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CODIAGONALIZATION OF MATRICES AND
EXISTENCE OF MULTIPLE HOMOCLINIC

SOLUTIONS∗

Xiaobiao Lin1,† and Changrong Zhu2

Abstract The purpose of this paper is twofold. First, we use Lagrange’s
method and the generalized eigenvalue problem to study systems of two quadrat-
ic equations. We find exact conditions so the system can be codiagonalized
and can have up to 4 solutions. Second, we use this result to study homo-
clinic bifurcations for a periodically perturbed system. The homoclinic bifur-
cation is determined by 3 bifurcation equations. To the lowest order, they
are 3 quadratic equations, which can be simplified by the codiagonalization
of quadratic forms. We find that up to 4 transverse homoclinic orbits can be
created near the degenerate homoclinic orbit.
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1. Introduction

We study homoclinic bifurcations of the periodically perturbed system

ẏ(t) = f(y(t)) + µg(y(t), µ, t), y ∈ Rn, µ ∈ R. (1.1)

The unperturbed autonomous system

ẏ(t) = f(y(t)), (1.2)

satisfies the following assumptions:

(H1) f ∈ C3, f(0) = 0 and Re(σ(Df(0))) 6= 0.

(H2) Equation (1.2) has a homoclinic solution γ(t) asymptotic to the equilibrium
y = 0.

The variational equation of (1.2) along the homoclinic solution γ is

u̇(t) = Df(γ(t))u(t). (1.3)

System (1.3) has d ≥ 1 linearly independent bounded solutions, including γ̇.
We assume g satisfies
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(H3) g ∈ C3 and g(y, µ, t+ 2) = g(y, µ, t).

By (H1), y = 0 is a hyperbolic equilibrium of (1.2). Since the perturbation ter-
m µg(x, µ, t) = O(|µ|), generically, equation (1.1) has a hyperbolic periodic orbit
θ(t, µ) := O(|µ|) near 0. Using the change of variable y = x + θ(t, µ), we may
assume that

(H4) g(0, µ, t) = 0.

By the phase shift of γ(t), system (1.2) has a family of homoclinic orbits, among
which we assume x(t) is a small perturbation to γ(t − τ), equivalently, x(t + τ) is
a small perturbation of γ(t). The parameter τ is determined by a phase condition
as follows: If x(t+ τ) = γ(t) + z(t) then z(0) ⊥ γ̇(0). Rename x(t+ τ) to x(t), we
assume that x(t) is a small perturbation of γ(t) and satisfies the following system:

ẋ(t) = f(x(t)) + µg(x(t), µ, t+ τ). (1.4)

From (H4), x = 0 is a hyperbolic equilibrium even after small periodic pertur-
bations. Let W s(0), Wu(0) be the stable and unstable manifolds of x = 0 when
µ = 0. Clearly, the homoclinic orbit γ lies on W s(0)

⋂
Wu(0). If (1.3) has d

dimension bounded solutions, then d = dim(Tγ(0)W
s(0)

⋂
Tγ(0)W

u(0)).
When µ 6= 0, (1.4) may have bifurcations near γ. The case d = 1 has been

extensively studied. In this case breaking of the homoclinic orbit γ is restored by
choosing the parameter τ , as in [5]. Hale [6] proposed to study the degenerate
cases where d ≥ 2. The case d = 2 has been considered in [14]. The purpose
of the present work is to treat the case d = 3. Using the method of Lyapunov-
Schmidt reduction, we derive a system of bifurcation functions Hj , 1 ≤ j ≤ 3, the
zeros of which correspond to the persistence of homoclinic solutions for (1.4). The
last equation H3 = 0 can be dealt with by selecting the parameter τ as usual,
while Hj = 0, j = 1, 2 can be reduced to a system of quadratic equations. By
the Lagrange’s method and codiagnalization of quadratic forms, we show that the
quadratic system can have up to 4 solutions. Finally, if the solutions to the quadratic
system are nondegenerate, then the bifurcation functions have nondegenerate zeros
and the perturbed system has transverse homoclinic orbits.

Codiagnalization of matrices has been used by Jibin Li and Lin [12] to study
systems of coupled KdV equations. It may also be useful when studinging the
2x2 systems of hyperbolic conservation laws with quadratic nonlinearities [19, 20],
base on personal conversation with Shearer. In [14], the method based on circular
and hyperbolic rotations, was used to codiagonalize two quadratic forms. The new
method in this paper is easier to use if one wants to find conditions for the existence
of 4 solutions to quadratic systems.

Given a symmetric real matrix B ∈ R2×2, then

F (x1, x2) = (x1, x2)B(x1, x2)T

is a quadratic form associated to B. If B is diagonalized by a nonsingular matrix
M : MTBM = diag(d1, d2), then

F (x1, x2) = (y1, y2)diag(d1, d2)(y1, y2)T = d1y
2
1 + d2y

2
2 ,

where (x1, x2)T = M(y1, y2)T . The symmetric transformation described above
is also called the congruence diagonalization. It should not confused with the
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similarity transformation of B which is defined by M−1BM . For example the
matrix diag(λ1,−λ2), λj > 0, can be reduced to diag(1,−1) by the matrix M =
diag(1/

√
λ1, 1/

√
λ2), which is a symmetric reduction, not similarity reduction.

