
n2(s) since Theorem 3.3 guarantees the solution will stay on the same side of the
sonic surface in forward time starting from s = r0. The next lemma ensures that if
r0−r1 is relatively small, and |u2−pρ| is sufficiently large, then the backward solution
n1(s), r1 ≤ s ≤ r0, will also stay on the same side of the sonic surface.
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Lemma 3.5. For the backward solution n1(s) starting from n1(r0) = n0, assume
that d(r0) is sufficiently large and r0 − r1 is sufficiently small such that the following
integral for r1 < r0 is positive:

(3.14) d2(r0) +

∫ r1

r0

(
8u2pρ

r
+

4m2pρρ
rρ

)
ds > 0.

Here all the functions involved in the integral are the solutions of the slow system.
Then the solution n1(s) will stay on the same side of the sonic surface for all r1 ≤
s ≤ r0. The condition (3.14) is also necessary.

Proof. If the condition (3.14) is satisfied, then for all r ∈ [r1, r0],

d2(r) = d2(r0) +

∫ r

r0

(
8u2pρ

r
+

4m2pρρ
rρ

)
ds

will be positive and smaller than d2(r0) So the solution n1(s) will stay on the same
side of the slow manifold for all r ∈ [r1, r0].

4. Internal layer solutions for the fast system. To analyze the fast change
of dynamics where the derivatives of some variables are of O(1/ε), the fast time
ξ = (s − r0)/ε shall be used for s near r0. The limiting system of (2.4), as ε → 0+,
satisfies (2.6).

From the first two equations of (2.6), (r, n) = (r0, n0) are constants for all ξ ∈ R.
With m = m0 = m(r0) and n = n0 as two parameters, we look for a heteroclinic
solution (u, λ, θ)(ξ) of the last three equations of (2.6). Assume the heteroclinic orbit
connects

E− := (u−, λ−, θ−) to E+ := (u+, λ+, θ+), as ξ → ∓∞,

where λ− = 0, λ+ = 1, and θ± = 0. The entire slow manifolds S0 and S1 defined
in (3.1) consist of equilibrium points for the last three equations of (2.6). Let the
pressure at E− and E+ be p− and p+. From (3.12), we have

n = −mu− − p−.

Thus

u′ = m(u− u−) + (p− p−).

System (2.6) becomes

(4.1)

λ′ =
θu

bm
,

θ′ = −aw +
θu

b
,

u′ = m(u− u−) + (p− p−).

Let v := 1/ρ. Define

p̄(λ, v) := p(λ, 1/v) = p(λ, ρ),

then ∂p̄/∂v = − ρ2∂p/∂ρ.

Since pρ > 0, we have p̄v < 0.
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λ = 0
E

E

E

−

−

+

λ = 1

ep

v

p

Fig. 4.1. Two ways to connect E− on λ = 0 to E+ on λ = 1 by a line segment of negative
slope. Note that v = u/m.

Let Pm(λ, u) := p(λ, ρ) = p(λ,m/u). Then

∂Pm(λ, u)/∂λ = pλ(λ, ρ) > 0,

∂Pm(λ, u)/∂u = pρ ·
(
−m

u2

)
< 0.

Using ρ = m/u, we obtain the following obvious result:

(4.2) m2 + p̄v =
m2

u2
(u2 − pρ) = m(m+ Pm

u ).

Letting ξ → ∞ in the last equation of (4.1), we have

m = − p+ − p−
u+ − u−

.

Since m > 0, the slope of the line E−E+ on the (u, p) plane is always negative. At
the jump point r0, we have

m(r0) = − p̄(1, v+)− p̄(0, v−)
m(r0)/ρ+ −m(r0)/ρ−

,

m(r0)
2 = − p̄(1, v+)− p̄(0, v−)

v+ − v−
.

Based on the last equation, in the (v, p) plane, the slope of the line segment connecting
E− = (v−, p−) and E+ = (v+, p+) is always negative. As seen in Figure 4.1, there
are two possibilities: (1) The slope of E−E+, in absolute value, is smaller than that
of the tangent line at E+. (2) The slope of E−E+, in absolute value, is larger than
that of the tangent line at E+.

Since the slope of the line E−E+ is −m2(r0), it is also clear from Figure 4.1 that
the standing waves satisfy the following lemma.

Lemma 4.1. (1) If u2 > pρ at E±, then m2+ p̄v > 0 at E±. In this case we have

λ− = 0, λ+ = 1,

v− > v+, u− > u+, p− < p+.
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Fig. 4.2. Sketch of the standing wave solutions in (u, r) coordinates. Left: supersonic; Right:
subsonic.

(2) If u2 < pρ at E±, then m2 + p̄v < 0 at E±. In this case we have

λ− = 0, λ+ = 1,

v− < v+, u− < u+, p− > p+.

The results of Lemma 4.1 agree with that in Figure 3.2. See also the following
sketch of u as functions of r in Figure 4.2.

Note that for the subsonic flow, m+Pm
u < 0 if u− < u < u+. For the supersonic

flow, m+ Pm
u > 0 if u+ < u < u−. Based on this we can prove that for each fixed u

between u− and u+, for both super- and subsonic flows, m(u − u−) + (p − p−) < 0
if λ = 0, and m(u − u−) + (p − p−) > 0 if λ = 1. Since ∂Pm/∂λ > 0, there exists
a unique 0 < λ < 1 that solves the equation m(u − u−) + (p(λ,m/u) − p−) = 0.
The solutions of this equation form a smooth curve C in the (u, λ) plane and can be
expressed by a smooth function

(4.3) C := {(u, λ) : λ = λc(u).

It will be called the isocline for u on which u′(ξ) = 0. If m+ Pm
u < 0 ( or > 0) then

dλc(u)/du > 0 (or < 0).
From w = (p− pe)λ(λ − 1)ρ = (p− pe)λ(λ − 1)mu−1, at λ = 0 or 1, we have

wλ = (p− pe)(2λ− 1)mu−1,

wu = 0.

