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We discuss a diffusively perturbed predator-prey system. Freedman and 
Wolkowicz showed that the corresponding ODE can have a periodic solution 
that bifurcates from a homoclinic loop. When the diffusion 6oefficients are large, 
this solution represents a stable, spatially homogeneous time-periodic solution 
of the PDE. We show that when the diffusion coefficients become small, the 
spatially homogeneous periodic solution becomes unstable and bifurcates into 
spatially nonhomogeneous periodic solutions. The nature of the bifurcation is 
determined by the twistedness of an equilibrium/homoclinic bifurcation that 
occurs as the diffusion coefficients decrease. In the nontwisted case two spatially 
nonhornogeneous simple periodic solutions of equal period are generated, while 
in the twisted case a unique spatially nonhomogeneous double periodic solution 
is generated through period-doubling. 

KEY WORDS: Reaction-diffusion equations; predator-prey systems; homo- 
clinic bifurcations; periodic solutions. 

1. I N T R O D U C T I O N  

Suppose  tha t  the  O D E  system 

Ut-.~F(U,k), U E R  2 , k E R ,  F ~  C~176 • R, R 2 ) (1.1) 

has a homocl in ic  so lu t ion  U=q( t )  when the p a r a m e t e r  k=ko~.  Assume 
also tha t  for k~o - e < k < ko:., the re  is a s table  per iod ic  so lu t ion  U =  p(t, k) 
bifurcat ing f rom q(t). W e  s tudy  the diffusively pe r tu rbed  sys tem 

U,=DUr 0 < ~ < I  
(1.2) 

v (t, o) I)=o 
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where D = diag{dl, d2} is a positive diagonal matrix. The boundary condi- 
tions ensure that U(t, ~)=q(t) or U(t, ~)=p(t,k) is still a solution for 
system (1.2). Results from Refs. 8 and 13 indicate that when the diffusion 
coefficients are large, these spatially homogeneous (SH) solutions are 
stable. However, when the diffusion coefficients become small, SH solutions 
may lose stability and bifurcate into spatially nonhomogeneous (SN) 
solutions. 

Such a bifurcation can create spatially nonhomogeneous patterns. 
Existing literature on pattern generation concentrates on small patterns 
generated through bifurcations of equilibria, or traveling waves constructed 
using transition layers [7, 25]. The mechanism of pattern generation 
studied in this paper is fundamentally different. 

Since many ODE models are approximations to more realistic models 
where diffusion is present, examples that lead to systems (1.1) and (1.2) are 
plentiful. Freedman and Wolkowicz [12, 26] studied a two-species 
predator-prey system that models the group defense of prey against preda- 
tion. They fo/md a homoclinic solution q(t) at a certain parameter value 
k=k~o. The homoclinic solution bifurcates into a long period solution 
p(t,k) when k~o-e<k<k~.  Suppose now diffusion is added to the 
system as in (1.2). The region of (all, d2) where p(t, k) is stable has been 
studied in Ref. 18, but the bifurcation when parameters cross the boundary 
F of the region has not been discussed. The purpose of the present paper 
is to discuss the bifurcation ofp(t,  k) when (dl, d2) crosses F. The bifurca- 
tion of q(t) into SN homoclinic solutions will be presented as the limit 
when the period is infinity. 

The creation of SN periodic solutions is caused jointly by the 
homoclinic bifurcation in (1.1) and an equilibrium bifurcation in PDE 
modes in (1.2). Let k =k~o such that (1.1) possesses a homoclinic solution 
q(t) asymptotic to a hyperbolic equilibrium E. It is easy to find a curve F 
in the (dl, d2)-plane where the linearization of (1.2) at E has a simple zero 
eigenvalue and no other eigenvalue on the imaginary axis. When (all, d_,) 
crosses F transversely, the equilibrium E of (1.2) loses the hyperbolicity 
and two SN equilibria bifurcate from it. To describe bifurcations of  q(t) 
and p(t, k) when (d~, d2) crosses F, we need the concept of the twistedness 
of the homoclinic solution q(t). Let ~c be a unit eigenvector corresponding 
to the zero eigenvalue, unique up to the multiplication by - I .  It can be 
shown that the linearization of (1.2) around q(t) has a solution ~(t) that 
approaches ~bc as t --* - o o  and approaches c*~bo as t --* + oo. Here c* is a 
scalar function of (dl, d2). The limit of the solution ~b(t) as t ~  - o o  is in 
fact a tangent vector to W~(E),  transverse to the unstable eigenvector. See 
Fig. 1. We say that the homoclinic solution of (1.2) is twisted if c * < 0 ,  
nontwisted if. c* > 0 and degenerate if c* -- 0. 
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A Nontwisted Homoclinic Orbit 
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T is a large constant. 

~E \ ~ (-I") 
A Twists[ Homoclinic Orbit 

Fig. I. Twistedness of the homoclinir orbit is determined by comparing #( - T) and #(T). 

All three cases ,have been found in Freedman and Wolkowicz's 
example by the numerical computation of c*. See Fig. 10. An equivalent 
definition of twistedness will be given in Section 3. I have recently found 
that the change of twistedness is a generic phenomenon when diffusions are 
added to an ODE system that possesses a stable homoclinic orbit. But the 
proof will require a separate paper. 

The bifurcation of p(t,k) is determined by the twistedness of the 
homoclinic solution q(t) at the point where (all, d2) crosses F. Roughly 
speaking, two SN simple periodic solutions of equal periods are generated 
in the nontwisted case, while in the twisted case a unique SN symmetric 
double periodic solution is generated through period-doubling. A periodic 
solution U(t, ~) is said to be a simple periodic solution if its trajectory in 
a function space stays-near the orbit of q(t) and hits a cross section Z" to 
the orbit of q(t) precisely once. It is said to be a symmetric double periodic 
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solution if it hits 27 precisely two times and satisfies a symmetry condition 
U(t+T, ~)--U(t, I - ~ ) .  Here 2T is the period of U(t, ~). Finally, when 
q(t) is degenerate, it is possible to cross F in a way that no SN simple or 
symmetric double periodic solutions are generated. We do not discuss the 
existence of other types of SN solutions in this paper due to technical com- 
plications. The homoclinic twist bifurcation at a hyperbolic equilibrium 
was discovered in Ref. 27 and later studied in Refs. 3 and 15. But the 
homoclinic twist bifurcation discussed in this paper is new even in the 
ODE context. 

In a separate paper [ 17], we show how our method can be used to 
prove the stability of the SN periodic solutions. 

System (1.2) will be studied in the intermediate spaces DA(0) and 
DA(8 + I ), 0 < 0 < I. These function spaces allow solutions of (1.2) to have 
so-called maximal regularity and are normally used to study fully nonlinear 
parabolic equations [9]. Our system is not fully nonlinear, but to prove 
the smooth dependence of the solutions on dl and d 2, which are the 
coefficients of the highest derivatives in the equations, we need to use the 
maximal regularity of the solutions. 

Solutions of (1.2) satisfy a reflection symmetry about the midpoint of 
the domain [0, I ], due to the special boundary conditions imposed there. 
For a function U(~) defined on ~ e [0, I ], let (RU)(~) -- U( I - ~), 0 ~< ~ ~< I. 
It can be verified if U(t, ~) is a solution to (1.2), so is RU(t, ~). Conse- 
quently, if U1 is a SN periodic solution and is mutually disjoint with R Ul, 
then we have a pair of SN periodic solutions related by the symmetry. On 
the other hand, if U~ has a nonempty intersection with R U~, then U~ is a 
2T period SN solution satisfying U(t + T, ~) = RU(t, ~). The R symmetry is 
very important in this paper since we can show that local center manifolds 
and flows on them respect the symmetry group R. We can also show that 
bifurcation functions derived by Lyapunov-Schmidt procedures are 
invariant with respect to R. A mapping f :  C[O, I ] ~ C[0, I ] is invariant 
with respect to R i f f (RU) -- Rf(U). 

Suppose now the Neumann boundary conditions in (1.2) are replaced 
by periodic boundary conditions. In addition to the reflection symmetry, 
there is also a rotation symmetry, i.e., U(t, ~+8) is a solution if U(t, 4) is 
a solution. The bifurcation picture is quite different. Spatially nonhomo- 
geneous tori may be generated instead of periodic solutions. See Ref. 17. 
Periodic boundary conditions will not be pursued further in this paper. 

We introduce intermediate spaces DA(O) and DA(8+ I) in Section 2. 
We then study invariant manifolds and their foliations in these spaces. 
These invariant manifolds and their foliations provide convenient coor- 
dinates to study dynamics of (1.2) near an equilibrium E. Some important 
lemmas regarding the symmetry R are also presented there. 
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The assumptions and the main results of this paper are given in 
Section 3. 

In Section 4 we prove some lemmas needed in the sequel. In Section 5, 
we use a Lyapunov-Schmidt-type reduction to obtain a one-dimensional 
bifurcation equation whose solutions correspond to simple or symmetric 
double SN periodic solutions. Proofs of the main theorems are given in 
Section 6. In Section 7 we summarize our numerical results about the 
example from Ref. 12. 

Recently Sandstede [23] has constructed center manifolds around 
some homoclinic solutions. It is hoped that a center manifold that is 
tangent to q'(t) and ~(t) can be constructed some day. And it may bifur- 
cate into a center manifold around the orbit ofp(t ,  k). Thus the twistedness 
of the homoclinic orbit should be passed to the twistedness of the center 
manifold of the periodic orbit. And the bifurcation of the periodic solutions 
should be determined by a one-dimensional return map on this center 
manifold. Thus, we naturally expect to see the occurrence of a simple or 
symmetric dohble periodic solution on this center manifold. However, 
I was unable to use the center manifold technique in this paper due to 
technical complications. On the contrary, the bifurcation function 
approach in this paper is easy to use. The trade-off is that only simple 
periodic solutions and symmetric double periodic solutions are discussed in 
this paper. Complete understanding of the dynamics near the homoclinic 
orbit is still open, especially around the degenerate point c* = 0. 

2. ABSTRACT PARABOLIC EQUATIONS, 
INVARIANT MANIFOLDS, AND FOLIATIONS 

The PDE system (1.2) is studied in the intermediate spaces DA(O) and 
DA(O + 1 ). Let A be a densely defined sectorial operator that generates a Co 
analytic semigroup e At in a Banach space ~ .  For each 0 < 0 < 1, define 
Banach spaces 

D A( O) = { x E ~ [  lira tt -~ = O } 
t.-.* 0 

DA(O+ I)= {xEDAIAxsD.(O)} 

The norms are 

Ilxtlo= sup Iltl-~ 
O < t ~ l  

Ilxllo+, = IIAxll o + [Ixl[ 
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Intermediate spaces DA(O +m),  0 < 0 < 1, m ~ N + can be defined similarly. 
Throughout this paper, let ~ = [ L 2 ( 0 ,  1)] 2, A = (  a:~ a~) and D A =  
{u E [H2(0, I)]  2, u~(0)= u~(1)= 0}. See Ref. 9 for details about  the inter- 
mediate spaces. 

Denote ~r(U, dl,d2, k )=DUeg+F(U,k ) .  We can write (1.2) as an 
abstract nonlinear parabolic equation, 

U' = ~ ' (U ,  It) (2.1) 

where It =(d~, d2, k) is a parameter. The solution for (2.1) with U(0) = Uo 
will be denoted U,(t, Uo). 

It is easy to see that ~-: DA(O + m + 1) x R 3 ~ DA(O + m), m >1 O, is 
C ~. Also, F: DA ~ ~ is C ~~ since F is C ~. The following existence 
theorem is from Ref. 9. 

Theorem 2.1. For each Uo E DA(O + 1 ), there exists z > 0 so that (2.1) 
admits a unique solution U~ C1([0, z]; DA(O)) c~ C~ 3]; DA(O+ 1)). 
Moreover, U is a C ~ function of  Uo and It in the specified function spaces. 

Consider a time-dependent linear system 

u' =A( t )  u+ f ( t )  
(2.2) 

u( s ) = x, a <~ s <~ t <<. b 

which comes from linearizing (2.1) around a particular solution. It is easy 
to verify that 

(1) for all t e [ a , b ] , A ( t ) : D a t o ~  is sectorial, Datt)=DA with 
equivalent norms; 

(2) for each 0 < 0 < 1, 

Dat t ) (O+l)=Da(O+l  ) for all t~[a ,b]  

with equivalent norms; 

(3) A(.) e C([a, b]; L(D~, ~r)) r~ C([a, b]; Z.(DA(0 + 1), DAO))). 

The following theorem is proved in Ref. 1. 

Theorem 2.2. Under the above conditions, there is a unique solution 

Ue C([s, b]; Da(O+ I))~ Cl([s, b]; Da(O)) 

to (2.2)for each x r DA( O + I) and f e C([ s, b]; DA( O) ). Denote the solution 
by U(t)= T(t, s ) x  when f = O. Then T(t, s) extends to DA(O ) by continuity. 
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Finally, the variation of constants formula holds for solutions of (2.2) with 
f # O :  

U ( t ) = T ( t , s ) x +  T( t ,~ ) f (~ )d~  

Using the variation of constants formula, many familiar results of 
ODE systems can be extended to (2.1), with almost-identical proofs. The 
most useful ones in this paper are the smoothness of invariant manifolds 
and their foliations. 