In §2, we introduce notations to be used in this paper. We also present the
reduced bifurcation functions which, to the lowest degree, represent the breaking of
the homoclinc orbits under the periodic perturbations. In §3 we derive the bifurca-
tion equation by using the Lyapunov-Schmidt reduction. To the lowest degree, they
reduce to three quadratic equations. In §4, we introduce the Lagrange’s method
and generalized eigenvalue problems to study solutions of two quadratic forms. The
cases when one equation is elliptic are considered in §4.1. The other cases when one
equation is hyperbolic and none is elliptic are considered in §4.2. In §4.3, we present
the method of codiagonalization of two quadratic equations based on cases studied
in §4.1 and §4.2. In §5, we derive the reduced bifurcation function F (τ). We show
a simple zero of F corresponds to the existence of a homoclinic solution near γ. In
§6, we present an example showing that our conditions work consistently.

2. Notations and preliminaries

Notations. Since y = 0 is a hyperbolic equilibrium, from [17], (1.3) has exponential
dichotomies on J = R± respectively. In particular, there exist projections to the
stable and unstable subspaces, Ps + Pu = I, and constants m > 0, K0 ≥ 1 such
that

(i) |U(t)PsU
−1(s)| ≤ K0e

2m(s−t), for s 6 t on J,

(ii) |U(t)PuU
−1(s)| ≤ K0e

2m(t−s), for t 6 s on J.
(2.1)

For the same m > 0, define the Banach space

Z = {z ∈ C0(R,Rn) : sup
t∈R
|z(t)|em|t| <∞},

with the norm ‖z‖ = supt∈R |z(t)|em|t|. The linear variational system

Lu := u̇−Df(γ)u = h (2.2)

will be considered in Z. The adjoint operator for L is

L∗ψ := ψ̇ + (Df(γ))∗ψ. (2.3)

The domains of (2.2) and (2.3) are the dense subset of Z, defined as

D(L) := {u : u, ut ∈ Z}, D(L∗) := {ψ : ψ,ψt ∈ Z}.

From the theory of homoclinic bifurcations [17], L : Z → Z is a Fredholm
operator with index 0. The range of L is orthogonal to the null space of L∗. That
is

h ∈ R(L) iff

∫ ∞
−∞
〈ψ(t), h(t)〉dt = 0, for all ψ ∈ N(L∗). (2.4)

From d = 3, N(L) is three dimensional. Note that γ̇ ∈ N(L). Without loss in
generality, let (u1, u2, u3) be a basis of N(L), where we choose u3 = γ̇. And let
(ψ1, ψ2, ψ3) be a basis of N(L∗).
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We define some Melnikov types of integrals [16] that will be used in the future.
For integers p, q = 1, 2 and i = 1, 2, 3, let

b(i)pq =

∫ +∞

−∞
〈ψi(t),

1

2
D2f(γ(t))up(t)uq(t)〉dt, p, q = 1, 2,

ãi(τ) =

∫ +∞

−∞
〈ψi(t), g(γ(t), 0, t+ τ)〉dt.

We look for conditions so that (1.4) can have homoclinic solutions near γ. Let
β = (β1, β2)T . We shall use that the reduced bifurcation functionsMi : R2×R×R 7→
R defined bellow:

Mi(β, τ, µ) =

2∑
p,q=1

b(i)pq βpβq + ãi(τ)µ, i = 1, 2, 3. (2.5)

To the lowest degree, (2.5) describes the jump discontinuity x(0−) − x(0+) along
the direction of ψi(0), see [13].

Define the 2 × 2 matrices B(i) = (b
(i)
pq ), i ∈ {1, 2, 3}. We need to solve the

following system of quadratic equations

βTB(i)β + ãi(τ)µ = 0, i = 1, 2, 3. (2.6)

3. Derivation of the bifurcation equations using the
Lyapunov-Schimidt reduction

By (H2), system (1.4) with µ = 0 has a homoclinic solution γ. In this section, we
will find conditions such that (1.4), with small µ 6= 0, has some homoclinic solution
γµ satisfying ‖γ − γµ‖ = O(

√
|µ|).

Let Dih or Dijh denote the derivatives of a multivariate function h with respect
to its i-th or the i, j-th variables. With the change of variable x(t) = γ(t) + z(t),
where z(0) ⊥ γ̇(0), (1.4) is transformed to

ż = Df(γ)z + g̃(z, τ, µ), (3.1)

where

g̃(z, τ, µ)(t) =f(γ(t) + z(t))− f(γ(t))−Df(γ(t))z + µg(γ(t) + z(t), µ, t+ τ).
(3.2)

In [14], it is shown that g̃(·, τ, µ) mapps Z 7→ Z and satisfies the following
properties:

(1) g̃(0, τ, 0) = 0, D1g̃(0, τ, 0) = 0,

(2) D11g̃(0, τ, 0) = D2f(γ),

(3)
∂g̃

∂µ
(0, τ, 0) = g(γ, 0, t+ τ).