The linear variational system of (4.1) at λ = 0, 1, θ = 0 is⎛
⎝Λ
Θ
U

⎞
⎠

′

= A

⎛
⎝Λ
Θ
U

⎞
⎠ , where A =

⎛
⎝ 0 u/(bm) 0
−awλ u/b 0
Pm
λ 0 Pm

u +m

⎞
⎠ .

Consider the eigenvalue problem at λ = 0, 1, θ = 0:

det(kI −A) = det

⎛
⎝ k −u/(bm) 0

awλ k − u/b 0
−Pm

λ 0 k − Pm
u −m

⎞
⎠ = 0,

(
k2 − ku

b
+

a

b
(p− pe)(2λ− 1)

)
(k − Pm

u −m) = 0,

k1,2 =
u

2b
∓
√( u

2b

)2

+
a

b
(pe − p)(2λ− 1),

k3 = Pm
u +m =

m

u2
(u2 − pρ).
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Table 1

The signs of eigenvalues and eigenvectors.

E− E+

k3 < 0 k3 < 0
subsonic case 0 < k1 < k2 k1 < 0 < k2
u2 < pρ Θ1 > 0,Θ2 > 0 Θ1 < 0 < Θ2

U1 > 0, U2 > 0 U2 > 0, U1 varies
k3 > 0 k3 > 0

supersonic case 0 < k1 < k2 k1 < 0 < k2
u2 > pρ Θ1 > 0,Θ2 > 0 Θ1 < 0 < Θ2

U1, U2 may vary U1 < 0, U2 varies

Assume that
(C1) p < pe at both E− and E+;
(C2) u2 − 4ab(pe − p) > 0 at E−.
Let the eigenvectors corresponding to kj be (Λj ,Θj, Uj).
Although not required, we assume kj �= k3, j = 1, 2, so the eigenvectors corre-

sponding to kj , j = 1, 2, have simple expressions. Otherwise the generalized eigenvec-
tor may have to be used to express the eigenvectors, but the rest of the proof stays
the same. The corresponding eigenvectors for kj are

Vj := (Λj ,Θj , Uj) =

(
1,

bm

u
kj ,

Pm
λ

kj − k3

)
, j = 1, 2,(4.4)

V3 := (Λ3,Θ3, U3) = (0, 0, 1),

The signs of kj ,Λj ,Θj, Uj are summarized in Table 1.
Let R be the rectangular region such that

(4.5)
R :={(λ, u) : 0 ≤ λ ≤ 1, u− ≤ u ≤ u+} if u− < u+,

R :={(λ, u) : 0 ≤ λ ≤ 1, u+ ≤ u ≤ u−} if u+ < u−.

4.1. Supersonic internal layer. The main result of this subsection is the fol-
lowing theorem.

Theorem 4.2. For the existence of supersonic waves, we assume that
(H1) p < pe at E+ and
(H2) u2 − 4ab(pe − p) > 0 for {(λ, u) : λ = 0, u+ < u < u−}.

Then there exists a unique heteroclinic solution, up to a phase shift, (λ, θ, u) con-
necting E− to E+. Moreover, the heteroclinic solution is monotone in the sense that
dλ/dξ > 0 and du/dξ < 0 for all ξ ∈ R.

The rest of the subsection is devoted to proving Theorem 4.2.
The equi-pressure equation Pm(λ, u) = pe can be solved by

(4.6) λ = λe(u),
dλe

du
= −Pm

u

Pm
λ

> 0.

From (H1) p < pe at E+ := {λ = 1, θ = 0, u = u+}. Since u ≥ u+ in R (see (4.5)),
from ∂Pm/∂u < 0, we have p < pe in the entire region (λ, u) ∈ R. In particular for
any (λ, u) ∈ R and θ = 0, we have w > 0 and θ′ < 0.

The eigenvalues at E− = {λ = 0, θ = 0, u = u−}, under the conditions (H1) and
(H2), satisfy

0 < k1 < k2, k3 > 0.

The equilibrium E− is unstable with dimWu(E−) = 3.
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Fig. 4.3. Vector field in the region R with θ > 0.

The eigenvalues at E+ = {λ = 1, θ = 0, u = u+} satisfy

k1 < 0 < k2, k3 > 0.

The equilibrium E+ is a saddle with dimWu(E+) = 2, dimW s(E+) = 1. The stable
eigenvector corresponding to k1 < 0 is

(Λ1,Θ1, U1) =

(
1,

bm

u
k1,

Pm
λ

k1 − k3

)

with Λ1 > 0, Θ1 < 0, U1 < 0. We found that the projection of a branch of the local
stable manifold W s(E+) onto the (λ, u) plane enters the region R (cf. Figure 4.3). Ex-
tending the local stable manifold W s

loc(E+) backward, we want to show it is connected
to Wu

loc(E−).
Consider a pentahedron-shaped solid W in the (λ, θ, u) space bounded by the

following surfaces:

Right side Fr := {λ = 1, θ > 0, u+ < u < u−};
Bottom side Fb := {θ = 0, 0 < λ < 1, u+ < u < u−};

Back side Fk := {u+ < u < u−, λ = λc(u), θ > 0};
Front side Ff := {u = u+, 0 < λ < 1, θ > 0};
Slant side Fs := {θ − (mλ)/2 = 0, 0 < λ < 1, u+ < u < u−}.

See (4.3) for the definition of λc(u). In describing the surfaces of the solid W , we
assume that the orientation of the axes are as follows. The λ–axis points to the right,
the θ–axis points upward, and the u–axis points away from the viewer.

The outward normal of the slant side Fs is

n = (−m/2, 1, 0).

The vector field on the slant side is

f = ((θu)/(bm),−aw + (θu)/b,m(u− u−) + (p− p−)).
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+EE
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Fig. 4.4. The flow leaves the pentahedron shaped solid W from all its surfaces.

Therefore,

f · n =
θu

2b
− aw

=
mλu

4b
− a(pe − p)λ(1 − λ)m/u

≥ mλ

bu

(
u2

4
− ab(pe − p)

)
> 0.