After a shift of coordinates, assume that {0} ~Da(O+ 1) is an equi- 
librium of (2.1). Let ,~=Dv6r(0, /~o) where Dg=DA and /10= 
(dto, d2o, ko~). Here (dio, d2o) ~ F so that zero is an eigenvalue for ,,~. Let 
X = ~ - . ~ U .  System (2.1) can be written as 

u' = g u + w ( u , # )  

Let 

o(g)=o_ UO'oUO'+ 

Re o_ ~< --2M 

Re o+ >~2M 

Reao=O 

for some ;t~ > 0. Let X, Y, and Z be the invariant subspaces corresponding 
to the spectral set o+ ,  o _ ,  and Oo, respectively. We will identify Da(O + 1 ) 
with Xx  Y x Z by writing U = ( x, y, z ) if U = x + y + z. Since X, Y, Z c 
DA(O+I), Rx, Ry, and Rz are defined by restricting R to subsets of 
DA(O+ 1). It is also easy to verify that R X = X ,  R Y =  Y, and R Z = Z .  

Since both X :  DA(O+ 1) x R 3 --) D,4(O) and X :  Da x R 3 --) ~r are C ~ 
there exists a local center manifold that is C ~ for any v > 0  [6, 21]. Using 
the method of Ref. 5, which treats semilinear parabolic equations, we can 
prove that the center unstable and center stable manifolds are C ~, and 
there exists C ~ invariant foliation of center unstable (center stable) 
manifolds by unstable (stable) fibers, if Lip ,~" is small. The smallness of 
Lip r r can be removed by modifying the equation outside a neighborhood 
of {0}, if we are interested only in local invariant manifolds and their folia- 
tions. In this following we show how to choose the modifier so that the 
reflection symmetry resulting from the Neumann boundary conditions will 
be preserved for the induced flow on the local center manifold. 
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First, we give coordinate-flee definitions of global center unstable, 
center stable manifolds and their foliations. See Ref. 5 for similar definitions 
given to semilinear systems. 

Definition 2.3. Let 0<~.I<A2<~M. The global center stable 
manifold is defined by 

W ~= { Uo cDA(e+ I)I U,(t, Uo) exists for all t~>0 

and II U,(t ,  Uo)llo+l ~< Ce '~1, t~>O} 

The global center unstable manifold is defined by 

W ~u= { Uo eDA(O+ 1)[ U,(t,  Uo) exists for all t~<O 

and l[ U,(t,  Uo)llo§ ~< Ce -t~', t~<0} 

Define the global center manifold by 

W~= W~c~ W ~ 

For each Uo r W ~ (or W~U), the stable fiber W'(Uo) [or unstable fiber 
W~( Uo)] passing through Uo is defined by 

W'(Uo) = { Vo r W=(0)I [[ U,(t,  Uo) - U,(t ,  Vo)llo+ t ~< Ce-t:'2, t~>0} 
w"(Uo) = { Vo ~ w=(0)I  II u , ( t ,  Uo) - u, ( t ,  Vo)llo+ ~ ~ Ce '~2, t <<. 0} 

Obviously, W ~ is forward invariant and W ~u is backward invariant. 
W ~ is invariant. Also, each point on W ~ (or W ~)  belongs to one and only 
one stable (or unstable) fiber. The global foliations are forward or back- 
ward invariant in the sense that 

~:,(t, w'(Uo)) = w'(u,(t, Uo)), t>~o 

U,(t, WU(Uo)) c Wu(U,(t ,  Uo)), t<~ O 

Let r =DA(O+ 1) be an open set containing the equilibrium {0}. Let 
~ :  Da(O + 1 ) x R 3 --, DA(O) and .~: D A x R 3 --, 5I" be C v, v > 0. Assume that 
~" = ~" in d) x R 3. Consider the system 

U'=~( U,/z) (2.3) 

Definition 2.4. Assume that (2.3) has global invariant center stable 
and center unstable manifolds and invariant foliations as defined in Defini- 
tion2.3. Local invariant manifolds W'~, W~o~, and W~o ~ for system (2.1) 
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are the restrictions to r of the global invariant manifolds for system (2.3). 
Local invariant foliations of W ~  and W ~  for system (2.1) are the restric- 
tions to 6o of the global invariant foliations of W ~ and W ~' for system 
(2.3). 

Local invariant manifolds and local invariant foliations depend on the 
extension of ~" to ~ outside 6o and are thus not unique. Observe that Lip 
X is small inside 6o if the neighborhood d~ is small, due to the fact that 
X ( 0 )  = 0 and X ' ( 0 ) =  0. The purpose of extending ~- to ~ is to have a 
small Lipschitz number for .A 7 = ~- - 2  U outside 6o. 

Observe that Da(O+ 1)= [H2(0, 1)] 2 is a continuous injection and 
JlullH, c0,~): H2(0, I)\{0}---,R + is C ~ for any v>0 .  Let ~k: R-- ,R be C ~ 
such that 

~,(s) = 1 for Isl • 1 and ~b(s) = 0 for Isl ~ 2, 0 ~< if(s) ~< 1 

Let ~4?(U,/z) =x(r ~a,/p)U,~), where p >0.  It can be verified 
that 

.A~: [ H 2 ( 0 ,  1)'] 2 • R 3 -.o. [ H 2 ( 0 ,  1 ) ]  2 

is C v, J~ip ~ --, 0 as p --, 0, and .A ? = ~/" for [J UII r/~'~o. ~)~' ~< P- Recall that 
D A = { U ~  [ 'H2(O,  1) ]2 :  OxU=O at x=O,  I}. After checking the boundary 
conditions, we find that both ~Y', .,47: D A ~ Da are C v for any v > 0. Since 
Da(O + 1 ) = D a = Da(O), .AT: Da(O + 1) --., Da(O) is C" with Lip ~47 ~ 0 as 
p--, 0 in such space. We can prove the following theorem by using the 
method employed in Ref. 5. 

Theorem 2.5. For any v > 0, there exists a small constant p > 0 such 
that the global invariant manifolds for system (2.3) are C ~ embedded 
submanifolds in D a( O + 1) if  J/z-/zo] <p .  Moreover, 

{x=h,(y, 

W ~ =  { y=h2(x ,  z, lz)} 

where (x, y, z) e X x Y x Z. The function hi, i = 1, 2, is C" in all the variables, 
with hi(O, 0,#o) =0, Dhi(O, O, po ) =0, and Dhi= O(p). 

By a C v change o f  variable (x, y, z) ---, (x I, yt ,  zl), 

,x 1 = x - h i ( y ,  z,#) 

yl = y _ h 2 ( x  ' z,#)  

Z I -~-Z 
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we can flatten these manifolds, 

W ~ =  {x~ =O} 

W ~ = { x  t = 0 ,  y l  = 0}  

The change o f  variables preserves the symmetry, i.e., U =  (x, y, z) 
( x l, yl,  zl ), implies R U= ( Rx, Ry, Rz) ~ ( Rx  1, Ry l, Rzl). 

Proof. The existence and smoothness of such hg, i= 1, 2, can be 
proved similar to Ref. 5. It can be verified that .A?(Rx, Ry, Rz, I t)= 
R.,~(x, y, z, It). Thus R W =  W, where Wstands for W ~,  W% or W ~. 

Let U= (x, y, z) E W TM. Then R U t  W ~. Thus h2(Rx, Rz, It) = Ry = 
Rh2(x,z, It). Similarly, h~(Ry, Rz, I t )=Rh~(y,z ,  It). It follows that R U ~  
(RXI, Ryl, Rzl). [] 

We will use the new coordinates (x ~, y~,z  ~) to discuss invariant 
foliations for system (2.3). Let Uo E W ~. Then Uo=(0 ,  0, Zo) in the new 
coordinates. Denote W~(Uo) and W~(Uo) by WS(Zo) and W~(zo). From 
Definition 2.3, we can show that different points on W ~ do not belong to 
a same fiber W~(zo) or W~(zo). Furthermore, we also know that all fibers 
on W ~ (or W ~) have to intersect W ~. 

Theorem 2.6. I f  p > 0  is small enough, then the stable fibers 
W~(zo), Zo E W c form an invariant foliation o f  W ~ and the unstable fibers 
W~(zo), z o E W r form an invariant foliation o f  W r for IIt-Itol <p.  
Moreover, 

W~(zo) = {x I = 0, z 1 = Zo + h3(y l, Zo, It) with h3(0, Zo, It) = 0} 

W~(zo) = { yl = O, z I = Zo + h4(x 1, Zo, It) with ha(0, Zo, It) = 0} 

The function hi, i = 3 , 4 ,  is C ~ in all its variables, Dyh3(0, 0 , i to )=0 ,  
Dxh4(O,O, ito)=O, and Dhj=O(p) ,  i=3,4 .  By a C ~ change o f  variables 
(x l, yl ,  z l) ~ (x 2, y2, z2), which is defined implicitly by 

X I ~ X  2 

yl = y2 

z I = z 2 + h3(y 2, z 2, It) + h4(x 2, z 2, It) 
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we can flatten the fibers, so that 

 (Zo) = { x  = 0,  z 2 = Zo} 

WU(20) = {y2 = 0, z2 =go} 

The change o f  variables preserves the symmetry i.e., i f  (x 1, yl, z l ) ~  
(X 2, y'-, Z2), then (Rx 1, Ry 1, Rz I ) ~ (Rx 2, Ry 2, Rz2). 

The change o f  variable here does not affect the flow on W ~. 

Proof. The existence and smoothness of h;, i = 3 ,  4, are proved 
similarly to that in Ref. 5. 

(i) Since W~(Rzo)=RW~(zo), and W~(Rzo)=RW~(zo), we have 
h3(Ry 1, RT, o, fl) =Rh3(y 1, Zo,/t ) and h4(Rx 1, RZo,/Z) =Rh4(x 1, Zo,#). It 
follows that (x ~, yl, z 1) __, (x 2, y2, z2) implies that (Rx ~, Ry ~, Rz ~) --, 
(po:2, Ry2, p~2). 

(ii) If x2=O and y2=O, then h3(O, z2,~/)=O and h4(O, 2'2,fl)=O. 
Therefore z ~ = z  2 on W ~. The equation for the flow on W ~ is not changed. 

[] 

Define a function space Ac, = { (u, cos(mr. ), v, cos(nn �9 )), 
(u , ,v , )eR2} .  Obviously ~ ,  is isomorphic to R 2. Observe that 
Z {~0,, n ~>0} is dense in [L2(0, 1)] 2. 

Recall that (2.1) comes from (1.2). The hypotheses on F will be 
specified in Section 3. In particular, they imply that 

(1) Z is one dimensional, spanned by an eigenvector in ~r~, corre- 
sponding to the eigenvalue 2 = 0; and 

(2) X is one dimensional, spanned by an eigenvector in ~o, corre- 
sponding to the eigenvalue 2 = 2 +. 

We may identify Z and X with R. More precisely, let w be a unit 
vector in Z. For any z e Z, there is a unique $ ~ • such that z = ~w. We will 
identify z with ~ and drop the over-bar. The same comment also applies to 
X. It can be verified that if x ~ )( and z e Z, then/L,c = x and Rz = - z. We 
use U ~ (x 2, y2, z 2) to indicate that U corresponds to (x 2, y2, z 2) in the new 
coordinates. 

Theorem 2.7. (a) I f  UE ~o and i f  U..~ (x 2, y2, z 2) in the new coor- 
dinates, then z 2 = 0 and y2 ~ ~o. The converse is also true. 
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(b) For system (2.3), the flow on W ~ has the form 

x 2 = O, y2 = 0 

d 2 .r2 ~ z  =g(~ ,~) 

where g(O, g) = O, D~2g(O, go) = 0 and g( - z  2, g) = - g(z 2, fl). 

Proof. (a) In the original coordinates, U = x + y + z  with 
x ~ X ,  y ~  Y, and z e Z .  If u ~ r o ,  then it is obvious that z = O , x ~ ' o ,  and 
y~ ~r0. 

We first examine the changes of variables (x, y, z) ~ (x l, yl,  z I) as in 
Theorem 2.5. Consider the change of variable yl = y_h2 (x ,  z,/z). When 
z = 0 ,  the graph ( z = 0 ,  y=h2(x ,  0,/z)} = W~r~ { z = 0 }  is one-dimen- 
sional. Now let us restrict the system to ~r o, where E =  {0} is hyperbolic. 
By the standard existence theorem of the unstable manifold for the ODE 
system, there exists a smooth function h such that W ~ = { y =h(x, /z)} for 
the restricted system. Clearly the graph { y = h(x , /z )}= { y = h2(x, 0,/z)}. 
Since they are both one dimensional, we have that h(x,/z)=h2(x,  0,g). 
This proves that h2(x, 0 , g ) ~ 0 -  Recall that z = z  I. Thus if U ~ o ,  z I =0 ,  
and yl.~ Aro, and vice versa. 