Recall that L(u) = u̇−Df(γ)u in the Banach space Z. As in [17], we define the
subspace of Z, which consists the range of L in Z.

Z̃ = {h ∈ Z :

∫ ∞
−∞
〈ψi(s), h(s)〉ds = 0, i = 1, 2, 3}.
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Consider a nonhomogeneous equation

ż −Df(γ)z = h, z(0) ⊥ γ̇(0). (3.3)

Let Z⊥ be the subspace of Z consisting of z(t) with z(0) ⊥ γ̇(0). If h ∈ Z̃,

using the variation of constants, there exists an operator K : Z̃ → N(L)⊥ such
that Kh is a solution of (3.3). Clearly, the general bounded solution of (3.3) is

z(t) =
∑2
p=1 βpup(t) + (Kh)(t), where βp ∈ R.

From (2.4), R(L) ⊕ N(L∗) = Z. Define a map P : Z → Z such that N(P ) =
R(L) and R(P ) = N(L∗). In particular,

h ∈ N(P ) if and only if

∫ ∞
−∞
〈ψi(s), h(s)〉ds = 0, i = 1, 2, 3.

As in [17], one can prove that P satisfies the following properties:

Lemma 3.1. (1) P and I − P are projections.
(2) R(P )⊕ R(L) = Z.

(3) R(I − P ) = N(P ) = R(L) = Z̃.

We now use the Lyapunov-Schmidt reduction to (3.1). Applying P and (I −P )
on (3.1), we find that (3.1) is equivalent to the following system

ż = Df(γ)z − (I − P )g̃(z, τ, µ), (3.4)

P g̃(z, τ, µ) = 0. (3.5)

First, we solve (3.4) for z ∈ Z⊥. Then the bifurcation equations are obtained by
substituting the solution z into (3.5).

Lemma 3.2. There exists a C2 solution z = φ(β, τ, µ) to (3.4) in Z⊥, where φ is
defined for |β| + |µ| ≤ δ1, τ ∈ R. Moreover φ(β, τ, µ) satisfies φ(0, τ, 0) = 0 and
(∂φ/∂βp)|(0,τ,0) = up, p = 1, 2.

Proof. Since R(I − P ) = Z̃ and K : Z̃ → N(L)⊥, we define a C2 map: F :
Z⊥ × R2 × R× R→ Z⊥ by

F (z,β, τ, µ) = z − (

2∑
p=1

βpup +K(I − P )g̃(z, τ, µ)), (3.6)

where β = (β1, β2) ∈ R2. From the properties of g̃(z, τ, µ), we have

F (0, 0, τ, 0) = 0, D1F (0, 0, τ, 0) = I. (3.7)

Since F is periodic in τ , by the Implicit Function Theorem, therre exists a C2

function φ(β, τ, µ) defined for |β| + |µ| ≤ δ1, τ ∈ R, with the range in Z⊥, and
satisfies

F (φ(β, τ, µ),β, τ, µ) = 0.

Hence,

φ(β, τ, µ) =

2∑
p=1

βpup +K(I − P )g̃(φ(β, τ, µ), τ, µ). (3.8)
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Differentiating (3.8) with respect to βp and evaluating at (0, τ, 0), we get

∂φ

βp

∣∣∣∣
(0,τ,0)

(t) = up(t), p = 1, 2.

The proof has been completed.
Substituting the solution φ(β, τ, µ) of (3.4) into (3.5), we have the bifurcation

equation

P g̃(φ(β, τ, µ), τ, µ) = 0, equivalently,

Hi(β, τ, µ) = 0, i = 1, 2, 3, (3.9)

where

Hi(β, τ, µ) :=

∫ +∞

−∞
〈ψi(s), g̃(φ(β, τ, µ), τ, µ)(s)〉ds. (3.10)

We have proved the following important result

Theorem 3.1. If φ satisfies (3.8) and (β, τ, µ) ∈ R2 × R × R solves (3.9), then
z = φ is a solution of (3.1) and hence the perturbed system (1.4) has a homoclinic
orbit x = γ + φ.

Through direct calculations, we can prove the following Lemma.

Lemma 3.3. For p, q ∈ {1, 2}, i ∈ {1, 2, 3}, Hi(β, τ, µ) has the following properties:

(i) If there are some (β, τ, µ) ∈ R2 × R × R such that Hi(β, τ, µ) = 0, i =
1, 2, 3, then φ is a solution of (3.1);

(ii) Hi(0, τ, 0) = 0, ∂Hi

∂βp
(0, τ, 0) = 0;

(iii) b
(i)
pq = 1

2
∂2Hi

∂βp∂βq
(0, τ, 0) =

∫ +∞
−∞ 〈ψi(t),

1
2D

2f(γ(t))up(t)uq(t)〉dt;

(iv) ãi(τ) = ∂Hi

∂µ (0, τ, 0) =
∫ +∞
−∞ 〈ψi(t), g(γ(t), 0, t+ τ)〉dt.