The last inequality is due to (H2), from which u2

4 > ab(pe − p) is valid for λ = 0 and
u+ < u < u−. Thus is also valid if λ > 0 since for the same u, the pressure p is even
greater. Thus the flow on Fs must leave W .

Since dλ/dξ = (uθ)/(bm) > 0, the flow on Fr must leave W .
Since dθ/dξ = −ab(pe− p)λ(1−λ)m/u < 0, the flow on the bottom side Fb must

leave W .
On the front side Ff , if λ = 1, then du/dξ = m(u− u+) + (p− p+) = 0. If λ < 1,

due to Pm
λ > 0, we have du/dξ < 0. The flow on Ff must leave W .

On the back side Fk, the outward normal is n = (1, 0,−dλc/du). The vector field
satisfies λ′ > 0, u′ = 0. Therefore f · n > 0. The flow on Fk must leave W .

The results are summarized in Figure 4.4. It is also straightforward to check that
the flow cannot enter W through the six edges of W .

We now pick a point P on W s
loc(E+) in the interior of R with θ > 0. It is easily

verified that if P ∈ W s
loc(E+) and is sufficiently close to E+, then P ∈ W due to

the fact that u′(ξ) < 0 on the tangent space of W s
loc(E+). The backward trajectory

Φ(ξ, P ) = (λ(ξ), θ(ξ), u(ξ)), ξ ≤ 0, cannot leave W through all its surfaces and edges.
Clearly dλ/dξ > 0 and du/dξ < 0 in W . Therefore, as ξ → −∞, being two bounded
and monotone functions, the limits of λ(ξ) and u(ξ) exist. Based on this, it is easy to
show that θ(ξ) → 0 as ξ → −∞. The alpha limit set α(P ) must be the equilibrium
point E− on the boundary of W . The proof above also shows that the λ and u
components of the heteroclinic solution are monotone.

4.2. Subsonic internal layer. The main result of this subsection is the follow-
ing theorem.

Theorem 4.3. For the existence of subsonic waves, we assume
(H1) p < pe at the equilibrium point E− and
(H2) u2 − 4ab(pe − p) > 0 on the isocline C where u′ = 0.
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Then there exists a heteroclinic solution (λ, θ, u) connecting E− to E+. Moreover, the
heteroclinic solution is monotone in the sense that dλ/dξ > 0 and du/dξ > 0 for all
ξ ∈ R.

The rest of this subsection is devoted to proving Theorem 4.3.
Recall the equation for the equi-pressure line λ = λe(u) in (4.6) and the rectan-

gular region R defined in (4.5). There are two possibilities:
(1) The entire rectangle R is in the region p < pe.
(2) The rectangle R is divided by the line λ = λe(u) into two parts.
In the second case, the isocline C and the equi-pressure line λ = λe(u) do not

intersect, as shown in the following lemma.
Lemma 4.4. Under the condition (H1), if the equi-pressure line λ = λe(u) in-

tersects the region R and divides R into two parts, then the entire isocline C for the
u-equation is in the region p < pe. The equi-pressure line λ = λe(u) is in the region
u′ > 0.

Proof. For (λ, u) ∈ R ∩ {p = pe}, since p = pe and condition (H1), we have
p > p−. Also observe that u > u− in R. Therefore u′ = m(u− u−) + (p− p−) > 0 on
the equi-pressure line p = pe in R. This proves the second statement of the lemma.

Since the two lines do not intersect, our assumption on one end of the isocline C
implies that E− is on the part of R where p < pe. Therefore the entire isocline C is
on the part of R where p < pe.

If λ = 0, θ = 0, then under the condition (H2),

0 < k1 < k2, k3 < 0.

The equilibrium E− is a saddle with dimWu = 2.
If λ = 1, θ = 0, then

k1 < 0 < k2, k3 < 0.

The equilibrium E+ is a saddle with dimW s = 2. The eigenvector at E− correspond-
ing to k1 is

(Λ1,Θ1, U1) =

(
1,

bm

u
k1,

Pm
λ

k1 − k3

)
if k1 �= k3.

The eigenvector corresponding to k3 is

(Λ3, θ3, U3) = (0, 0, 1).

Consider a pentahedron-shaped solid W in the (λ, θ, u) space bounded by the
following surfaces:

Right side Fr := {λ = 1, θ > 0, u− < u < u+};
Bottom side Fb := {θ = 0, 0 < λ < 1, u− < u < u+};

Back side Fk := {u− < u < u+, λ = λc(u), θ > 0};
Front side Ff := {u = u−, 0 < λ < 1, θ > 0};
Slant side Fs := {θ − (mλ)/2 = 0, u− < u < u+, λ

c(u) < λ < 1}.

The definition of λc(u) is in (4.3). See Figure 4.5 for the top view and front view of
W .
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Fig. 4.5. Vector field in the region R with θ > 0.

The outward normal of the slant side Fs is

n = (−m/2, 1, 0).

The vector field on the slant side is

f = ((θu)/(bm),−aw + (θu)/b,m(u− u−) + (p− p−)).

Therefore,

f · n =
θu

2b
− aw

=
mλu

4b
− a(pe − p)λ(1 − λ)m/u

≥ mλ

bu

(
u2

4
− ab(pe − p)

)
> 0.

The last inequality is due to (H2), from which u2

4 > ab(pe − p) on C. Thus is also
valid on Fs where λ is larger compared to point on C with the same u. So the flow
on the slant side Fs must leave W .

Since dλ/dξ = (uθ)/(bm) > 0, the flow on Fr must leave W .
Let Fb = Fb1 ∪ Fb2, where Fb1 consists of points where p < pe.
Since dθ/dξ = −ab(pe−p)λ(1−λ)m/u < 0, the flow on the bottom side Fb1 must

leave W , while the flow on the side Fb2 must enter W .
On the front side Ff , if λ = 0, then du/dξ = m(u− u−) + (p− p−) = 0. If λ > 0,

due to Pm
λ > 0, we have du/dξ > 0. The flow on Ff must enter W .