We now consider the second change of variable (x~,y~,z~) --, 
(x 2, y2, z 2) as in Theorem 2.6. Since y 2 = y l ,  y 2 ~ r  ~ ~ y l  ~ro .  If(0,  yl ,  zl) 
is a point on W~(zo), then (0, Ry I, Rzl) is a point on W~(Rzo). From 
Theorem 2.6, compare the z ~ coordinates, and observe that Rz 0 = -Zo ,  we 
have R( zo + h3( y l, Zo, /z ) ) = -Zo + h3( Ry l, - Zo, lZ ). However, Rh 3 = -h3 .  
Thus h 3 ( R y l , - z o , / z ) = - h 3 ( y l ,  zo,/z). Similarly, we can show that 
h4(Rx l , -Zo ,  lZ )=-h4(x l ,  zo,lZ). Therefore if y2=ylEs  we have 
R y l = y  l, h3(y2,0,tz)=O, and h4(x2,0,1z)=O. In this case, we have 
Zl = 0 4::~Z2 =0.  

By combining the two changes of variables, we have verified the asser- 
tions of (a). 

(b) The assertions x2=O and y2----O are obvious. If U(t )~  
(0, O, z2(t)) is a solution on W ~, so is RU(t)...(O, O,-z2(t)) .  Therefore 
g( --z 2,/z) ---- _g(g2, fl). [] 

3. ASSUMPTIONS AND MAIN RESULTS 

We assume that the ' ODE system (1.1) 
hypotheses. 

(HI) F: R2)<R--~.R 2 is C ~. 

satisfies the following 
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(H2) At k=k~,, (1.1) possesses a homoclinic 
asymptotic to an equilibrium E =  E(koo). 

(H3) At E(ko~), the Jacobian matrix 

solution U =  q(t) 

j=(-a_c --bd) 

satisfies a + d > 0 and ad- bc < O. 

Hypothesis H3 implies that E(ko~) is hyperbolic with eigenvalues 
denoted - 2_ < 0 < 2 +, satisfying 2 + - 2_ < 0. The equilibrium E = E(k) 
continues to exist for all k ,~ koo. We will suppress k if no confusion should 
arise. The homoclinic orbit is stable from inside since 2+ - 2 _  < 0. Assume 
that the homoclinic orbit breaks in a certain direction when k moves away 
from koo, so that periodic solutions bifurcate from q(t) for ko~ - e < k < k~.  
More precise!y, consider the linear variational equation of (1.I) around 
U=q(t), 

U' =OvF(q(t), k~o) U (3.1) 

and its adjoint equation 

~'= --[avF(q(t), k~o)]* (3.2) 

System (3.2) has a unique nontrivial bounded solution ~(t) up to mul- 
tiplying by nonzero constants. It is known that ~g(t)~ ~o e-a§ and 
q(-t)-E(k~)~q~o e-a§ as t ~  +oo where ~o (or ~o) is the left (or right) 
eigenvector of the matrix J corresponding to the eigenvalue 2+. See [ 14]. 
For definiteness, assume that 

Flm ~g(t)(q(--t)-E) e 2a§ = - 1 (3.3) 
t ~  + o O  

We now assume that the breaking of the homoclinic solution q(t) is in 
the direction determined by 

(H4) ~-~oo ~(t)'akF(q(t),koo)dt>O 

From Silnikov [24], (3.3) and H 4 imply that there exists e > 0 so that 
for k ~ - 8 < k < k ~ ,  system (1.1) has a simple periodic solution p(t,k) 
which is orbitally near q(t) and is asymptotically stable. A more trans- 
parent relation indicating that the periodic solutions can only be found for 
k<ko~ with k - k ~  = O(e -rx+) is given in Ref. 16, where Tis the period of 



338 Lin 

p(t, k). There is a one-to-one correspondence between k and T. Moreover, 
there exists C > 1, independent of k, such that 

1 T2 ~ T2 C - e -  + ~ - ~ - ~  - + 

The proof of that can be obtained by the same method used in Ref. 16. 
Consider eigenvalues for the linear variational equation around the 

equilibrium E(k~). It can be verified that each eigenfunction must be in 
one 5f~, n I> 0, with an eigenvalue 2~ satisfying 

b 
det ( 2 h a  + n2n2dlc 2 +  d + n2~t2d2) =O 

The spaces ~n are defined in Section 2. For each ~r, denote the eigenvalues 
corresponding to the nth Fourier mode (2~m, 2~2) with Re 2~m i> Re 2~2. 
Based on a + d > 0 ,  we have Re2n2<0. An nth mode is unstable if and 
only if Re 2~ 1 > 0. The critical ease 2~ ~ = 0 occurs if 

(a + n2n2dl)(d + n27t2d2) = bc 

We can show that when decreasing (d~, d2), the first mode loses 
stability before the other Fourier modes. (Tbeorem3.1). Thus, we are 
interested in parameter values where 2H = 0. Define 

F =  {(dl, d2):(a+lt2dl)(d+lt2d2)=bc} 

Theorem 3.1. The first quadrant, R2+ , is divided by F into two regions: 
(~§ and (~_, where (a + rt2dt)(d+ rt2d2) - bc < 0 and >0, respectively. 

(i) 211>0 in (~+. I f  dl and d 2 are sufficiently small, then 
(dl, d2) r ~+. 

(ii) R e A n < 0  in f~_. The region ~_ is unbounded. 

(iii) 211 = 0 on 1". 

(iv) 2 0 1 = 2 + > 0  in R2+. I f  (dl,d2)ef~_ uF,  then Re2nj<0 for 
(n,j)#(O, 1) or (1, 1). 

(v) V211=(aal).n,aa~An)#0 for (dl,d2)~F. In particular, 
0at,~ll <0  /f d +  7tZd2 > 0  and 8d2/~11 d 0  ifa+Tt2dl >0. 

Theorem 3.1 will be proved in Section 6. Figure 2 depicts F, f~+, and 
~_ for all possible cases except for a possible permutation of d~ and d2. 
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- al~2 
d2 

. . . . . . .  d/~ 
dl 

bc>O.a>O,d<-O 

Case ] .  

-a/~ 

-d/x2 
bc >, a >O,d > 0 

C a s e  2. 

d2 

F 

g+ 

m 

-a/x2 

b c = O , a < O , d > O  

dl 

-d/x2 

d 2 ~ + /  g-dr 

/ 

-a/~ 2 . d / ~ 2  

bc<0 ,  a < 0 ,  d > 0  

Case 3. Case 4. 

Fig. 2. The curve F divides the first quadrant of the (d~, d2) plane into two parts. All the 
possibilities are listed, except for permutations of d~ and d2. 

When bc > 0, we may have a > 0, d > 0, which is Case 2 in Fig. 2. We may 
also have a > 0, d ~< 0, which is Case 1 in Fig. 2. It is impossible to have 
a < 0 ,  d < 0 ,  since a + d > O .  The other possible case is a ~ 0 ,  d > 0 ,  which 
is obtained from Case 1 by symmetry. When bc = 0, since a d - b c  < 0, we 
have ad < 0. Thus we have either a < 0, d > 0, which is Case 3 in Fig. 2, or 
a > 0, d < 0, by symmetry. When bc < 0, again a t / -  bc < 0 implies ad < O. 
Case a < 0, d > 0, is in Case 4, the other case a > 0, d < 0, is obtained by 
symmetry. Observe in Case 4, when increasing d2, we can move from (~_ 
to (~§ It is interesting to note that the equilibrium may become more 
unstable by increasing one of the diffusion coefficient. 
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The following theorem was stated in Ref. 18. 

Theorem 3.2. For each positive (dl, d2)6 ~_, there exists a smooth 
function e*(dl,d2)>O such that the 3 t t  periodic solution p(t ,k)  is 
asymptotically stable in DA( O + 1 ) if koo - t *  < k < k~o. 

Theorem3.2 can be proved by using notions of exponential 
dichotomies and roughness of exponential dichotomies in DA(O + I). The 
proof is similar to the proof of Theorem 4.5 in Ref. 17. Since those methods 
are quite different from those used in this paper, we will not give details 
here. 

The result in Theorem 3.2 is not very precise since e*(dl, d z ) ~  0 as 
(d~, d2)~  F. For a given k (or period T), the loss of stability for p(t, k) 
does not happen exactly at F. 

To describe what happens near F, two new notions are introduced: (1) 
the stability of the equilibrium for the flow on W[o r and (2) the twistedness 
of the homoclinic orbit when following q(t) from t--- - o o  to t = + oo .  

When (dl ,d2)zF,: . , l=O, the equilibrium E(k~o) has a one-dimen- 
sional center manifold W~o r that is tangent to the one-dimensional 
eigenspace corresponding to All = 0. The flow on W~o r is described in 
Theorem 2.7. When 2,1 = 0, it has the form 

z' = -~z 3 + h.o.t. 

x=O, y=O 

(Hs) When 211=0, the equilibrium E is stable on W~o~(E ) in the 
sense that ~ > 0. 

Numerical computation in Section 7 shows that in Freedman and 
Wolkowicz's example, the condition ~ > 0 is valid for all (d~, d2) ~ F in the 
range specified by 0 < x2d I < 3. 

Twistedness of the homoclinic solution q(t) has been described in 
Section 1. Because of its importance, we will give a simple and equivalent 
definition. Let k=koo and (dl, d2)~F. Linearizing (1.2) around q(t), we 
have 

U'(t) = DUr162 + OuF(q(t), k~) U(t) (3.4) 

The subspace of the first Fourier mode ~i is invariant under (3.4). Since ~!'1 
is two dimensional, (3.4) on ~z reduces to an ODE on (ul, vl). 

dt kv i /  vl 
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where d ( t ) ~  ~ (oo )=(  -'~a'-~ -b -~ -~a2-a) as t---, ___oo. According to a 
theorem in Ref. 14, each solution of (3.5) approaches a solution of the 
linear autonomous equation, 

d 
dt 

with an exponentially small 
(u~(t),v~(t)) to (3.5), up 

error. Therefore, there is a unique solution 
to multiplying by scalar constants, that 

approaches an eigenvector of the zero eigenvalue of zr as t --, - oo. Let 
O(t) = (ul(t) cos nx, vl(t) cos nx) be the unique solution of (3.4) that is in 
~r and approaches an eigenvector ~ ,  corresponding to 2 H = 0  as 
t ~ -oo .  By the same argument, when t ~ + oo, ~(t) approaches another 
eigenvector associated to 2H = 0, denoted c*~b~, where c* is a function of 
(d~, d~) E r .  

Definition 3.3. Let l im,_.+~ ~](t)=c*qb~. The homoclinic solution 
q(t) is said to be nontwisted if c*>0 ,  twisted if c* <0,  or degenerate if 
c* =O. 

Remark. In DA(0+I) ,  solutions of (3.4) that approach ~c as 
t--* - o o  are not unique. They have the form U(t)= U(t)+ C~(t), where C 
is an arbitrary constant. Since # ( t ) ~  0 exponentially as t ~ +oo, we have 
lim,~oo U(t)=c*q~c for any CeR.  Therefore the twistedness defined in 
Definition 3.3 is precisely the one given in Section 1. 

Let k=koo and (dl,d2)eF. From Theorem 3.1, V2 H 50 .  It is also 
obvious that VAH intersects F transversely at (d~, d2). We can make a 
smooth change of variable ~:  (dl, d2) ~ (1, m) in a neighborhood of F so 
that m = 211 and I is the arc length on F when m = 0, after assigning l = 0 
to an arbitrary point on F. The new coordinates flatten F, i.e., 
F= {re=O, l e ~ ,  where 7 c  R is an open interval. 

For m ~ 0 and I e 7, we look for simple period T or symmetric double 
period 2T SN solutions, where T > i ,  i being a large constant. In the 
parameter space (T, 1, m) we want to find regions where such SN solutions 
exist. 

For (d l, d2) E r ,  ~ ( d l ,  d2) = (1o, 0), and the twistedness c* = c*(lo) is a 
function of 1o. 

Throughout this paper, assume that the hypotheses H~-H s are 
satisfied. 

Theorem 3.4. For each l o ~7, c*(lo)50, there exist a large constant 
i > 0  and an open set ~)'~ R 2 containing (1o, 0), the size of  which depends 

865/8/'~.2 
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on l o, such that two C 1 functions L( T, 1, m) and r( T, l, m) can be defined 
for T> # and (1, m) e ~ with the following properties: 

( I )  r( oo , Io, O)=c*(lo), where r( oo , lo, O)=lim,~ + ~ r( t, lo, 0); 
(2) L(T, l ,m)=emr +O(e-~r),O<m<~t; 

(3) O/Om{L(T, l, m)r(T, l, m)} > 0  (or <0)  when c*(lo)>0 (or <0). 