The quadratic functions Mi : R2 × R × R → R3 given by (2.5) represents the
lowest order terms of Hi(β, τ, µ). We are lead to solving the system of quadratic
equations (2.6).

4. Codiagonalization and solutions of two quadratic
equations

Let z =

x
y

 , B =

a b
b c

 and F (x, y) = zTBz. We say that the quadratic equa-

tion F (x, y) = h, h 6= 0 is of elliptic (or hyperbolic, or line) type if the graph of the
equation is an ellipse (or two hyperbolas, or two lines). The graph of two symmetric
parallel lines is a special case of two hyperbolas, where the normal direction to two
lines replaces the real axis of a hyperbola.

The hyperbolic rotation is well-known for its use in relativity theory [2]. We shall
define various transformations that keep a quadratic form F (x, y) = ax2+2bxy+cy2
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invariant. Consider the Hamiltonian systemx
y

′ =

−2b −2c

2a 2b

x
y

 ,

x(0)

y(0)

 =

x0
y0

 , (4.1)

and its solution mapping T (t).

Definition 4.1. The solution mapping T (t) for (4.1) that maps the ray
−−→
OP1 to

−−→
OP2, where P2 = T (t)P1 will be called the quadratic rotation by the angle t. It will
also be called the circular, elliptic or hyperbolic rotation if the graph of F (x, y) = h

is a circle, ellipse or hyperbola. The angle θ from
−−→
OP1 to

−−→
OP2 is defined to be t ∈ R.

On the other hand, if there does not exist any t ∈ R with
−−→
OP2 = T (t)

−−→
OP1, then

the angle between the two rays is undefined.
Just like the polar coordinates, if P0 is a point on the major axis (or semi-real,

or semi-imaginary axis), then we define the angle coordinate of P0 to be θ(P0) = 0.

For any other P ∈ R2, we define its angle coordinate θ(P ) to be the angle from
−−→
OP0

to
−−→
OP .

Example 4.1. Let a = c = 1, b = 0 in (4.1). The solution mapping

R(t) =

cos(t) − sin(t)

sin(t) cos(t)

 , t ∈ R,

defines the circular rotation in counter-clockwise direction.

Example 4.2. Let a = 1, c = −1, b = 0 in (4.1). The solution mapping

H(t) =

cosh(t) sinh(t)

sinh(t) cosh(t)

 , t ∈ R,

defines the standard hyperbolic rotation in R2. However, given two rays in R2, the
hyperbolic angle between them can be undefined.

More precisely, the two lines y = ±x divides R2 into 4 sectors:

S1 := {(x, y) : x > 0, |y| < |x|}, S2 := {(x, y) : y > 0, |x| < |y|},
S3 := {(x, y) : x < 0, |y| < |x|}, S4 := {(x, y) : y < 0, |x| < |y|}.

If (x0, y0)T ∈ Sj , 1 ≤ j ≤ 4, then (x(t), y(t))T ∈ Sj for all t ∈ R. More precisely,
if (x0, y0)T ∈ S1 or S3, then there exists an r0 > 0 or r0 < 0 such that (x0, y0) =
r0(cosh(t0), sinh(t0)). The hyperbolic rotation simply draws a hyperbola in sector
S1 or S3,x(t)

y(t)

 = r0

cosh(t) sinh(t)

sinh(t) cosh(t)

cosh(t0)

sinh(t0)

 = r0

cosh(t+ t0)

sinh(t+ t0)

 .

Similarly, if (x0, y0)T ∈ S2 or S4, then there exists an r0 > 0 or r0 < 0 such
that (x0, y0) = r0(sinh(t0), cosh(t0)). The hyperbolic rotation draws a hyperbola in
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sector S2 or S4,x(t)

y(t)

 = r0

cosh(t) sinh(t)

sinh(t) cosh(t)

sinh(t0)

cosh(t0)

 = r0

sinh(t+ t0)

cosh(t+ t0)

 .

Notice that the circular and standard hyperbolic rotations satisfy:

R∗(t)

1 0

0 1

R(t) =

1 0

0 1

 , H∗(t)

1 0

0 −1

H(t) =

1 0

0 −1

 .

If T (t) is the solution mapping for (4.1), we always have

T ∗(t)

a b
b c

T (t) =

a b
b c

 .

Lemma 4.1. Let F (x, y) := (x, y)B(x, y)T be the quadratic form associated to a
symmetric matrix B ∈ R2×2.