On the back side Fk, the vector field f satisfies λ′ > 0, u′ = 0 and the inward
normal is (1, 0,−dλc/du). Thus f · n > 0. The flow on Fk must enter W .
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It is also straightforward to check that the flow cannot enter W through the nine
edges of W . We have proved the following lemma.

Lemma 4.5. There are two mutually disjoint open sets G1 = Fs ∪ Fr, G2 = Fb1

on the surface of W where any trajectory starting on W can leave W only through
G1, G2. There are two mutually disjoint open sets I1 = Ff , I2 = Fb on the surface of
W where any trajectory starting on W can leave W only through I1 and I2.

Thus the backward flow can leave W only through the sides Fk and Ff ∪ Fb2.
Based on the eigenvectors, the local stable manifold can be expressed as

θ = θs(λ, u), 1− δ < λ ≤ 1, u+ − δ < u < u+ + δ.

Recall that the isocline C := {λ = λc(u)} with λc(u+) = 1. Let δ1 < δ be a small
positive number such that λc(u+−δ1) > λc(u+)−δ = 1−δ. Consider a short segment
on W s

loc(E+) defined as

P1P2 := {(λ, θ, u) : u = u+ − δ1, λ
c(u+ − δ1) < λ < 1, θ = θs(λ, u)},

where P1 corresponds to λ = λc(u+ − δ1) and P2 corresponds to λ = 1. The flow
Φ(ξ, P1), ξ ≤ 0, leaves W through the vertical surface supported by C. The flow
Φ(ξ, P2), ξ ≤ 0, leaves W along the line λ = 1, u = u−. The two open sets are
mutually disjoint. Therefore, there exists at least one point P ∈ P1P2 such that
Φ(ξ, P ) = (λ(ξ), θ(ξ), u(ξ), ξ ≤ 0, stays in W for all ξ ≤ 0. Clearly the λ(ξ) and
u(ξ), ξ ≤ 0, are bounded and monotone. Similar to the proof of Theorem 4.2, we can
show that the alpha limit set of Φ(ξ, P ) is the unique equilibrium point E− on the
boundary of W . Also, the heteroclinic orbit is monotone in its λ, u components.

5. Numerical computation of the transverse heteroclinic orbits. In this
section, we present numerical computation of the heteroclinic solutions connecting E−
to E+. In the subsonic case, the numerical simulation also shows that the heteroclinic
orbit is a transverse intersection of Wu(E−) and W s(E+).

Consider the supersonic internal layer first. From Table 1, dimWu(E−) = 3 and
dimW s(E+) = 1. Therefore, the corresponding heteroclinic orbit whose existence is
proved in Theorem 4.2 represents a transverse intersection of Wu(E−) and W s(E+).
On the one-dimensional tangent space of W s

loc(E+), we pick a point P that is suffi-
ciently close to E+ and compute its orbit backward in time. Although P is not exactly
on W s

loc(E+), the distance is of higher order to the distance d(P,E+). Also, due to
the hyperbolicity of E+, W

s
loc(E+) is locally backward attracting the numerical orbit

so the error is further reduced in backward time.
Numerical simulation of the heteroclinic solution is shown in Figure 5.1. We

choose the pressure to be p = (1 + λ)ρ2. For convenience let pe = 1, a = 0.4, and
b = 0.8. The heteroclinic solution connects λ− = 0, ρ− = 0.5071, u− = 2.3927, p− =
0.2572 to λ+ = 1, ρ+ = 0.6071, u+ = 2.0023, p+ = 0.7372. The sound speeds

√
∂p/∂ρ

are 0.8426 and 1.3054 at the minus and plus ends of the heteroclinic solution, verifying
that the wave is supersonic. As predicted in section 4, u(ξ) is a decreasing function
of ξ.

In the rest of this section we consider the subsonic internal layer solution. From
Table 1 again, we have dimWu(E−) = dimW s(E+) = 2. Generically these two
manifolds should intersect transversely in R3. We are not able to prove such result
analytically. The alternative is to numerically show the intersection is transversal.
However, we find that although the existence of heteroclinic orbit has been proved,
computing the heteroclinic orbit numerically seems to be a nontrivial task. One of
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Fig. 5.1. Supersonic waves (u, λ) in the fast time ξ = (r − r0)/ε.

the purposes of this section is to introduce a multistep bidirectional shooting method
for computing such orbit.

We compute the numerical heteroclinic solution by our method for the pressure
function p = (1 + λ)ρ2, pe = 1, a = 1, b = 0.5. The heteroclinic solution connects
λ− = 0, ρ− = 0.9615, u− = 0.5438, p− = 0.9246 to ρ+ = 0.6195, u+ = 0.8441, p+ =
0.7676. The sound speeds

√
∂p/∂ρ are 1.3868 and 1.5742 at the minus and plus ends

of the heteroclinic solution, verifying that the wave is subsonic. Figure 5.2 shows the
phase portrait of u and θ against λ. As predicted in section 4, u(ξ) is an increasing
function of ξ.

We now introduce the numerical method that computes the heteroclinic orbit and
also shows it is a transverse heteroclinic orbit. The idea is illustrated in Figure 5.3.

A bidirectional shooting method that does not work. As in the proof of
the existence of the heteroclinic orbit by the shooting method, we would like to find
two extremely close points A01, A02 on Wu

loc(E−) such that the trajectories through
A01 and A02 leave W at two disjoint egress sets of W . Then there is a true orbit
starting somewhere between A01 and A02. We hope to use this approximation up to
λ = 0.5. We would like to similarly find two extremely close points on W s

loc(E+) such
that the backward trajectories through them leaveW on two disjoint ingress sets ofW .
Then there is a true orbit starting somewhere between those points and on W s(E+).
We hope to use this approximation backward up to λ = 0.5. The union of the two
pieces of numerical orbits should be a good approximation of the heteroclinic orbit.

However, the real numerical computation shows that such an intuitive idea may
not work. The flow expands too fast. Even if A01 and A02 are extremely close to each
other (< 10−14), the trajectories through them hit the egress sets after a time that is
too short for the λ value to advance to λ = 0.5. See Figure 5.4. The same trouble
appears on the backward flow from E+ to E−.