Moreover, the existence and uniqueness of  simple or symmetric double 
SN periodic solutions to (2.1) are determined by the following conditions: 

(i) I f  0 < c*(lo) < 1 or 1 < c*(lo), then there is no simple period T 
SN solution when 0 <<. L( T, l, m) r( T, l, m) ~ 1; there are precisely 
two simple period T SN solutions Ul(t, ~) and Uz(t , ~) when 
L(T, l, m) r(T, l, m) > 1. The two solutions are related by 
U2(t, ~) = U~(t, 1 -~) .  

(ii) I f  c*(lo) = 1, then there exist two simple period T SN solutions 
when L(T, l ,m)r(T, l ,m)> 1. There exists ~ > 0  such that the 
ndmber of  solutions is precisely two when L(T,I ,m)  
r(T, l,m)>>. 1 +J for some 3 > 0 ;  and there is no simple period T 
SN solution when 0 <<. L( T, I, m) r( T, 1, m) <~ 1 - ~. 

(iii) I f  - 1  <c*(lo) < 0  or c*(lo) < - 1, then there is precisely one SN 
symmetric double period 2T solution U( t, ~) when L( T, 1, m) 
r( T, l, m) < -1 .  There is no such SN period 2T solution when 
--1 <~L(T, l, m) r(T, 1, m) <<.0. 

(iv) I f  c*(lo) = -1 ,  then there is at least one symmetric double period 
2T SN solution when L( T, 1, m) r( T, l, m) < -1 .  Such a solution 
is unique when L ( T , l , m ) r ( T , l , m ) < - l - O  for some ~ > 0 .  
There is no such SAT period 2T solution when --1 + r ~  
L(T, l,m) r(T, l, m)<~O. 

Corollary. When m > O, there is a pair of  SN equilibria El, E2 bifur- 
cating from E. The results above also show the bifurcatian of  SN homoclinic 
or heteroclinic solutions asymptotic to E 1 and/or E2 as a special case when 
T= 00. I f  c* # O, the limit of  the curve Lr = 1 is identical to F. When crossing 
I" at a point where c*(lo) > O, the bifurcation of  a pair of  homoclinic solutions, 
each asmptotic to E1 or E2 occurs. When crossing F at a point where 
c*(lo) < O, the bifurcation of  a pair of  heteroclinic solutions connecting El 
and E 2 occurs. 

Theorem 3d. For each loe7  with c*(lo)=O and (d/dl)c*(lo)#O, 
there exist constants e> O a n d / > 0  such that functions l*(m), Im[ < e  and 
~(T)=ce -mr, T>i ,  for some c > O  can be defined. I f  [l-l*(m)] <~(T) ,  
Im[ < e, and T >  i, then there is no simple period T or symmetric double 
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period 2T SN solution to (2.1), inside a (O(T)) 1/2 neighborhood of the orbit 
of q(t). 

Theorem 3.4 provides fairly accurate information about the bifurcation 
to simple or symmetric double periodic SN solutions when crossing the 
curve L(T, 1, m) r(T, 1, m) = 1 not near the points c*(lo) = +__1 or c*(lo) =0.  
First, Theorem 3.4 (3) assures that L(T, l, m)r(T, l, m) is monotonic in 
term ofm. From the asymptotic forms (1) and (2), it is also clear that the 
sign of L r - 1  changes when m is increased form negative to positive, 
provided that T is large. When crossing the curve Lr= 1 near c*(lo)= +_1, 
bifurcation to a simple or symmetric double periodic SN solution will 
occur but the precise moment is unknown. Our method does not predict 
the existence or uniqueness of such solutions in a narrow strip around 
Lr= 1. Theorem 3.5, on the other hand, assures that when c*(lo)= 0, we 
can pass m = 0 through a small tubular neighborhood of l = l*(m) without 
creating any simple period T or symmetric double period 2 T SN solution. 
The size of the tubular neighborhood shrinks to zero as T--. +oo. 

The regions in the (dr, d2) plane mentioned in Theorem3.4 and 
Theorem 3.5 are depicted in Fig. 3, where we assume that L(T, 1, m)=e  mr, 
r( T, l, m) =.c*( l), and l*(m)=0.  In the shaded area, the existence and 
uniqueness of a simple period T (or symmetric double period 2T) SN solu- 
tion are guaranteed except near c*( l )= +1. The tubular neighborhood 
near 1 = 0 where crossing m = 0 without causing bifurcation to a simple or 
symmetric double period SN solution is also shown. A sketch of all kinds 
of homoclinic, heteroclinic, and periodic solutions is in Fig. 4. 

f f l  

Fig. 3. A sketch of the bifurcation diagram in the (/, m) plane. SN simple or symmetric 
double periodic solutions occur in the shaded areas. 
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E 1 E E z E 1 E E= 

2 homoclinic solutio~s 2 periodic solutions 
c* > 0 c* > 0 

Lia 

E 1 E E= E t E E 2 

2 heterocl~c solutions A double periodic solution 
c* < 0 c* < 0 

Fig. 4. 

I p(t,k) 

E 1 E E= E l E E;I 

2 heteroc[inJc so]utio~ A spatially homogeneous 
c* = 0 periodic solution 

A sketch of all kinds of homoclinic, heteroclinic, and periodic solutions. 

4. SOME LEMMAS 

The result in Lemma 4.1 is our major tool to study a solution U(t), 
0 ~< t ~< to, that stays in a small neighborhood of a nonhyperbolic equi- 
librium. Following an idea of Silnikov, we show that if to can be arbitrarily 
large, U(t)=(x(t),y(t),z(t)), 0~<t<~t0, is determined by, and depends 
continuously on, its boundary values: y(0), z(0), and x(to). Using expo- 
nential dichotomies we can easily show that x(t)=O(e -~'~ and 
y(t)= O(e-") for some ~>0 .  However, in the center direction, the flow is 
not exponentially decaying either moving forward or backward. Following 
the approach of Ref. 4, we will compare the Z coordinates of U(t) with a 
(nonunique) solution Uo(t) on W~o~(E). Let Px, Py, P= be the spectral 
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projections from DA(O+ 1) onto X, Y, Z. In the flat coordinates, we show 
that lips(U(t) - Uo(t))II is small and approaches zero uniformly for t ~ [0, to] 
as to ~ +oe. If we are interested only in dynamics in the Z direction, U(t) 
can be replaced by Uo(t) on W~oc(E ) with a very small error. 

It is also clear that the smallness of P~( U o ( t ) -  U(t)) strongly depends 
on a good choice of coordinates. Since x(to) and y(O) are not small as 
to ~ oo, an undesired change of variables may destroy the smallness of 
P~(Uo( t ) -  U(t)). 

Let ~ c ~ , ( 0 +  Go) be a small neighborhood of an equilibrium U=O 
where the fiat coordinates introduced in Section 2 are used in r We now 
consider the abstract parabolic equation (2.1) written in the fiat coor- 
dinates, 

x' = A l x  + gl(x, y, z,/z) 

y' = A2y  -t- g2(x, y, z, r )  

z' = A3z + g3(x, y, z,/z) 

(4.1) 

Here AI=.Alx ,  A 2 = A l r ,  and A 3 = A I z .  R e o ' ( A l ) > 2 M > 0 ,  Recx(A2)< 
--2M <~ 0, and Re a(A3) = 0. The functions gi, i = 1, 2, 3, are C *, v I> 2, in 
all the variables. Since the coordinates are flat, it can be verified that 
gl(O,y ,z ,  la)=O, g2(x,O,z,/~)=O, and g 3 ( O , y , z , p ) = g 3 ( x , O , z , / ~ ) =  
g3(0, 0, z, la). Moreover, Dugi(0, 0, 0,#o) =0 ,  i =  1, 2, 3. The equation for 
the flow on the center manifold is 

z' = A3z + ga(0, 0, z,/z) (4.2) 

Let O(t, Zo,/Z ) be the solution map for (4.2), with O(0, Zo,p)=Zo.  We have 
the following. 

Lemma 4.1. For any 0c o , f l > 0  with O < f l < ~ o < 2 M ,  there exist 
positive constants eM, $M, IZM, and t m with the following properties. The 
constant SM is small enough so that { U= (x, y, z)[ IIxllx~<~M, Hytl r <~ eM, 
Ilzll z ~< ~M} = ~. I f  I/~1 </~M, to >>- t= and Zo ~ Z, satisfying 

I[O(t, Zo , /~ ) l l z~M for  t~  [0, to] 

and i f  Ixo l+ lyo l<~M,  then there exists a unique solution U( t )~r  
t~  [0, to], to Eq. (4.1), satisfying the boundary conditions 

X(to) = Xo, y(0) = Yo, and z(O) = Zo 
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The solution can be written in the form 

U(t) = (xS(t), yS(t), ~ ( t )  + zS(t)), 0 <<. t <<. to 

where O(t )=  O(t, Zo,/Z), zS(0)=0, wS(t)=wS(t;  to, Xo, Yo, Zo, lZ), w = x ,  y, 
or z, are C v- i functions in all the variables i f  g i, i = 1, 2, 3, is C ~. Moreover, 
let r be a multiindex with 0 <~ ]rl ~< v -  1. Suppose that o h satisfies 0 < fl < 
~1 < ~ o -  Irlfl. Then 

[D'xS( t)[ x << Cedar'-to) 

ID'yS(t)l r~< Ce -~,' 

ID'zS(t)llz<<. Ce -~''~ O<~t<~to 

The proof for Lemma 4.1 in the ODE case can be found in Refs. 4, 10, 
and 19. The proof for systems of abstract parabolic equations is similar and 
will not be rendered here. 

Since the small eigenvalue 2H = m  and since the flow on the center 
manifold is odd, we can rewrite (4.2) as the following: 

z' = mz - ~z 3 + zShl(z, I z) (4.3) 

Here ?=? ( /~ )>0  due to Hs, and [/zl ~</~t- The function hi is C ~ for all 
v > 0 and h 1 ( -  z, l z )= h t(z, IZ). Equation (4.3) has three equilibria z = 0 and 

z = +z  E where z E ~ ~ provided that m > 0 and m is small. 
In Lemma 4.2 and Lemma 4.3 we present some estimates on the func- 

tion O(t, zo, IZ)/Zo, which measures the degree of expansion or contraction 
on the center manifold. The importance of these estimates will be clear in 
the next two sections, where bifurcation functions and their approxima- 
tions are introduced. The proofs are technical and can be skipped on the 
first reading. In fact, the results in Lemma 4.2 and Lemma 4.3 are easy to 
verify for the truncated equation 

z '  = mz - -  ~ z  3 

All we try to show in these lemmas is that the perturbation term zSht(z, IZ) 
does not change the solution significantly. 

Let e > 0  be a small constant. By plotting the phase diagram of (4.3) 
on ( - e , e )  (see Fig. 5), it can be verified that I~(t, zo,/z)l <~ provided 
[z0[<e, and m and /z~,' are small. In Lemma4.2, we show that 
�9 (t, Zo, lZ)/zo is monotonic with respect to z0 in (0, e) if t > 0  is fixed. 
We also give formulas that will provide some lower bounds on 
I(O/OZo)( O( t, Zo, IZ)/Zo)l in the future. 
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Phase diagrams for the flow on the center manifold. 

Lemma 4.2. There exists e > 0 such that 

~ ( ~ ( t ' z ~  
sign [0--~% \ ~o / j  = --sign Zo 

i f 0  < Izol <e.  Moreover, we can show the following. 

( i)  I f  m <~ O, then 

(ii) 

(iii) 

0 [ 4 ]  CI(Z2--~ 2) 
7o + . )  

where C l is a function of  z o. CI .~ ~ i f  m and e are small. 

I f  m >i 0 and z~ ~ z~, then we have 

O [~ I C2(Z2--~2) ~ 
70 = 

where C2 is a function of  Zo. C2 ~ 1 i f  m and e are small. 

I f m > O  a n d -  2--2.0-z E, then 

 -[ o]Ozo - :  
where - m '  = ( O/Oz)[ m z -  Oz 3 + zShl(  z, /~ ) ] [ z - ~  '~ -- 2m 
and 8 small. 

i f  m 
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Proof. Since O(t, Zo,/2) is an odd function of Zo, it suffices to 
consider Zo>0. Let z = ~ ( t ,  Zo,/2). It is well-known that u(t)=ac,/aZo 
satisfies the linear variational equation for (4.3) with U(0)= 1; so does 
aO(t, Zo,/2)/at/ao(o, Zo,/2)/at. Therefore, they must be identical. Using 
(4.3) to replace a~(t, Zo,/2)/~t, we have 

O~ mz-dz3 + ZShl(Z,/2) 
OZo mzo-dZ3o + z~hl(zo,/2) 

.0 ~ _ f .  mz-dz3+zShl(Z, /2)  z o _ l } Z  

OZo \Zo;-  ~mzo--~Z~o+ z~hl(zo,/2) z z~ 

= d ( Z  2 - -  Z 2) + z4h l ( z , /2 )  - -  Z~hl(Zo,/2) 
m -- dz~ + zghl(z o,/2) 

(4.4) 

"z~ (4.5) 

Since ht(z,/2) is an even function of z, we have 

z4h~(z ,  ~ )  - z : h ~ ( Z o ,  ~ )  = C3(z~o - z  ~) 

where C3 is a function of Zo and is small if both z and Zo are small. This 
proves (i). 