(1) If the vector field (4.1) corresponding to F (x, y) satisfies x′ = 0 on the x-axis,
or y′ = 0 on the y-axis, then the matrix B is diagonal.

(2) If there exist x1 6= 0, y1 6= 0 such that either (i) F (x1, y1) = F (−x1, y1), or
(ii) F (x1, y1) = F (x1,−y1), then B is diagonal.

Let B1, B2 ∈ R2×2 be symmetric, nonzero matrices and let F1(x, y) = a1x
2 +

2b1xy + c1y
2 = (x, y)B1(x, y)T , F2(x, y) = a2x

2 + 2b2xy + c2y
2 = (x, y)B2(x, y)T .

We now study the system of two quadratic equations

F1(x, y) = h1, F2(x, y) = h2. (4.2)

(H5) : Assume that the two quadratic forms F1(x, y), F2(x, y) are linearly inde-
pendent, i.e., the two matrices B1, B2 are linearly independent.

Consider the conditional maximum/minimum problems:

F1(x, y) = max or min, subject to F2(x, y) = ±h2. (4.3)

We look for critical points from the Lagranginan:

Λ(x, y, λ) = F1(x, y)− λF2(x, y), ∇x,yΛ(λ, x, y) = 0. (4.4)

To find critical points Pj = (xj , yj)
T , j = 1, 2, of the Lagrangian, we solve the

generalized eigenvalue/eigenvector problem

(B1 − λB2)

x
y

 = 0. (4.5)

4.1. Solutions of (4.2) if one equation is elliptic

In this subsection we assume that F2(x, y) = h2 is of elliptic type. Hence b22−a2c2 <
0. By changing ψi to −ψi, we can change B(i) to −B(i). Hence for elliptic type
quadratic forms we assume a2 > 0, c2 > 0 and h2 > 0.

It is well-known that two symmetric matrices can be simultaneously diagonalized
if one of the matrices is positive definite, [8,9]. However, it is not clear if the resulting
matrices are real valued.
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Theorem 4.1. Assue that (4.5) has two eigenvalues (λ1, λ2) corresponding to
(nonunique) eigenvectors (P1, P2) = ((x1, y1)T , (x2, y2)T ). Rescaling (P1, P2) so
that on both points F2 = h2. We consider three types of systems.

(i) (EE) type: Assume that F1 reaches the minimum r1 at P1 and the maximum
r2 at P2. System (4.2) has 4 solutions if r1 < h1 < r2.

(ii) (HE) type: Assume that F1 reaches a local minimum r1 < 0 at P1; and a local
maximum r2 > 0 at P2. System (4.2) has 4 solutions if r1 < h1 < r2.

(iii) (LE) type: In this case, the graph of F1(x, y) = h1 consists of two parallel
lines symmetric about the origin. The eigenvalues are λ1 = 0 with eigenvector
P1 on which F1(x2, y2) = 0; and λ2 6= 0 with the eigenvector P2 that solves
the conditional minimum problem with F1 = r1 < 0, or the maximum problem
with F1 = r2 > 0. System (4.2) has 4 solutions if r1 < h1 < 0 or 0 < h1 < r2.

Proof. Case (EE) type: It is given that F1(P1) = r1 < h1 < r2 = F1(P2).

Between each pair of (
−−→
OP1,

−−→
OP2), there exists a vector

−−→
OP0 such thatF2(P0) = h2

and F1(P0) = h1. There exist 4 pairs of such (
−−→
OP1,

−−→
OP2) so the total number of

solutions is 4. The proof of the other two cases are similar and shall be omitted.

4.2. Solutions of (4.2) if both equations are hyperbolic

For a give h2 6= 0, the hyperbola defined by F2(x, y) = h2 does not circle the
origin as the ellips in §4.1. Observe that for the (HH) type systems, the equilibrium
(0, 0) of (4.1) is hyperbolic and there exist stable and unstable eigenspaces for the
equilibrium (0, 0). Before giving a counter example, we introduce the following
definition.

Definition 4.2. Let L
(i)
j , i = 1, 2, be the stable and unstable eigenspaces of the

equilibrium for (4.1), where (a, b, c, ) = (aj , bj , cj). They are called the asymptotes

for Fj(x, y) = hj . The asymptotes L
(i)
j , i = 1, 2, divide R2 into four sectors. We say

(x, y) is in the positive (or negative) sector if Fj(x, y) > 0 (or Fj(x, y) < 0).

Example 4.3 (A Counter Example). Assume that the asymptotes of two hyper-
bolas are alternating, for example

F1 = x2 − y2, F2 = xy.

Following the curve F2(x, y) = h2, the values of F1 are not bounded below or above.
Therefore, conditional max/min as in §4.1 is not well posed. It is easy to see that
in such case, (4.2) has exactly 2 solutions and the two quadratic forms cannot be
codiagonalized.

Although the general max/mn problem is not well posed, to each of the cases
listed below, it is not hard to find a well posed conditional max/min problem.