Intuitive idea of the multiple-step bidirectional shooting method. To
avoid letting the trajectories split too far away we use k-Poincaré sessions in the
(λ, θ, u) phase space, illustrated in Figure 5.3.

Λj := {(λ, θ, u)|λ = λj}, 0 < λ0 < λ1 < · · · < λk < 1.

We choose λ0 and λk very close to 0 and 1, respectively, and |λj−λj−1| is not too large.
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Fig. 5.2. A subsonic wave in the phase planes (λ, u) and (λ, θ). They are represented by a
sequence of forward and backward expanding wedges, plotted together. The lines with large slope in
the upper and lower pictures show that the solutions can expand rapidly either backward or forward
in time if not truncated.
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Fig. 5.4. Plot of a subsonic wave in the phase plane (λ, θ). This figure shows that solutions are
very sensitive to the change of initial conditions. We have to use the forward and backward shooting
several time to draw the figure.

The precise location and the total number k will be determined “by hand.” In our
case k = 4. Let Π : Λj → Λj+1 be the Poincaré mapping induced by the flow of (4.1).

We now construct a sequence of forward expanding wedges from Λ0 to Λ4 as
follows. Let B01, B02 be two points on TWu

loc(E−) ∩ Λ0 ∩ W such that the orbits
through them hit disjoint egress sets of W . By refining the interval, we find two
extremely close (≈ 10−14) points A01, A02 on the line segment B01B02, such that
the orbits through them hit disjoint egress sets of W . Define B11 = Π(A01), B12 =
Π(A02) on Λ1. Since λ1 − λ0 is small, B11, B12 are in W . Numerically we see that
d(B11, B12) >> d(A01, A02). We call (A01A02B11B12) a forward expanding wedge.

On the line segment B11B12 on Λ1, we use the “method of bisecting interval” to
find two extremely close points A11, A12; through them the orbits hit distinct egress
sets again. Let B21 = Π(A11), B22 = Π(A12) on Λ2. Repeating the process, eventually
we get two extremely close points A31, A32 on Λ3 whose Poincaré images are B41, B42

on Λ4. We finally obtain two points A41, A42 on Λ4, such that the orbits through
them hit disjoint egress sets of W . This time they are sufficiently close to E+. So the
forward expanding wedges have been constructed.

We make two comments about our approach. First, the orbits starting between
A01, A02 do not form a straight line when hitting the Poincaré plane Λ1. Since we
cannot improve this numerically, we have to approximate it by a straight line seg-
ment B11, B12. Second, the pair of points that form the tips of the forward wedges,
Aj1, Aj2, j = 0, . . . , 4, are almost on the two-dimensional stable manifold W s(E+) by
the principle of the shooting method, but the shooting method does not guarantee
that Aj1, Aj2, j = 0, . . . , 4, are close to any single orbit on W s(E+). And we do not
know if they are close to the manifold Wu(E−).

The remedy is to construct backward expanding wedges from Λ4 to Λ0. First
D41, D42 are two points on Λ4∩TW s

loc(E+)∩W with the property that the backward
orbits through them hit disjoint ingress sets of W . Let Φ : Λj → Λj−1 be the Poincaré
mapping induced by the backward flow of (4.1). On each Λj we find two extremely
close points Cj1, Cj2 on Dj1Dj2, such that the backward orbits through them hit
disjoint ingress sets of W . Let Dj−1,1 = Φ(Cj1), Dj−1,2 = Φ(Cj2) on Λj−1. Since λj−
λj−1 is small, Dj−1,1 and Dj−1,2 are both in W . Assume that d(Dj−1,1, Dj−1,2) >>
d(Cj1, Cj2). Joining Dj−1,1 and Dj−1,2 by a line segment, we have a sequence of
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backward wedge on Λj . They intersect transversely on Λj .
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Fig. 5.6. The zoomed view of Figure 5.5. Point A represents two points Aj1, Aj2 on Bj1Bj2,

and C represents two points Cj1, Cj2 on Dj1Dj2, too close to tell the difference. The intersection
of two lines is approximately a point on the heteroclinic orbit.

backward expanding wedges (Cj1Cj2Dj−1,1Dj−1,2). Finally, on D0,1D0,2 we find two
close points C01, C02 such that the orbits through them exit W from disjoint ingress
sets. Both C01, C02 are approximately on Wu

loc(E−) and close to E−. This completes
the backward shooting process.

From the numerical computation, we observe that the wedges we constructed have
the following properties:

(T1) All the forward and backward wedges are expanding, i.e.,

d(Aj−1,1, Aj−1,2) << d(Bj1, Bj2) and d(Cj1, Cj2) << d(Dj−1,1, Dj−1,2).

(T2) The tips of the forward and backward expanding intervals are δ-close, i.e.,
|Aj1 − Cj1| ≤ δ, j = 0, . . . ,m, where δ > 0 is a small positive constant.

(T3) On each Λj , the line segments Bj1Bj2 and Dj1Dj2 intersect transversally on
a point that is close to both Aj1Aj2 and Cj1Cj2.

The evidence of (T1) is presented in Figures 5.4 and 5.2. For (T2) and (T3) see
Figure 5.5 and the zoomed view Figure 5.6.

We now construct a piecewise continuous approximation of the heteroclinic orbit
E− → E+ as follows.

We first fill in the interior points for the wedges which are only hollow frames
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so far. For each λ̄ ∈ (λj , λj+1), the orbit ̂Aj�Bj+1,� intersects the plane λ = λ̄

transversely at a unique pointQ�(λ̄), � = 1, 2. The backward orbit ̂Cj+1,�Dj� intersects
the plane λ = λ̄ transversely at a unique point R�(λ̄), � = 1, 2. Connecting by line
segments, we fill in the forward and backward expanding wedges by line segments as

Wf
j = ∪{Q1(λ̄)Q2(λ̄) | λj < λ̄ < λj+1},

Wb
j = ∪{R1(λ̄)R2(λ̄) | λj < λ̄ < λj+1}.