For any fixed t > 0, m > 0, let Zo -~ zE, then z = �9 ~ z~. From (4.4), 
and the fact that (O0/OZo) ~ e-re" as Zo ~ z~, t fixed, we have 

lim m z - d z 3  + zShl(z'/2) = e - " '  
~o-:E mzo -- dz~ + z~hl(zo,/2) 

where - m '  = (O/az)[mz - ez 3 + zShl(z,/2)] I~-~ ~ - 2m, since zE ~ x / / ~ -  
Therefore, (iii) follows from the first line of (4.5). 

When m > 0 ,  since zE is a nonzero equilibrium, m - ~ z ~ +  
z4hl(zE,/2) = 0. Therefore 

m --  dz  2 + z g h , ( z o ,  I t )  ffi m - -  d z  2 + z g h , ( z o , / 2 )  - [ m  - dz  2 + z 4 h t ( z E ,  p)] 

ffi C , ( z ~  - Z~o) 

where C4 is a function of Zo and is close to ~. From this, (ii) follows from 
the second line of (4.5). 

When m ~ 0, zero is an attractor on W~lo~. If z0 > 0, then zo 2 > �9 2. Thus 
(O/OZo)[O/Zo] <0,  based on (i). When m>O,  ZoffizE, (O/OZo)[O/Zo] <0,  
based on (iii). When re>O, Zo #zE,  zo>O, zE attracts Zo. From the phase 
diagram (see Fig. 5), it is clear that z ~ - O  2 and " " z E - z  o always have 
different signs. Thus (O/OZo)[O/Zo] <0,  based on (ii). [] 
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In the next lemma, we derive some estimates on the rate of contraction 
or repelling for the equilibria zero and/or _+ ZE on the center manifold. 
These estimates are to be used in conjunction with Lemma 4.2. 

Lemma 4.3. There exist .~>0 and ~ > O with the flowing properties. 

(a) Let ]z0]<~, 0 < m < t h ,  and q~=Ci(to, Z0,/x). For any 30>0,  /f  
into > 3o > 0, then there exists r /=  17(ro) > 0 such that either 

2 .,2 z~<(1-~7)  ~ 2 or I~-z~l  ~(1-,#) Zo-oE 

(b) I f  -tfi~<m <O and - m t o >  Zo, then 

�9 2~<(1-,7) z~ 

Proof. Let w = z  2. Define h(w, lX)=2miv-2~w2 + 2w3hl(v/w,/t). We 
have iv' =h(iv.;/x). Let the solution map be w(t, ivo). Since h~ is a C% even 
function of z, it can be shown that h is C ~. Let k = m / 3 ~  and 
IrE =Z 2 = (re~t)+ O(m2). It is easy to see that (02h/Oiv 2) < 0  if ~ is small 
and iv < &. Therefore, using Taylor's formula with remainder, we have 

0 ( ~ ) = ( O / O w ) h . W - h w  2 < 0  

Here we have used the fact that h(O,/x) = 0. Similarly, since h(ivE, i t )= O, 

t, U < o 

Consider case (a), m > 0, first. 

(i) If IV0>IVE, then w(t)=IV(t, Wo)>IVE for all t > 0 .  Since 
h(ivE,IX) = 0  and (O/Oiv)(h/iv) <0 ,  

h(w, it) 
<<.: h(WE, Ix) = --2m + O(m 2) < --m 

I V - - W  E 0 1 4 '  

if 0 < m < n~. Let e -~~  = 1 - ~/. From (w - WE)' ~< --m(w -- wE), we have 

w( t ) ' -  wn <<. e -mt~ o -- WE) 

<~ e-~~ - WE) 

~<(I --rt)(Wo-- WE) 
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(ii) Observe  that  �9 < WE. I f  0 < W(to/2, W0) ~< V~, then 0 < w(t) <~ ~, 
for 0 <<. t <~ to~2. Since h/w is monotonic ,  

w w 

= 2 m -  2&~, + O(~, 2) 

2m 
= 2m - T + O(m2) 

> m  

if m is small. Let 1 - ~ / =  e -~0/2. F r o m  w'>~ row, we have 

W( to) > W ( ~ )  >~emtd2Wo 

Therefore  w o ~< ( 1 -- ~/) W(to). 
(iii) I f  ~<<.W(to/2)<w E, then for (to/2)<<.t<~to,~<<.w(t)<w~. 

Observe  that  wE/~ = 3 + O(m). Using the monotonic i ty  o f  h/w, 

w - -  w E w u W E  

- -2  + O(m) 

2m = -- ~ + O(m z) 
3 

m 
2 

if m is small. Let 1 - t / =  e -  ~o/4. F r o m  (w - w E)' t> - (m/2)(w - w~), we have 

[w( to) - w~ [ <~ l w ( ~ ) - wE l e -t"/2-'''~ 

~.< [W0- -WE[  e -T~ 

Iwo- wEI (1 -'1) 

Case (b), m < O, can be p roved  similarly to case (a), (i). []  
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Lemma 4.4. Assume that a d -  bd < O, d I > O, d 2 > O, and (a + ff2d 1) 
( d +  n2d2) t> be. Then f (~)  = (a + ~n2dl)(d+ ~r~2d2) - bc satisfies f ' (~ )  > 0 
for all ~ >. 1 and f (~)  > 0 for  all ~ > 1. 

Proof. The assumption implies that f(1)I> 0. It is easy to verify that 

d 
~ f ( ~ )  = 2~7t 4 dl d2 + aT~ 2 d2 + dIt 2 di 

1 
> ~ { (a + ~Tt2d~)(d + ~Tr2d2) - bc} 

1 
= ~ f ( r  

From this the desired result follows. [] 

The following lemma relates hypothesis H4 with the breaking of the 
homoclinic orbit q(t). It is a variation of a well-known result on the 
homoclinic bifurcation using Melnikov's integral. See Ref. 16. 

Lemma 4.5. Consider the ODE system (1.1). Let 27 be a cross section 
intersecting the orbit o f  q(t) transversely. Let q(O)E27. Assume that 
Tqu ) W~(E) c~ Tq( o V~(E) is one dimensional--spanned by ~( t). Let tl > 0 
and -~ • { Ta,,) W~(E) + T,,,) rr~(E)}. Then for  each k ~. k~o, there exist a 
unique g( k ) e R and a piecewise smooth solution U( t, k) o f ( 1 . 1 )  that is C l 
in ( - o o ,  t l ) u ( t l ,  oo). Moreover, U(0, k )E27n  W~(E) and U( t~- ,k )r  
W~(E) with U(t~-, k) - U(t~-, k) = g(k) -~. Here U( t { ,  k) and U(t~', k) 
denote the left and right limit at tl. Finally, i f  Ha is valid, then (d/dk) 
g(k) ~ o. 

5. BIFURCATION EQUATIONS FOR SIMPLE A N D  
SYMMETRIC DOUBLE PERIODIC SOLUTIONS 

Let g > 0 be a small constant and 27 = { x -- ~} be a cross section that 
intersects the orbit of q(t) transversely at (~,0,0)~@. Assume that 
q(0)~27. Trajectories near the homoclinic orbit must hit 27r'~@ at least 
once. We can make 27 smaller so that trajectories starting from 27 must 
reenter r after a fixed time t~. The cross section 27 is used to fix the phase 
we are not construcing a Poincar6 mapping: 27 ~ 27. 

First, consider a simple periodic solution of period T =  to + t~. Since tl 
is fixed, the period T is determined by to. The solution can be divided into 
an outer solution U , ( t ) = ( x , ( t ) ,  y , ( t ) , z , ( t ) ) ,  O<~t<~t 1, and an inner 
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solution U*(t) = (x*(t), y*(t), z*(t)), 0 <<. t <~ to. In the sequel, we use 
superscript (subscript) to denote inner (outer) solutions. Let the outer solu- 
tion be specified by an initial value problem with the initial value 
U . ( O ) = ( ~ , y ~ , z l ) e X  and let the solution be denoted by U , ( t ; ~ , y l ,  
z~, g). Let the inner solution be specified by the boundary value problem 
as in Lemma 4.1 with the boundary conditions x*(to)= ~, y * ( 0 ) =  Yo, and 
z*(0) =Zo, and stays in �9 for all t e  [0, to]. See Fig. 6. By Lemma 4.1, such 
an inner solution is unique and is denoted 

x*(t) = xS(t; to, .f, Yo, Zo,/t) 

y*(t) = yS(t; to, ~, Yo, Zo, lz) 

z*( t ) = ~(t;  Zo, #) + zS( t; to, ~, Yo, Zo,/t) 

Define 

x*(to, Yo, Zo,#) = x*(O) 

Y*(to, Yo, Zo, It) = y*( to) 

z*(to, Yo, Zo, g) = z*(to) 

Yc(Yl, z l , g )  = x , ( t l ;  ~, Yl, zl,/1) 

P(Yl, z l , / t )  = y . ( t l  ; Y, Yl, Zl,/~) 

z(Yl ,  z t , g )  = z , ( t l ;  x, Yl ,  z i , l t )  

x 

Y 

Fig. 6. A sketch of the inner solution U* and outer solution U,. 
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The end points of outer and inner solutions must match. We have the 
following equations: 

G def ^. 
1 = x (y l ,  z l ,  It)-- x*(to ,  Yo, Zo, It) = 0 (5.1) 

Yl = y*(to, Yo, zo, It) (5.2) 

Zl = z*(to, Yo, Zo, It) (5.3) 

Yo = P(Yl, Zl, It) (5.4) 

1~0 = Z ( Y l ,  Z l ,  I t )  ( 5 .5 )  

See Fig. 6. 
Substituting (5.4) and (5.5) into (5.2), we have 

Yl = y*(to, fi(Yl, zl ,  It), ~(Yl, zt ,  It), It) (5.6) 

Using the smallness of Oy*/Oyo and Oy*/Ozo (see Lemma 4.1), we solve Yt 
from (5.6) by a contraction principle to yield 

L e m m a  5 . 1 .  

(i) There exists 
O( e-~l'~ 

Yl = )~(to, zl, It) (5.7) 

a constant ~ l > 0  such that lYl§ 

(ii) P ( t o , - - z l , I t ) = R y ( t o ,  Zl,It). 

(iii) When z t =0,  (g, p(t o, 0,It), 0) e~o. 

Proof. (i) follows from Lemma 4.1. 
Since (x,( t) ,  y , ( t ) ,  z , ( t ) )  satisfies initial values (x,(0), y,(0),  z ,(0))  = 

(~, y~, z~), then (Rx,(t) ,  Ry,( t ) ,  Rz,(t))  satisfies initial values 
(R.~,, Ryl ,  Rzl). Therefore 

w,( t l ;  R.2, Ryl ,  Rzl ,  It) = Rw, ( t l ;  .~, Yl ,  z l ,  It) 

where w , = x , ,  y , ,  or z , .  Next, since (Rx*(t), Ry*(t), Rz*(t)) satisfies 
boundary values Rx*( to) = R~ = s Ry*( O ) = Ry ~ Rz*(0) = Rz ~ 

w*(to, Ry  ~ Rz~ Rw*(to, yO, zO, it) 

where w* = x*, y*, or z*. Based on these facts, using the uniqueness of the 
fLxed point, (ii) can be verified from (5.6). 
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When zt =0 ,  in (5.6), let y~ e~ro . Since ~o is invariant under the flow, 
then y ,  e~r o and z ,  Es i.e., z .  = 0. Since we can solve the boundary 
value problem, as described in Lemma 4.1, in ~o, therefore, the right-hand 
side of (5.6), i.e., y* is in s o. We then can solve (5.6) by the contraction 
principle in s o c~ Y. This implies that the unique solution )7(to, 0,/ t)  ~ ~o- 
(iii) then follows from Theorem 2.7. [] 

We now substitute (5.7) into (5.1). Recall tha t / t  = (/, m, k). Gi is now 
a function of (to, l, m, k, Zl). 

Gl(to, l ,m ,k ,  Zl)=~()7(to, Z l , la ) , z l , # ) - - x* ( to ,  :,#,~u) (5.8) 

where the arguments o f p  and e are ()7(t o, z l ,g ) ,  zl,/.t). 

l.~mma 5.2. 

(i) Gl(to, 1, rn, k, - z l )  = Gt(to, l, m, k, zl). 

(ii) (O/Ok) G~ ~O. 