Consider 4 sub-cases, as depicted in the four figures: (We skipped part of the
graphs can be obtained by symmetry for simplicity.)
(HH i) The two sectors of F1 > 0 are inside the sectors of F2 > 0.
(HH ii) The two sectors of F1 > 0 are inside the sectors of F2 < 0.
(HH iii) The two sectors of F1 < 0 are inside the sectors of F2 > 0.
(HH iv) The two sectors of F1 < 0 are inside the sectors of F2 < 0.
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case(i)

x

y

2

F > 0

F = 1

1

F = 1
F > 0

case(ii)

y

x

2
1

1

case(iii)

x

y

F < 0

2F = 1

case(iv)

1

x

y

F = 12
F < 0

Theorem 4.2. For cases (HH i) and (HH ii), and h2 > 0 or < 0, consider the
conditional maximum problem:

F1(x, y) = max, subject to F2(x, y) = h2. (4.6)

Then for (4.6), there exists r3 = maxF1. System (4.2) has 4 solutions if h1 < r3.
For cases (HH iii) and (HH iv), and h2 > 0 or < 0, consider the conditional

minimum problem:

F1(x, y) = min, subject to F2(x, y) = h2. (4.7)

Then for (4.7), there exists r4 = minF1 System (4.2) has 4 solutions if r4 < h1.
Finally, after rescalling the generalized eigenvectors (P1, P2), we can assume that

P2 solves the max/min problems (4.6) or (4.7). And P1 solves the complementary
max/min problem (4.6*) for cases (HH i) and (HH ii), or (4.7*) for cases (HH iii)
and (HH iv), defined as:

F1(x, y) = max, subject to F2(x, y) = −h2, (4.6*)

F1(x, y) = min, subject to F2(x, y) = −h2. (4.7*)

Proof. Following the curve F2(x, y) = h2, or −h2, the range of F1(x, y) can be
bounded above and unbounded below, or bounded below and unbounded above.
Therefore, either a conditional max problem or a conditional min problem is well-
posed, but not both.

The (LH) case can be treated just like the (HH) case. Consider 4 sub-cases:
(LH i) F1 ≤ 0 and the line F1 = 0 is inside the sectors of F2 > 0.
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(LH ii) F1 ≤ 0 and the line F1 = 0 is inside the sectors of F2 < 0.
(LH iii) F1 ≥ 0 and the line F1 = 0 are inside the sectors of F2 > 0.
(LH iv) F1 ≥ 0 and the line F1 = 0 are inside the sectors of F2 < 0.

Theorem 4.3. For cases (i) and (ii), consider the conditional maximum problem:

F1(x, y) = max, subject to F2(x, y) = h2. (4.8)

Then for (4.8), there exists r5 = maxF1. System (4.2) has 4 solutions if h1 < r5
For cases (iii) and (iv), consider the conditional minimum problem:

F1(x, y) = min, subject to F2(x, y) = h2. (4.9)

Then for (4.9), there exists r6 = minF1. System (4.2) has 4 solutions if r6 < h1.
Finally, after rescalling the generalized eigenvector (P1, P2), we can assume that

P2 solves the max/min problems (4.8) or (4.9). And P1 solves the complementary
max/min problem (4.8*) for cases (LH i) and (LH ii), or (4.9*) for cases (LH iii)
and (LH iv), defined as:

F1(x, y) = max, subject to F2(x, y) = −h2, (4.8*)

F1(x, y) = min, subject to F2(x, y) = −h2. (4.9*)

For the (LL) case, if two family of lines are not parallel, there are 4 solutions.
To simplify the paper, we shall not discuss (LL) case in the sequel.

4.3. Codiagonalization of two quadratic equations

In this subsection, we consider codiagonalization of two quadratic equations, but
not the coexistence of real valued solutions. The method is based the generalized
eigenvalue/eigenvector problems. For the cases listed in §4.1 and §4.2, we have the
following results:

Theorem 4.4. If one equation of the quadratic system is elliptic, then the two
quadratic form can always be codiagonalized by real valued matrices.

If both equations are hyperbolic, then in all the cases (HH i)-(HH iv), the two
quadratic forms can be dociagonalized by real valued matrices.

If F1(x, y) is the line type and F2(x, y) is hyperbolic, then in all the cases (LH
i)-(LH iv), the two quadratic forms can be cociagonalized by real valued matrices.

Proof. Let (P1, P2) be the generalized eigenvector corresponding to the general-
ized eigenvalue problem (4.5). After rescaling, assume that P2 solves the max/min
problem. In all the three cases, there exists an angle θ0 such that T2(−θ0)P2 coin-
cides with the major axis or the minor axis of the graphs of F2(x, y) = h2.

Based on the results from previous subsections, each generalized eigenvalue prob-
lem has two lindearly independent eigenvectors. Thus, the eigenvalus are distinct.
This implies

〈P1,

a2 b2
b2 c2

P2〉 = 0.