If λj − λj−1 is sufficiently small, then the property (T3) on Λj and Λj+1 should

imply that all the lines Q1(λ)Q2(λ) and R1(λ)R2(λ) intersect transversely for each
λ ∈ (λj , λj+1).

We now define the pseudo orbit qj(λ) between Λj ,Λj+1 as the transversal inter-

section of Wf
j ∩Wb

j . In the process of refining the intervals and computing solutions

forward and backward on many partition points of the intervals Bj1Bj2 and Dj1Dj2

we find numerically that the orbits near the pseudo orbit qj(λ) are rapidly splitting,
forward or backward, in two transversal directions. We argue that the linear varia-
tional system around the orbit qj(λ) has exponential dichotomy on the subinterval
[λj , λj+1]. We shall assume that this is a fact for our system. Then the following
rigorous result about our system can be proved.

Theorem 5.1. Assume (1) the linear variational system around the pseudo orbit
qj(λ), λj ≤ λ ≤ λj+1 has an exponential dichotomy for each j = 0, . . . , k − 1; (2)
the distance λj+1 − λj is sufficiently small; (3) the intersections of the bases of the
forward and backward the wedges are transversal; and (4) the constant δ as in (T2)
is sufficiently small. Then there is an exact heteroclinic orbit near the pseudo orbit
qapprox(λ) = ∪m

j=1{qj}. Moreover, the intersections of Wu(E−) and W s(E+) are
transversal along the heteroclinic orbit.

The proof of the existence of an exact heteroclinic orbit qex near the pseudo orbits
{qj}, j = 0, . . . , k−1, is often referred as the “shadowing lemma for flows”; cf. [34, 35]
and many other publications. To show the heteroclinic orbit qex is a transverse hete-
roclinic orbit, first observe by the roughness of the exponential dichotomies that the
linear variational system around qex has an exponential dichotomy on each subinterval
[λj , λj+1], and the unstable subspace for the previous interval and the stable subspace
for the next interval intersect transversely on each Λj , j = 1, . . . , k − 1. It is easy to
define a unified exponential dichotomy around qex for all ξ ∈ R. Details will be left
to the reader.

6. Existence of a real solution near the approximation. We have con-
structed solutions of the slow system nj(s), j = 1, 2, and the heteroclinic solution
(λ, θ, u)(ξ), ξ ∈ R of the fast system. Let Y (x) = (r(x), n(x), u(x), λ(x), θ(x)) be a
vector valued function from [r1, r2] → R5. Define Yj(s), j = 1, 2, on Ij as follows:

Yj(s) := (rj(s), nj(s), uj(s), λj(s), θj(s)) for s ∈ Ij , j = 1, 2,

where λ1(s) = 0, λ2(s) = 1, θj = 0, uj(s) = u±(m(s), n(s), λj).

Define Y0(ξ) := (r0, n0, u(ξ), λ(ξ), θ(ξ)) on I0(ξ) which in the fast time ξ is
(−∞,∞). See (1.5) and (1.6) for the relation between I0 and I0(ξ).

Then Yj(s), j = 1, 2, satisfies the slow system (2.3) and Y0(ξ) satisfies the fast
system (2.4) when ε = 0. When ε > 0 and small, Yj(s) satisfies (2.3) approximately
and Y0(ξ) satisfies (2.4) approximately with o(1) residual errors as ε → 0.
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Recall the definition of three layers in (1.5). An approximation Yap = (rap, nap,
uap, λap, θap) for all s ∈ [r1, r2] can be defined as follows.

Definition 6.1. If s ∈ Ij , j = 1, 2, then let Yap(s) := Yj(s), while if s ∈ I0, then
let Yap(s) := Y0((s− r0)/ε).

We remark that Yap has o(1) jump errors at r0 ± η if ε → 0, due to the matching
conditions (2.7).

The purpose of this section is to show under suitable boundary conditions on the
two ends of the nozzle, for small nonzero ε, that the singularly perturbed system (1.3)
has a unique standing wave solution Y (s) near the approximation Yap(s), s ∈ [r1, r2].

It is desirable to consider the problem in a general abstract setting. First we
summarize properties satisfied by the singular limit systems (2.5) and (2.6) and the
approximations Yap. Then we propose some boundary conditions on the system so
that the exact standing wave solution near the approximation Yap can exist.

(P1) The two branches of the slow manifolds, S±
0 and S±

1 , as in (3.2), consist of
normally hyperbolic equilibrium points of the last three equations of (2.6).
That is, all the eigenvalues at S±

j , j = 0, 1, have nonzero real parts.

(P2) There exists an open set O0 ⊂ R2 such that if (r0, n0) ∈ O0, then with (r0, n0)
as a parameter, the last three equations of system (2.6) have a transversal het-
eroclinic orbit, i.e., it is the transverse intersection of Wu(E−) and W s(E+),
where E− ∈ S±

0 and E+ ∈ S±
1 .

(P3) There exist two open sets O1 and O2 in R such that if nj0 ∈ Oj is the initial
data, the two trajectories nj(s) of (3.10) and (3.11) intersect transversely at
the jump point (r, n) = (r0, n0) ∈ O0.

We remark that the normal hyperbolicity of S±
j , j = 1, 2, in (P1) is based on

the signs of eigenvalues as in Table 1. In section 4, we established the existence
of heteroclinic solutions for both subsonic and supersonic cases for the parameter
(r0, n0). The numerical simulation in section 5 shows that some of the heteroclinic
orbits are transversal heteroclinic orbits. If (r0, n0) is a parameter so that a transverse
heteroclinic orbit exists, then there exists an open set O0 containing (r0, n0) such
that for all (r̄0, n̄0) ∈ O0, there exists a transverse heteroclinic orbit for (2.6). That
verifies (P2). Finally, if conditions in Lemma 3.5 are satisfied and nj(s), j = 1, 2
are smooth solutions of (3.10) and (3.11) for j = 1, 2, respectively, which satisfy
n2(r0+) = n1(r0−), then let n10 = n1(r1), n20 = n2(r2). There exist open sets O1

containing n10 and open set O2 containing n20 such that O1 and O2 satisfy property
(P3). The transverse intersection of trajectories nj(s), j = 1, 2, as in (P3) is proved
in Lemma 3.4.