Proof. (i) The functions )7, )~, ~, ~, and x* are all invariant under 
the reflection R. Therefore G l ( t o, l, m, k, Rz l ) = R G ~ ( to, l, m, k, z l ). Asser- 
tion (i) then follows from the facts Rz~ = - z  I and RG~ = G~. 

(ii) Set to= +oo,  z l = 0 ,  and Ft=/t  o, where #o=(lo,  mo, ko~) with 
m o = 0 [or  (/o, too) e F].  We then have x* = 0 from Lemma 4.1 and )7 = 0 
from Lemma 5.1. We now show that the function G~(oo,/o, 0, k, 0) is the 
Melnikov function as in Lemma 4.5. 

Since ~o is invariant under systems (2.1), and (:~, 0, 0 ) ~ o ,  we have 
x,(t~,.~,0,0,/~)e&ro. In ~r o, the equilibrium E is hyperbolic with 
I~o~(E) = {x = 0}, W~o~(e ) = { y = 0}. Thus (:~, 0, 0) e W~o~(E). Conse- 
quelltly, U(tl), with the initial condition (~, 0, 0) is in I ~ ( E ) c ~  o. Observe 
that (1, 0, 0) is a vector orthogonal to ~(t~), where t~ is a large constant 
such that q(tt) has reentered d~. Thus, Gt(oo, lo, 0, k, 0) is the function g(k) 
in Lemma4.5. From Lemma4.5 and hypothesis H4, we have (O/Ok) 
Gl(oo,/o, 0 , k ~ , 0 ) # 0 .  Observe that Gl is a C 1 function in a neighbor- 
hood of (oo,/0, k~o, 0). Thus, (O/Ok) G 1 5 0  for (to, l, m, k, zl) near 
(~,  to, 0,k| 0). [] 

Since Gl(oo, lo, 0, k~ ,  0) -- 0, reflecting the existence of the homoclinie 
solution q(t) at k f f ik~,  we can use Lernma5.2(ii) to solve 
k f k * ( t o ,  l ,m, zl) from (5.8), if to~OO, 1..~1o, m ~ O ,  and zl ~0 .  From 
Lemma 5.2 (i), 

k*(t o, l, m, - z l )  = k * ( t  o, l, m, zl) (5.9) 
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We now substitute k = k ' to ,  i, m, zt) into (5.3), to obtain a bifurcation 
function, 

G2(to, l, m, zl)  %fz*(to,  P(Y(to, Zl, p), zl,  p), e(Y(to, Zl, ~), zl, ~), ~) (5.10) 

where g = (l, m, k*(to, l, m, zl)). A solution of the equation 

zl = G2(to, l, m, zl) (5.11 ) 

corresponds to a simple period T =  t o + t~ solution to (2.1). 

Lerama 5.3. G2(to,/, m, - z l )  = -G2(to,  l, m, zl). In particular, 
G2(to,/, m, 0) =0.  The solution corresponds to zl =0,  k = k * ( t o ,  l, m, O) is a 
period T = t o + t I S H  solution. 

Proof. Since the functions y, )3, ~, and z* in the definition of G2 are 
all invariant under the symmetry R, so is G2. since G2 e Z, we have 
RG2 = - G 2 .  This proves that G2 is an odd function of z~. 

As in the proof of Lemma 5.2, fi(to, 0,/t) e ~r0. The outer solution with 
initial condition (~, y, 0)e~r0 must be in ~o- Therefore the periodic 
solution corresponding to z~ = 0 is in ~o- [] 

Next we consider a symmetric double periodic solution U(t) of period 
2T. The bifurcation equation for the existence of such solution can be 
derived much the same way as for the simple period T solution. Therefore 
we discuss it only briefly. From our definition, U( t+  T ) = R U ( t ) ,  t e R. 
Assuming that U(0)~Z '=  { x = ~ } ,  we define 

U,( t )  = U(t), 0 <<. t <<. tl 

U*(t) = U(t + tl), 0 <~ t <~ to 

T =  t o q- t t 

The matching conditions on the outer and inner solutions are 

U*(0) = U, ( t l )  

U*( to) = RU. (O)  

As before, let the outer solution U,( t )  be determined by the initial 
value U,(0)=( .~,  Yl, zl) and the inner solution U*(t)  be determined by 
the boundary condition (x*(to), y*(0) , z*(0) )=(~ ,  Yo, zo). Then we still 
have (5.1), (5.4), and (5.5),.but (5.2) and (5.3) change to 

Yi = Ry*(to,  Yo, Zo, I~) (5.2)' 

zl = Rz*(to, Yo, Zo,/t) (5.3)' 
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Notice that the functions Ry* and Rz* have similar smallness properties 
like y* and z*. We will use the same notations as for simple periodic solu- 
tions if no confusion occurs. As before, we can solve y, to get (5.7), and 
Lemma 5.1 is still valid. Here and afterward we use the same notations for 
functions ~, G~, k*, G2 when deriving bifurcation equations for both simple 
and symmetric double periodic solutions. Define G~ as in (5.8). Again, we 
have Lemma5.2. Solving k=k*(to, l,m, zl) as before, we still have (5.9). 
Substituting k=k* into (5.3)', and defining the function G2(to, 1, m, z~) as 
in (5.10), we have found that the solutions of the equation 

--zl = G2(to, l, m, zl) (5.11)' 

correspond to symmetric double period 2T solutions to (2.1). 
Analogous to Lemma 5.3, we have 

G2(to, 1, m, - z l )  = --G2(t  0, l, m, z , )  

However, when z~=0,  we really have obtained a SH simple period T 
solution tracing its orbit twice, since U(t+ T)= RU(t)= U(t) in this case. 

6. P R O O F  OF THE MAIN RESULTS 

Proof of Theorem 3.1. Since 211 ~ 12 ~--- (a + lr2dl)(d + zt2d2) - be, which 
is negative (positive or zero) in ~+(~_ or F), assertions (i), (ii), and (iii) 
follow from the fact that Re ~2  < 0. 

Let (dl, de) e F u  ~_.  From Lemma 4.4, 2nt 2n2 = (a + n2z~2dl) 
(d+n2~2d2)-bc is an increasing function for n>~l. It follows that 
~ 2,2 > 0 for n/> 2. From Re An2 < 0 we have Re 2n~ < 0, n t> 2. This proves 
(iv) for n >12. The proof for the cases n = 0, 1 are obvious and will be 
omitted. 

Let ~=a~fa+zr2dm and fl=a~fd+~r2d2.0~+fl>0 since a + d > 0 .  

1 2,,, { +,8) + 4b } 

a 1 A,, ffi ~ { - I + (oc - , B ) [  (a - ,B)  2 q- 4br -'12} 

When (dl,d2)r we ,have  ~p-bc=O. Therefore ( 0 / 0 0 ~ ) 2 1 1  = 

Thus, (O&,lOa,)<O if 
Similarly (02H/Od2)<O if ~ > 0 .  It is impossible to have both ~t~<0 and 
p~<O since 0c+p>O. This proves (v). [] 



Bifurcations Induced by Diffusion 357 

As mentioned earlier, we use only one set of notations Y, k*, G~, and 
G2 for functions employed when deriving bifurcation functions for both 
simple and symmetric double periodic solutions. This allows us to treat 
both problems simultaneously. 

Since the proof of the main results is technical, it may be useful to 
preview the main idea used here. Consider finding a simple SN periodic 
solution. Recall that the bifurcation equation 

zl = z*(to, ), ~,#) 

where ) and ~ are as in (5.10), has a trivial solution z~--0, which 
corresponds to a SH solution. Since we are not interested in such solution, 
it is reasonable to look for solutions of the equation z*/z~ = 1. 

Let g = (1, m, k*(to, l, m, Zl)) and let 

z0 = ~(~(to, zl,/~), zl,/~) (6.1) 

Then Zo = 0 if"zl = 0. We look for solutions of 

z* Zo 1 
g 0 gl 

We can show, in the limiting case, z*/zo ~ ~/Zo; the latter is the rate of 
expansion on the local center manifold. Also, Zo/Z~ ~ c*(l); the latter is the 
rate of expansion along the outer  solution, and its sign represents the 
twistedness of the homoclinic orbit. In particular, based on Lemma 4.2, we 
can show that z*/Zo is monotonic for Zo>0 or z0<0 (Lemma 6.2). The 
proof of our main results would be easier if the outer solution were the 
multiplication by c* and the inner solution were the expansion by the rate 
�9 /Zo. However, such approximations have some small errors. Care must be 
exercised to ensure that the error terms do not disturb the main terms. 

Denote 

rl( to, l, m) = { lira Zo/Zl} (6.2) 
gl - *  O 

T h e n  

88 ay 
rl(to, 1, m) = yl (to, o, g) -t 

a~(y,, O, g) a~ ak*(to, 1, m, O) § 
azl Ok Oz~ 

Assuming now that ,to= +oo, we have y = 0  and (0y/0zl)=0 
(Lemma 5.1). Also, k*(oo, Io, 0, 0) = k ~ ,  reflecting the existence of the 
homoclinic solution q(t) at k f k ~ .  From (5.9), we can show that 
(a/azt) k*(oo, 1, m, 0)=0.  We have shown the first part of the following. 

s65/8/3-3 
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1.emma 6.1. rl(oo, lo, O) r---. (O~/OZl)(O , O, (lo, O, k~o)) = c*(lo), where 
c*(lo) is defined in Definition 3.3. 

Lemma 6.1 offers an easy way to compute rt(oo, lo, O) since c*(lo) can 
be obtained by computing the ODE system (3.5) in ~'~. The proof of the 
second equality of I.emma 6. I is deferred to Section 7. 

In the first part of this section we assume that e*( lo )~0  for an lo e Z  
Then, based on Lemma6.1, (OZo/OZl)#O when z l = 0 .  We can solve ,:1 
form (6.1) to obtain the inverse function 

zl = ~l(to, l, m, Zo) (6.3) 

Here zl is a smooth function defined for to ~ +oo, m ~ 0, 1~ 1o. Assume 
that the domain of ~, is so small that 

s ign{~ ' l /Z  o [z o # O} = s i g n  c* ( lo )  

Let 

z*(to, ~P(Y(to, zl,/z), 51,/~), Zo,/z) 
Ll(to, l, m) = lim (6.4) 

zo ~ 0 Z 0 

where 31 is given in (6.3). From Lemma4.1, we have z * ( . . . ) =  
O(to, Zo, lZ)+zS( .. .), where ...  represents the variables from the r.h.s, of 
(6.4), and IzSl + IDzSl = O(e-~'*~ It follows that 

OO( to, O, lz ) 
Ll(to, l, m) -- + O(e-'~*~ oq > 0 

OZo 

Since ~(t ,  Zo,/z) satisfies the equation z' = m z -  ~z 3 + h.o.t. [see (4.3)], we 
have (O/OZo) O(to, 0,/z) = em'~ Therefore, 

Ll(to, l, m) = era*~ + O(e -~'*) (6.5) 

Recall the monotonicity of O(to, Zo, la)/Zo, Zo # O, proved in 
Lemma 4.2. Using the smallness of z s = z * ( . . . ) -  r z0,/z), we have the 
following results. 

Lemma 6.2. Let +_z~ be the nonzero equilibria o f  (4.3) i f  m > O. Let 
IZo=(lo, mo, koo ) where lo r  and mo=O. For each O < t / < l  there exist 
e=e ( t / )>O and n~>O such tha t / . fO< [Zo[ <e,  to>(1/8),  and 
m < r~, then we have the following result. 
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d 
__~ [z*(to, ))(Y(to, zl,  #), ~l,/z), Zo, lt)/Zo] 
oaz 

(6.6) 

Cs(z 2_ ~2) 

4 -  

C6(  e -re'to __ 1 ) /Zo ,  

C 7 ( z 2  - -  ~2) 

m -- ez 2 + z4h l(z~ I ~) z 2' 

i f  m > O ,  2 2 2 ~2 zE v~ Zo, Zo <~ (1 - ~1) 

or I z 2 - ~ 2 l  ~<(1-r / )  I 2 2 zE--  zol (6.6a) 

i f  m > O, zg = z2 and e-m't~ <~ l - th 

Oh 
where - m ' =  lim _---( ) (6.6b) 

z - ,  zE 9Z  

i f  m<~O, and~2<<.( l - - t l ) z  2 (6.6c) 

Here Cs, C6 > �89 and C7 > (d/2) are functions o f  (to, 1, m, Zo). In all three 
cases sign{ (8/aZo)(Z*/Zo)} = - sign{ Zo}. 