Therefore, in all the cases listed in Theorems 4.1, 4.2 and 4.3, the image of T2(−θ0)P1

should coincide with the minor axis or the major axis of F2 = h2. Assume that
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under the rotation T2(θ0), the quadratic form F1(x, y) = h1 becomes F3(x, y) = h1
while F2(x, y) = h2 is unchanged. Now apply a circular rotation R(−θ′0) to both
F3(x, y) = h1 and F2(x, y) = h2 so the major axis of F2(x, y) = h2 is mapped to
the x-axis. The matrices that represent the two quadratic forms are

R∗(θ′0)T ∗(θ0)BjT (θ0)R(θ′0), j = 1, 2.

Clearly F2(x, y) = h2 has been diagonalized. From Lemma 4.1, F1(x, y) = h1 has
also been diagonalized.

Lemma 4.2. The 4 solutions of (4.2) obtained in Theorems 4.1, 4.2 and 4.3 are
simple.

Proof. If not, then the solutions of the system are on the lines spanned by
−−→
OP1

or
−−→
OP2 where the graphs are tangent to each other. Contradicting to the fact that

the system has 4 solutions.

5. Coexistence of homoclinic solutions

Assume that the first two equations of (2.6) satisfy the conditions in Theorems 4.1,
4.2 and 4.3. Then they can be codiagonalized by the change of variables β → α.
And system (2.6) becomes

d11α
2
1 + d12α

2
2 − â1(τ)µ = 0,

d21α
2
1 + d22α

2
2 − â2(τ)µ = 0,

d31α
2
1 + d32α1α2 + d33α

2
2 − â3(τ)µ = 0.

From (H5), the first two quadratic forms are linearly independent. Using row elim-
inations to simplify the system, we have

α2
1 − a1(τ)µ = 0,

α2
2 − a2(τ)µ = 0,

α1α2 − a3(τ)µ = 0.

(5.1)

For µ ∈ R, we look for solutions such that

(α1, α2) = O(
√
|µ|), τ ∈ R.

Since µ < 0 can be handled similarly, assume µ > 0 and let xj = αj/
√
µ. Then

f1(x1, x2, τ) := x21 − a1(τ) = 0,

f2(x1, x2, τ) := x22 − a2(τ) = 0,

f3(x1, x2, τ) := x1x2 − a3(τ) = 0.

(5.2)

For a fixed τ ∈ R, from the first two equations of (5.2), we obtain

x1(τ) = ±(a1(τ))1/2, x2(τ) = ±(a2(τ))1/2. (5.3)

Since the conditions in Theorems 4.1, 4.2 and 4.3 are satisfied, then a1(τ), a2(τ) >
0, and (5.3) represents 4 real valued solutions. From (5.3), the third equation of
(5.1) yields the reduced bifurcation equation

F (τ) :=
[
±(a1(τ))1/2

]
∗
[
±(a2(τ))1/2

]
− a3(τ) = 0. (5.4)
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Lemma 5.1. Assume that τ0 is a simple zero for F (τ), and the corresponding
(nonzero) x1 and x2 are from (5.3). Then at τ = τ0,∣∣∣∣∂(f1, f2, f3)

∂(x1, x2, τ)

∣∣∣∣ 6= 0.

Proof. Observe that

∣∣∣∣∂(f1, f2, f3)

∂(x1, x2, τ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
2x1 0 −a′1(τ0)

0 2x2 −a′2(τ0)

x2 x1 −a′3(τ0)

∣∣∣∣∣∣∣∣∣ .
Multiply −x22 = −a2 to row one, −x21 = −a1 to row two and 2x1x2 = 2a3 to
row three, then add. The determinant becomes 2x31x

3
2(a′1a2 + a′2a1 − 2a3a

′
3) =

2x31x
3
2
d
dτ (a1a2 − a23). But this is nonzero due to F (τ0) = 0 and F ′(τ0) 6= 0.

Going back from (5.2) to (5.1), we have proved the following result:

Theorem 5.1. Assume µ 6= 0. For each particular choice of ± sign in (5.4), if τ0
is a simple zero for F (τ), then (5.1) has 2 simple solution of the form (α(j), τ (j), µ).
The total number of solutions can be 2 or 4.

Using the the inverse of the codiagonalization of the first two equations, α→ β,
we find that Mi(β, τ, µ), i = 1, 2, 3, defined in (2.5), can have 2 or 4 simple solutions

(β(j), τ (j), µ).

Theorem 5.2. Assume that the conditions (H1)–(H5) are satisfied and the first two
equations of (2.6) satisfy the conditions in Theorems 4.1, 4.2 or 4.3. Assume that

(β(j), τ (j), µ), 1 ≤ j ≤ 4 or 1 ≤ j ≤ 2 are simple solutions for Mi(β, τ, µ), i = 1, 2, 3.
There exists µ̄ > 0, independent of j such that if 0 < |µ| < µ̄, then the following
is true. For each fixed j, there exists an open region Ij ⊂ R containing zero and
differentiable functions, ωj : Ij → R2 and ηj : Ij → R such that ωj(0) = 0, ηj(0) = 0

and Hi(s(β
(j) + ωj(s)), τ

(j) + ηj(s)), s
2µ) = 0, i = 1, 2, 3, for s ∈ Ij and s 6= 0.