Let us express the boundary conditions at the two ends of the nozzle as

(r, n, u, λ, θ) ∈ Bj , j = 1, 2,

where Bj, j = 1, 2, are smooth manifolds of dimensions dj , j = 1, 2, respectively. To
avoid boundary layers, we shall assume that Bj passes through the equilibrium point
on Sj whose first two coordinates are (rj , nj0). When ε > 0 and small, the slow
manifold is O(ε) to its singular limit, but the boundary conditions do not change with
ε. Thus there will be boundary layers of the size O(ε) at the two ends of the nozzle.

Let T (s, P, ε) be the solution map for (2.3). Consider all the orbits starting from
Bj , j = 1, 2. They form two smooth manifolds of dimensions dj + 1, j = 1, 2:

Mj = T (s,Bj, ε), s1 ≤ s ≤ s2.

The general idea from the dynamical systems is as follows: for small positive ε, if
the two solution manifolds M1 and M2 intersect transversely along a one-dimensional
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Fig. 6.1. Left: transversal intersection of the slow flows on the slow manifolds λ = 0 and λ = 1.
Right: transversal intersection of the unstable and stable manifolds along the heteroclinic orbit.

curve, then the intersection is the unique solution of the boundary value problem.
Using the geometric theory of singular perturbations, such a transversal intersection
can be checked on the slow and fast limiting systems as follows.

From (P1), each point on the slow manifold, as an equilibrium point, has a unique
stable manifold and a unique unstable manifold passing through it. The union of all
the stable (or unstable) manifolds over all the points of the slow manifolds Sj form
the center-stable manifolds W cs(Sj) (or the center-unstable manifolds W cu(Sj)).

W cs(Sj) :=
⋃

{W s(P ) : P ∈ Sj},
W cu(Sj) :=

⋃
{Wu(P ) : P ∈ Sj}.

If the solutions to (3.10) and (3.11), (rj(s), nj(s)), intersect at (r0, n0), then from
Lemma 3.4, the intersection of the curves (rj(s), nj(s)) is transversal. This gives the
desired transverse intersection condition for the slow variables governed by system
(2.5).

If (P2) is satisfied, then there exists an open set O0 such that if (r, n) ∈ O0,
then the fast system (4.1) has a transverse heteroclinic orbit connecting equilibrium
points on the two slow manifolds. This is the desired transverse condition for the fast
variables governed by the fast system (2.6).

The transverse intersection of limiting manifolds (ε = 0) in slow variables and
fast variables is depicted in Figure 6.1.

We need some conditions on the boundary manifolds:
(H4) For the subsonic case, assume that the dimensions of the boundary manifolds

B1 and B2 are d1 = d2 = 2. For the supersonic case, assume that d1 = 3, d2 =
1. Furthermore, assume that the boundary manifold B1 and the center-stable
manifold W cs(S0) intersect transversely at a unique point P1. The boundary
manifold B2 and the center-unstable manifold W cu(S1) intersect transversely
at a unique point P2. The points P1, P2 are defined as

P1 = {(r1, n10, u = u±(m(r1), n10, λ = 0)), λ = 0, θ = 0},
P2 = {(r2, n20, u = u±(m(r2), n20, λ = 1)), λ = 1, θ = 0},

Theorem 6.2. Given that for ε = 0, the singular limiting systems (2.5) and (2.6)
and the limiting singular orbits satisfy conditions (P1) to (P3), then if the boundary
conditions satisfy (H4), there exists a supersonic or subsonic standing wave near the
approximation Yap for each sufficiently small positive ε.



432 HAITAO FAN AND XIAO-BIAO LIN

1

sW

s

u
W

uW

W

sW

s

u

uW

W

W

2

1

P

P

C

C 1

0

S

S

0

1

B

B
B

B

1

1

22

~

~

P

P

~

~
2

Fig. 6.2. The dotted line indicates the transversal intersection of the unstable manifold of P̃1

and the stable manifold of P̃2. For small ε, under the flow of (2.4), the image of B1 is B̃1 and the
backward image of B2 is B̃2. They also intersect transversally.

Proof. There are two equivalent methods to prove the theorem: the analytic
method and the geometric method. We only outline the proofs since both methods
are now standard.

The most convenient way to prove the existence of a true solution near the singular
limit solution is the geometric method. The geometric method tracks the trajectories
of the boundary manifolds B1 and B2 under the flow of (2.3) or (2.4) to see if they
intersect transversally. If this is the case, then the intersection uniquely determines
the true solution near the singular orbit.

To illustrate the idea of the proof, consider the case of subsonic waves. At ε = 0,
let C0 be the trajectory of P1 under the flow on the slow manifold S0, and let C1 be the
trajectory of P2 under the flow on the slow manifold S1. Based on our assumption, the
projections of C0 and C1 to the slow variables (r, n) intersect at a point P0 = (r0, n0),
whose preimages of the projections are P̃1 on S0 and P̃2 on S1. See Figure 6.2 and
the left graph of Figure 6.1.

Since the slow manifold S0 consists of hyperbolic equilibrium points, each is at-
tached by a one-dimensional stable manifold and a two-dimensional unstable mani-
fold; the slow manifold S1 consists of hyperbolic equilibrium points, each attached
by a one-dimensional unstable manifold and a two-dimensional stable manifold. The
union of such unstable manifolds over the curve C0 is a three-dimensional submani-
fold of W cu(S0), and the union of such stable manifolds over the curve C1 is a three-
dimensional submanifold of W cs(S1). Denote them by W̃ cu(S0) and W̃ cs(S1), respec-
tively.