Proof. Assume that r~ is small so that  Iz~l <e/2. 

d~o ( z s )  IzS-(dzS/dz~ z~ 
- Iz21 

zol+l z',o),o    <zo)zol} 
d2z s 

< Csup ~ �9 Izol 

Here the fact that  IZol < e is used. We now use Lemma 4.1. We may  assume 
that  fl in that  lemma is arbitrarily small at the cost of selecting a smaller 
~. Let 0 < ot < ao - 3fl; we have 

(i) Suppose that re>O, z 2 ~ z  2, and z2~<(1 - r / )  ~2. Let C2 be the 
constant as in Lemma 4.2, case (ii). Then 

C2(z2 
I >I 3Cs IZo [ e 
I C2r/O 

~ 0  

if to > ( l /e)  and 8 > 0 are sufficiently small. Here we have used the facts that 
~2  i> z 2 and 2 2 [z e -Zo[  is small. Therefore I(d/dzo)(ZS/zo)l < �89 I(d/dzo)(O/Zo)[. 
Since C2 ~ 1, Cs > �89 Therefore, (6.6a) follows from Lemma 4.2, case (ii). 
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Suppose now that m>O,z~#Z2o,  and Iz~-r Iz[-zo~l. 
Then 

Iz~o - Z~ + Z~ - r 
iz2_z2ol b 1-(1-~#)--r# 

c2 Iz~-@:l I@1 I@1 (6.7) 
l:~_zo~l ~ I> c2~-~ 

/> 3C, Izol e-=~ 

The last inequality is based on the fact [~[ >I [zol and [zol is small. Based 
on a similar argument, (6.6a) follows from Lemma 4.2, case (ii). 

(ii) If m > 0, Zo 2 - z 2 and e -re't~ - E, ~<l--r/, then 

I(e-m"~ _ 1 )lzo 1 t> ~//Izo 1 i> 3C8 Izo l e - ~ ' ~  

if [Zol < e  and to>(1 /e ) , e>O is sufficiently small. As before, (6.6b) then 
follows from Lemma 4.2 (iii). 

(iii) If m ~< 0 and Cx ~< ( 1 - r/) Zo 2, then 

I "c1(z~ 4 - ~ [  I> m Cit /~ #)  
m_CZo + Zoht(,o,lZ) Z ~ A,2 4 ., -- C-O + Zohl(~O, 

/> 3C8 tzol e -~t~ 

When deriving the last inequality, we assume t h a t ,  is sufficiently small so 
that sup={h(z)} =rh with rh<~_ Then Ir e - '~ '~ by the Gronwall 
inequality. Therefore, if to is sufficiently large and m -  Oz~ +z~h~(zo, lz) is 
small, the last inequality holds. Equations (6.6c) then follows from 
Lemma 4.2, case (i). 

The proof of Lemma 6.2 has been completed. [] 

Lemma 6.3. Under the same conditions o f  Lemma 6.2, in any o f  the 
three cases, (6.6a), (6.6b) or (6.6c), i f  we choose smaller ~ > O, we have 
[see ( 6 . 3 ) f o r  z l]  

, ,<o 
OZo <0, if  ~ , > 0  

Proof. Observe that , 



Bifurcations Induced by Diffusion 361 

Since ~ is an odd function of Zo, we have 

=' 

We first show that I(O/OZo)(Z*/Zo)l >2C9 Izoz*B,I, since this will imply 
that the sign of a/aZo(Z*/~l) is determined by the sign of (Zo/~)(a/Szo) 
(z*/zo). Based on I~1 >/Izol e -'~'~ and I:l <. C Izol e -~:~ we have for large 
to, Iz*l <21~1. We then need to show 

[~zo (z~)l  > Clo [r (6.8, 

where Cxo=4CgCn with C u = s u p  Izo/~l. 

(i) If m > 0, z~ ~ Z2o, and zo 2 ~< (1 - r/) ~2, then from (6.6a), 

0 /z*NI 1 I~1 
t,~)l >~ 14 :- =II > C,o I~1 

provided that 
smaller e. 

Iz~-z~l < (r//(2Clo)), which can be achieved by choosing 

(ii) If m > 0 ,  z~#z~, and Iz~-~21~<(1-~)Iz~-~21, then from 
(6.6a) and (6.7), 

10 (z] ,.+, 
7o > ~7~-~ > c '~  

provided that zo 2 < (v//(2Clo)), which is valid if e is sufficiently small. 

(iii) If m > 0 ,  z~-z 2 and e-m't~ then from (6.6b), 

0 z* 

Here we need Izo~l < (~/(2C1o)), which is valid if e is small. 

(iv) If m <~ 0 and ~2 ~< (1 - F/) z~, then from (6.6c), 

~ [m-~z~+zonttzo,';" "":~>C~~162 

provided that Im - dz~ + ... I ~< (r//(2Clo)), that is valid if e is small. 
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In all cases, the sign of (O/aZo)(Z*/s agrees with 
(O/aZo)(Z*/Zo). From I_emma 6.2 

sign(o-~oCZo)}=--sign{Zo} 

Therefore sign{ (O/OZo)(Z*/~)} -- - s i g n { ~  }. 

that of (Zo/~.l) 

[] 

Corollary 6.4. Under the conditions of Lemma 6.2, we have that 
Iz*/zl l is a decreasing function of  [z I I. 

Recall that t~ is fixed and T= t o + t~ depends solely on to. Let 

L(T, l, m) = Ll(to, l, m) e '~*l 

r(T, 1, m) =rl(to, 1, m) e - ' l  
(6.9) 

We shall prox, e that with such functions L and r, Theorem 3.4 is valid. 
If no arguments are given, for notational simplicity, r means 

r o, Zo, g), Zo is defined in (6.1), z*=G2(to, 1, m, zl) is defined in (5.10), 
zl = z l  is defined in (6.3), and z s means zS(to, ~(~(to, ~l,lZ), zl, g), z~ z) = 
z * - 4 .  Assumptions following a case number are valid until a new case is 
encountered. 

P r o o f  o f  Theorem 3.4. F r o m  (6.9), if  m -- 0, 

r(oo, lo, O) = ri(oo, 1 o, O) 

Thus, Theorem 3.4 (1) follows from Lemma 6.1. 
From (6.9) again, it is easy to see that (2) follows from (6.5). 
We now prove Theorem 3.4 (3). From (6.4) and Lemma 4.1, 

Ll(to, l,m)=OC~(to , O,la) OzS [ 
/~Zo "I- ~Zo --o=O 

0z s 82zS 
OZo + ~ <~Cet-"+zP)t~ ~ l > 2 f l > 0  

OO( to, O, g )  = e~,t o 
OZo 

we have 

aLl(to, l, m) = toemtO + O( er + ,p)to) 
am 
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Now that (c3/am)(Llrl)=(aLl/c?m) rl + Ll(c?rl/am) and lart/Oml <<. C, 
we have (a/Om)(L,r l)=toe m'~ .rl(to, 1, m) + O(em'~ Let $ = {1l- /ol  <eL 
Iml <~} and let to> I/~. If J > 0  is sufficiently small, we have r~(to, l, m ) =  
Clc*(lo), where Cl > �89 Thus, 

f ) sign ~m (Llr l )  =sign{c*(/o)} 

The assertion in (3) follows by observing that L .  r = L:  �9 rl.  
Consider c*(lo) > 0 and look for SN simple periodic solutions first. We 

only need to solve (5.11) for z 1 > 0 since G2(to, l, m, z l) is odd in Z x. If z l 
is sufficiently small and to is sufficiently large, we have r~(to,/, m) > 0 and 
Zo/Z~>O. Thus we need to consider Zo>0 only. We now look for a 
solution zl e (0, ~) with the corresponding zo e (0, e), where ( - e ,  e) is the 
coordinate chart in the z-axis for WT~oc(E). 

Since Zo=0 if z~=0  and Zo depends continuously on Zl, we can 
choose a small constant ~ > 0  so that Zl = ~  implies z0 <e.  If J, which 
defines the set r is small, then either ze < (/2, m > 0, or ze does not exist 
(m ~< 0). We can choose [ >  0 so large that t o > i implies that 0 < �9 < 3~/4, 
and Iz*l < ~/4. The first estimate is based on r --, zE < ~/2 or 0 as to ~ oc. 
The second estimate uses Lemma4.1. Therefore G2(to, l , m , ~ ) = z * =  
~ + z S < ~ .  

Suppose now that Lx(to, l, m) rl(to,/ ,  m) > 1. Then 

z *  z ~ 
lira 1 

zo~O + 

From this, there exists a small 0 < z l  <~  such that G2(to, l, m, z t )>z~.  
Thus, there exists at least one solution 0 < zt < ~ for (5.11) if Lr = LI r~ > 1. 

In the rest of the proof, we discuss the uniqueness or nonexistence of 
SN simple periodic solutions. Please refer to Fig. 5 for the flow on W~o~(E ). 

Case (i). 0<c*(1o)<1.  For any 0<r/l<l, by choosing smaller J 
and e, 

2 2 0 <t/1 <~Zo/Z 1 <~ 1 - t i t  (6.1o) 

Let m<~0 and Zo>0. Then 0<O~<Zo and ]zS[ <Zoe -~lt~ If to is suf- 
ficiently large, from Lemma 4.1, we have (z *)2/z2 o < 1/( 1 - r/1 ). Combining 
this with (6.10), we have'(z*)2<z~.  Therefore, there is no solution for 
(5.11). 

Let m > 0  and Zo>Ze. Similar to the previous ease, we find no 
solution for (5.11). 
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For m > 0, define 

ZM=SUp{ZoIZ~<~(1 --r/) r 0 ~<Zo ~<zE} 

for some 0 < r/< r/1. Clearly 0 ~< ZM < ZE. 
Let m > 0  and Zo ~ ( z  M,  ZE) we have Zo 2 > ( 1 - t / )  r By choosing a 

smaller $, we have Zo2>(1--rh)(z*) 2. From (6.10), we have (z*)2<z~. 
There is no solution for (5.11) in this case. 

Let m > 0 ,  and Zoe(O, ZM] if ZM>O. At Zo=ZM we have 
(a/aZo)(r < o, based on Lemma 4.2. We infer that z~ ~< ( 1 - r/) r for all 
Zo ~(0, ZM]. Lemma 6.3 implies that (z*/zO is strictly decreasing in that 
interval. This proves the uniqueness of solutions of (5.11 ) in this case. 

Let m > 0 and 1 i> Ll(to, l, m) rl(to,/, m) ---- lim~l _o+(Z*/Zl). In the case 
Zo e (0, ZM], arguing as in the previous case, we have z*/zl < 1. This proves 
the nonexistence of solutions of (5.11) if Lr <~ 1. 

Case (ii). C*(lo) > 1. For  any 0 < r h < I, by choosing smaller 
and $, 

z ~ < ( 1 - r h )  zo 2 (6.11) 

Let m > 0 and 0 < Zo ~< ze. Since r >t Zo and IzSI ~ zoe-~l'~ we have 
(z*)2 > (1 -t/~)Zo 2 if to is large enough. From (6.11 ), there is no solution to 
(5.11) in this case. 

For m > 0, define 

Zm=inf{zol r < (1--rl) z~ and zE<zo <~e } 

for some 0 <r /<r / l .  From the phase diagram (cf. Fig. 5), z~<  z,, < e if r/is 
sufficiently small. 

Let m>O and Z0V(ZE, Z,,). Then r  2. We can have 
( z * ) 2 > ( 1 - r h ) Z o  2 if we choose to large enough. Then z * > z l  based on 
(6.11). Equation (5.11) has no solution in this case. 

Let m > 0 and Zo = z,,,. Then r ~ (1 - t/) Zo 2. This implies that 
1 r  .2 2 I - o -  z,~ [. We then can show that r is decreasing for 
z0 e [z,,, el. Thus r ~< (1 - r/) z~ for Zo ~ [z,,, el. From Lemma 6.3, z*/zl 
is strictly decreasing. The solution to (5.11) either is unique or does not 
exist. We show that L~(to, 1, m) r~(to,/, m) > 1 in this case, so that the non- 
existence becomes impossible. In fact, if 8 > 0 is small, then 
rl(to,/, m) > 1 + r/2 for some r h > 0, due to c*(lo) > 1. Because m > 0 and 
Ll(to, l,m)=e'~to+O(e-~'t~ let to be sufficiently large, then we have 
LI > (1 +r/2) -s. Therefore Llr~ > 1. 
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For m ~< 0, define 

z m = inf{zo I ~2 ~< (I -t/) Zo 2, 0 ~<Zo ~<e} 

for some r/< r/t and r/< 1/4. Clearly 0 ~< zm< t if ~/is sufficiently small. 
Let m~<0 and ZoE(O,z m) if zm>O. Then ~ 2 > ( 1 - t / ) z ~ .  We can 

make ( z* )2>(1 -~ / l ) z~  by choosing 8 < 0  smaller. Therefore zl <z*  by 
(6.11). There is no solution to (5.11). 

Let m ~< 0 and z0 = z m. Then ~2 ~< (1 - r/) z~. By Lemma 4.2, ~2/z~ is 
decreasing for Zo ~ [ z m, 8 ). Thus r <<. (1 - rl ) z~ for Zo ~ [z m, e]. Then z* /z l 
is strictly decreasing by Lemma 6.3. Either there is no solution or the 
solution is unique to (5.11) when Zo ~ [z '~, e). 

Let m~<0 and O<<.Ll(to, l ,m)r l ( to ,  l ,m)<~l. By (6.11), r~>~ 
(1-~/1) -1. Thus, L~<l - -~ / l .  If we choose e > 0  small, we have 
( z* )2 / z~<l - r l2  for some 0<r/2<r/1 .  And also, r  for some 
0<r /< r /2  in the interval [z" ,8] .  Thus z*/zl is strictly decreasing. Since 
limz~_.o z*/zl ~< 1, there is no solution to (5.11) in this case. 

Case (iii). C*(lo) = 1. For any 0 < ~/< 1, we can choose a smaller e 
so that. 

1 -~1 < (Zo/Zi) < 1 + vl (6.12) 

If 8 is small, then rl(t0,/, m) < 1 -bq. Let Ll( to, / ,  m) rl(to,/ ,  m) > 1 + 6  for 
some 6 > t/. Then 

1 + 6  

for some 0 < t / 1 < 6 .  From Ll(to, l ,m)=emt~176 if to is large 
enough, we have m > 0 ,  and mto>el  for some el >0.  From Lemma4.3, 
case (a), we have g02~<(1--~]3)~ 2, or 1~2-z~l<<.(1- , t3)  l z ~ - z ~ l  or 
e mr~ 1 >i r/3 for some t/3 > 0. Therefore z*/zl  is strictly decreasing and the 
solution to (5.11) is unique. 

Let Ll(to, l, m) rl(to, l, m) < 1 - 6 ,  for some J>r / .  By a similar argu- 
ment, m t o < - 8 1  for some e l > 0 .  Also, we must have m < 0 .  From 
Lemma 4.3, case (b), we then have g~2 ~< (1 -r /3)  z~ for some r/3 > 0. Thus 
z*/zl is strictly decreasing. There is no solution to (5.11) since 
limz~--,0 + z*/zl =LI  .rl < 1 - J .  

We have completed the discussion for the case C*(lo) > O. 
Consider C*(lo)< 0 and symmetric double periodic SN solutions next. 

We need to solve (5.11)'. We can divide the case into three subcases--case 
(iv), - 1  < C * ( / o ) < 0 ;  case (v), C * ( / o ) < - 1 ;  and case (vi), C * ( / 0 ) = - 1 .  



366 I.~ 

They are analogous to cases (i), (ii), and (iii), respectively. The proofs are 
similar to the previous cases and will not be rendered here. 

This completes the proof of Theorem 3.4. [] 

Proof of Theorem 3.5. From our assumption, c*(lo)= 
r~(oo, 10, mo) = 0  and (O/Ol) r1(oo, lo, mo) ~0 .  Using the implicit function 
theorem we can find a unique C t function l= l* (m)  so that 
r(oo, l*(m) ,m)=O,  [rn[ <,~. 

Since IjT(to, zl,/~)l < Ce -~'t~ and Ik*(t0,/, m, zl) -k* (oo , / ,  m, zl)l < 
Ce -*'~t~ we have rl(to, l*(m), m) = O(e-~~ Please refer to (6.1) and (6.2) 
for the definitions of Zo and r~. 

Since Zo is an odd function of z~, for some ~ >  0, we have 

z~ <~ ~(e_~,,,O + z~ + [ l - l*(m)[)  

Since ~(to, Zo,g) satisfies the equation z ' = m z - - ~ ' z 3 +  .-- ,  We have 
I~/zol ~<e '~* if Izol < e  and I~1 <8. Thus, from Lemma 4.1, 

I*llz.i <~emt~ Ce -~qt~ <<.2e mr~ 

if to > i is sufficiently large. We now choose ~ ( T ) =  C e - ' r ,  where C is a 
small constant. If [ l - l* (m) l  <~(T)  and zl < (J(T)) l;z, then C(e-~"'~ 
[ l -  l*(m)[) < �89 e -''t~ Therefore, Iz*/zol IZo/Z~l < 1. The bifurcation equation 
(5.11) or (5.11)' has no solution in this case. [] 

7. NUMERICAL TEST ON A PREDATOR-PREY MODEL 

The following predator-prey model was proposed by Freedman and 
Wolkowicz [ 13 ] to describe group defense of prey against predatation. 

~ = 2 u  ( 1 - k ) - 9 o p ( u )  

~; = v( - 7 + 11.3p(u)) (7.1) 

u = prey, v = predator 

where p(u) = u/(u 2 + 3.35u + 13.5) represents the interaction between prey 
and predator. For a large range of (~,, k), (7.1) has two interior equilibria 
(ao, go) and (~o, ~o), with go < ao. Here p(ao)--p(~o)=~,/l l .3,  while vo, ~o 
can be solved from the first equation of (7.1). we are interested in the equi- 
librium (Uo, ~Yo), which is hyperbolic, and shall be denoted E = E(?, k). 
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Let the Jacobian matrix at E be ( -_~ -~). It is shown in Ref. 25 that 
a > 0, b > 0, c > 0, and d = 0. Thus, hypothesis H3 in Section 3 is satisfied. 

Freedman and Wolkowicz have discovered a curve Y' ~ R 2 such that 
if (7, k)~Y' ,  then (7.1) possesses a homoclinic solution q(t) asymptotic to 
the equilibrium E(7, k). Numerical computation shows that the curve 
can be parameterized by t~o and is plotted in Fig. 7. For each (7, k) ~ Y', let 
~, be fixed and let k vary. Then the homoclinic solution breaks. The 
derivative of the gap between W~(E) and W~(E) with respect to k can be 
evaluated by the Melnikov integral M~(k), as in H4. The Melnikov integral 
has been computed numerically, and the result is plotted in Fig. 8. 
Evidently, M > 0 for all the values considered. Thus, hypotheses H2 and H 4 

in Section 3 are satisfied for those parameter values. 
The smooth dependence of Mr(k ) on ~o indicates that M > 0 is not a 

numerical artifice. 
In the remainder of this section, we fix (~o, ~,,k)=(5.49178, 1.0, 

6.87433). After adding diffusions (d~uee, d2vee), we consider a system of 
PDEs in the domain 0 < ~ < 1 with Neumann boundary conditions; cf. 
(1.2). Let F be the curve in the (dr, d2)-plane on which (1.2) has a zero 
eigenvalue with associated eigenvectors in ~r. Since bc > 0 and a > 0, F is 
depicted in Fig. 2, Case 1. 

For (d~, d2)E F, we now compute W~o~(E) and the flow on it, up to 
O(p3), where P = lu -~0 l  + Iv-tYol. Since the boundary conditions are of 
the Neumann type, we will expand (u, v) into Fourier cosine series. Let 
(ao+E~u.cosn~,v-o+~..~v.cosmr~)~W~l~(E). Let (UlCOST[~,VlCOST[~) , 
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Fig. 7. Values of  (~,, k) where a homoclinic orbit to (7.1) exits are plotted, using Uo as an 
independent variable. 
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with (ul, vm)= (r/, 1 ), be the unique eigenvector corresponding to the eigen- 
value 0, up to a constant multiple. Then Ul =r/v1 +r u,=u*(vm), and 
vn=v*(v~) for n ~  1, where ~, u*, v*=O(v~). This is due to the fact that 
W~o~(E) is tangent to the zero eigenvector corresponding to (Ul, v~)= 
(r/, 1). Because of the R symmetry (Theorem 2.7), we have r = O(p3). 

The Fourier coefficients (u,, v,) are functions of t. They satisfy 

/'/n - -  - - d l  n27t2U.  - -  a z / .  - - / )On  3L [" f ( u ,  V) ] .  + O ( P  4 ) 

/) .  ----" -d2 / ' / 2 / c2 / )  n - c/./n + [ g ( u ,  v ) ]  n -[- O ( p  4 ) 
(7.2) 

where f and g are polynomials of degree 3. For h E L2(0, 1), we use 
[h] ,  to denote the nth Fourier cosine coefficient for h. Using some basic 
trigonometry formulas, we can rewrite If(u, v)], and [g(u, v)], in terms 
of {u,}~,  {v,}~. Only finitely many terms are needed here since other 
terms will be included in O(p4). 

We can now use the Taylor expansion method in Res 2 to obtain a 
power series expansion of ~(vm) and the flow on the center manifold. The 
function ~ has the form O(vl)=cv3+O(v~). And the flow on the center 
manifold has the form 

�9 = + o ( p " )  

When (all, d2) moves along the curve F, values of ~ have been 
computed numerically and the results are depicted in Fig. 9, with 
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Fig. 9. Values Of ~ are plotted when (dl, d2) moves along F, which are parameterized by d,. 

against 7r2dl. It verifies that ~ < 0 for the portion of F under consideration. 
Since there is a diffeomorphism between v~ and z, hypothesis H5 in Section 3 
has been verified numerically. 

We now compute c*(dl, d2) for (dr, d2) E F, 0 < zr2dl < 3. Again, we fix 
Uo = 5.49178, 7 ffi 1, and k = 6.87433. Numerical results of c* are depicted in 
Fig. 10. We have found a point d~* =0.183 such that c*(d~, d2) < ( >  or = )  
0 if d l < ( >  or = )  d*. The results also show that ac*(lo)/Ol#O, where 
(10, 0 ) c F  corresponds to d~ =d* .  Therefore all the twisted, nontwisted, 
and degenerate cases have be found in Freedman and Wolkowicz's 
example. However the case c*(lo)/> 1 or ~< - 1 has not been found in this 
example. Numerical and theoretical results also indicate that there is a 
point (d~, d2)=(0.0093, 0.0093) where c*=0 .  However, the numerical 
error near that point is too large to be trustworthy. Thus, we do not 
include it in Fig. 10. 

We end this section by proving Lemma 6.1. 

Proof of Lemma 6.1. Recall the definition of :? in Section 5 and rl in 
(6.1) and (6.2). We need to consider the zth component of (a/azl) 
u , ( t l , g ,  y x , z l , g ) ,  with y l = 0  and z l = 0 .  Let (a /az l )U , ( t )=  
( x( t ), y( t ), z( t ) ), 0 ~ t ~ t t. .It satisfies the linear variational equation (3.4) 
and the initial conditions are x (0 )=  0, y ( 0 ) =  0, z (0)=  1. We now extend 
the solution (x(t) ,y( t) ,z( t))  to t~<0. Notice that we are treating an 
infinite-dimensional system, so the backward extension of a solution is not 
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unique. Using the fiat coordinates (4.1), in a neighborhood of 0, we write 
(3.4) as 

x' = A l x  + (Dxgl) x + (Dygl) y + (D=gl) z 

y' = A2y -I- Dyg2(Xq(t), yq(t), zg(t), It) y 

z' = A3z + (Dxg3) x + (Dyg3) y + (D.-g3) z 

(7.3) 

where q(t) = (Xq(t), yq(l), Zq(t)) in the flat coordinates. Here we have used 
the facts that yq(t)=0, t ~< 0, and g2(x, O, z, I t )=0 to simplify the second 
equation of  (7.3). 

First, let y(t)=-O for t~<0, which solves the second equation. Then 
(x(t), z(t)) can be solved uniquely from (7.3) backward in time. We now 
show that x(t)=-O for t~<0. If (x(t),O,z(t)) is a solution for (7.3), so is 
R(x(t), O, z(t)) = (x(t), O, - z ( t ) ) .  Thus, (x(t), 0, 0) is a solution of (7.3). 
Since x ( 0 ) =  0, solving the one-dimensional O D E  for x(t) we have x ( t ) -  0 
for t~<0. Observe that g~(0, y ,z ,  i t )=0 .  Thus, the first equation is valid 
even if z # 0. The equation for z(t) becomes 

z' = A3z + Drg3(xq( t), yq( t), zg( t), It) z (7.4) 

with A3=0.  In our flat coordinates, zq(t)=O and yq(t)=O, we have 
D,g3(xq(t), O, O, it) =Dzg3(O, O, O, it) =0, since zero is an eigenvalue for 
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(dl,  d2) ~ F. Here we used the fact that g3(x, 0, z,/z) = g3i0, 0, z, g) on 
W~I~. Thus, (7.4) becomes z' =0 ,  and z(t)= 1 for t<<.O. (x(t), y(t), z(t))= 
(0,0, 1) for t~<0. 

We now have (x(0), y(0), z(0)) ~ ~1 and shall remain in ~l for t/> 0. In 
particular, x(t)= 0 for all t ~ R. According to Section 3, (x(t), y(t), z(t))--, 
(0,0, c*) as t--, +oo. However, because the coordinates are flat, 
g3(O,y,z,g)=g3(O,O,z,g). Also, xq(t)==-O for t>>.tt. Thus (O/Oy) 
g3(O, yq(t),O,/t)=O for t>~t~. Again, z(t),t>>.t~, satisfies (7 .4 )wi th  
Xq(t) = 0  and zq(t) =0.  Since Dzg3(0, yq(t), 0 , g ) =  Dzg3(0, 0, 0 ,g)  =0.  We 
have z(t)=constant for t i> tl. Thus z(t~)= c*. This proves Lemma 6.1. [] 
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