Observe that the curves C0 and C1 intersect transversally when projected to the
(r, n) plane. Furthermore, Wu(P̃1) intersects transversally with W s(P̃2), depicted as
the dotted line in Figure 6.2. See also Figure 6.1. Base on this, it is clear that the
two three-dimensional submanifolds W̃ cu(S0) and W̃ cs(S1) intersect transversally in
the five-dimensional phase space.

Now the boundary manifold B1 transversally intersects W cs(S0) at a point P1 ∈
S0, and the boundary manifold B2 transversally intersectsW

cu(S1) at a point P2 ∈ S1.
According to the “lambda lemma,” or the “inclination lemma” [20, 11], the boundary
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manifold B1 will follow the direction of the flow on W s(P1) in forward time, and
B2 will follow the direction of the flow on Wu(P2) in backward time to approach the
equilibrium points P1, P2 exponentially. Moreover, the tangent planes of the boundary
manifolds will approach the tangent planes of the unstable and stable manifolds of
the equilibrium points P1, P2 respectively. See Figure 6.2.

Those facts will be preserved if ε > 0 is sufficiently small. The slow manifolds Sj

becomes two nearby “center manifolds” Sj(ε) [19]. The center-stable fiber at P1(ε) ∈
S0(ε) intersects with B1 transversely. The center-unstable fiber at P2(ε) ∈ S1(ε)
intersects with B2 transversely. To avoid overcrowdedness, we did not plot Pj(ε) and
Sj(ε). Rather we substitute them with Pj and Sj in Figure 6.2. Similarly, the curve
Cj now becomes a nearby curve Cj(ε). Near the interior point P0 = (r0, n0), the center
unstable fibers of S0(ε) transversely intersect the center stable fibers of S1(ε), as from
Lemma 3.4 and (P2), since the transversal intersection of manifolds does not go away
under small perturbations.

When ε > 0, the points on the slow manifolds are no longer stationary. They
move slowly according to the slow system (2.3). The boundary manifolds B1, B2 will
also move under the slow flow. Meanwhile the image of B1 will approach the unstable
fibers of the slow manifold S0(ε) to the position B̃1 that is based on P̃1. The image
of B2 will approach the stable fiber of the slow manifold S1(ε) to the position B̃2

that is based on P̃2. This process is described by the exchange lemmas [22, 4, 36].
Under the flow of (2.4), the images of the two boundary manifolds, B̃1 and B̃2, are C

1

close to the unstable and stable fibers of the slow manifolds at P̃1 and P̃2. Therefore,
they intersect transversally. The true solution is locally uniquely determined by such
transversal intersection.

Next we describe the analytic method, which may also be called the “error cor-
rection method.” Recall the approximation of the standing wave

Yap = (rap, nap, uap, λap, θap) on [r1, r2].

Since rap is exact, the true solution can be expressed as

Y = (rap, nap +Δn, uap +Δu, λap +Δλ, θap +Δθ).

Then the linear variational system for the correction terms (Δn,Δu,Δλ,Δθ) is

(6.1) L(Δn,Δu,Δλ,Δθ, ε) = −Δf,

where L is a linear operator that includes the linearized differential equations and
the evaluation of the jumps at the junction points r0 ∓ η between I1, I0, and I2.
Δf represents the residual and jump errors of the approximation. The iteration
method in suitable functional spaces can be used to obtain the correction terms of
this linear system. Then the nonlinear system for the correction terms can be obtained
a contraction mapping principle.

Solving the linear system (6.1) requires an iteration procedure too. From the
singular perturbation theory the slow variables and the fast variables are weakly
coupled in the system (6.1); cf. [21, 31]. One can use an approximation of the slow
variable Δn to solve for the fast variables (Δu,Δλ,Δθ) first. The solution exists
since the linear variational system for the fast equations has exponential dichotomies
on each fast and slow layer. One can then use the approximation of fast variables
to solve for the slow variable Δn from the slow equation. This time the solution
uniquely exists due to the transverse intersection of the trajectories of (r1(s), n1(s))
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and (r2(s), n2(s)) at (r0, n0). The exact solution to the linear variational problem can
be obtained by iterating the two steps repeatedly. The parameters (r0, n0) also need
to be updated in each iteration to help eliminate the jump errors.

The analytic method is based on analyzing a linear system and uses two iteration
procedures so it is a little lengthy to carry out. However, the proof also suggests a
workable procedure to calculate the true solution near the approximations numerically
or asymptotically. Sometimes information on the linear variational system can yield
informations on the stability of the standing wave solutions [31].

There are many ways to define the boundary manifolds B1, B2 to satisfy the
conditions in Theorem 6.2. As mentioned before, to avoid large boundary layers, we
assume that B1 and B2 pass through S0 and S1 when ε = 0. When ε > 0 and small,
the boundary layers are only of the size O(ε). With this in mind we present a choice
of boundary conditions as follows.

Proposition 6.3. The conditions on B1 and B2 for the existence of a standing
wave solution near Yap as in Theorem 6.2 are satisfied if the following conditions on
the (u, λ, θ) components of Bj , j = 1, 2, are satisfied:

(1) For the subsonic standing wave, let d1 = d2 = 2. If we define

B1 := P1 + {(0, 0, u, λ, θ) : a1λ+ b1θ + c1u = 0},
B2 := P2 + {(0, 0, u, λ, θ) : a2λ+ b2θ + c2u = 0},

then the condition on B1 is c1 �= 0 and the condition on B2 is (a2, b2, c2)
T · v2 �= 0,

where v2 is the eigenvector corresponding to the unstable eigenvalue k2 > 0; cf. Table 1
in section 4.

(2) For the supersonic standing wave, let d1 = 3 and d2 = 1. If we define

B1 := P1 + {(0, 0, u, λ, θ)},
B2 := P2 + {(0, 0, u, λ, θ) : (λ, θ, u) = τv},

where v is a fixed nonzero vector in R3 and τ is the coordinate on B2, then there is
no additional condition on B1, i.e., (λ, θ, u) can be any real numbers. The condition
on B2 is det{v,v2,v3} �= 0, where v2,v3 are eigenvectors corresponding to unstable
eigenvalues k2 and k3; cf. Table 1 in section 4.
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