Proof. Let H = (H1, H2, H3),M = (M1,M2,M3). For each fixed j, since

(β(j), τ (j), µ) is a simple solution forM(β(j), τ (j), µ) = 0, thenD(β,τ)M(β(j), τ (j), µ)
is a 3×3 nonsingular matrix. For each j define a C2 function W : R2×R×R 7→ R3

by

W (x, y, s) =

{
1
s2H(s(β(j) + x), τ (j) + y, s2µ), for s 6= 0,

M(β(j) + x, τ (j) + y, µ), for s = 0.

Clearly, for s 6= 0, H = 0 if and only if W = 0. Through direct calculations, we
have W (0, 0, 0) = 0 and

D(x,y)W (0, 0, 0) = D(β,τ)M(β(j), τ (j), µ0)

is a nonsingular matrix. By the implicit function theorem there exist an open region
Ij ⊂ R containing zero and a differentiable functions, ωj : Ij → R2 and ηj : Ij → R
such that ωj(0) = 0, ηj(0) = 0 and W (ωj(s), ηj(s), s) = 0. Hence

H(s(β(j) + ωj(s)), τ
(j) + ηj(s)), s

2µ) = 0 for s 6= 0.
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The proof has been completed.
By Theorem 5.2, the bifurcation function H = (H1, H2, H3) = 0 at (s(β(j) +

ωj(s)), τ
(j) + ηj(s), s

2µ). Then system (3.1) has the solution φ(β, τ, µ). Hence
system (1.4) has 2 or 4 homoclinic solutions given by

γ(j)s (t) =γ(t) +

2∑
p=1

s(β(j)
p + ωjp(s))up(t)

+K(I − P )g̃(φ, τ (j) + ηj(s), s
2µ)(t),

(5.5)

for 0 6= s ∈ Ij , 1 ≤ j ≤ 4 or 1 ≤ j ≤ 2. Clearly, lims→0 γ
(j)
s (t) = γ(t).

Remark 5.1. From the construction of γ
(j)
s , we find that the solutions are robust

with respect to small perturbation of g. This alone shows that each of the solution
obtained is a transversal homoclinic solution. The same argument was used by
Mallet-Paret in [15] to show that the homoclinic orbits in some delay equations are
transverse.

Alternatively, it is shown in [13] that the functions Hi, 1 ≤ i ≤ 3, as in (3.10),
measure the gap between the unstable manifold at t = 0− and the stable manifold at

t = 0+. Since D(β,τ)M(β(j), τ (j), µ0), 1 ≤ j ≤ 4, is nonsingular, D(β,τ)H(s(β(j) +

ωj(s)), τ
(j) + ηj(s)), s

2µ) is also a nonsingular matrix. Therefore, the intersection
of Wu(0) and W s(0) is transverse.

6. An Example

Although the example given in this section is not from applications, it shows that
the conditions given in this paper are consistent. Consider the following system

ẋ1 = x2 + εx5 sin(t− c1),

ẋ2 = x1 − 2x1x
2
5 + x22 + εx6 cos(t− c1),

ẋ3 = x4 + εkx6 cos t,

ẋ4 = x3 − 2x3x
2
5 + x2x4 + εkx5 sin t,

ẋ5 = x6 + εx1x2 cos(t− c2),

ẋ6 = x5 − 2x35 + x3x4 − 1
2εx6 cos(t− c2).

(6.1)

The unperturbed system is

ẋ1 = x2,

ẋ2 = x1 − 2x1x
2
5 + x22,

ẋ3 = x4,

ẋ4 = x3 − 2x3x
2
5 + x2x4,

ẋ5 = x6,

ẋ6 = x5 − 2x35 + x3x4.

(6.2)
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It is easy to check that 0 is an equilibrium and the eigenvalues of Df(0) are
{−1,−1,−1, 1, 1, 1}. Hence 0 is a hyperbolic equilibrium. Let r(t) = sech(t) and
γ = (0, 0, 0, 0, r, ṙ). By direct calculations, we see that γ is a homoclinic solution to
the origin.

Remark 6.1. The example is modefied from [4]. At the first look, it seems to
be unnatural to consider a homoclinic orbit with x1 = x2 = x3 = x4 = 0 in R6.
However, if γ(t) is a homoclinic orbit that can be embedded in a smooth 2D sub-
manifold, by a change of variables, we can assume that γ(t),−∞ < t < ∞ lies in
the (x5, x6)-plane.

The variational equation along γ has the following bounded fundamental solu-
tions:

u1 = (r, ṙ, r, ṙ, 0, 0), u2 = (0, 0, r, ṙ, 0, 0), u3 = (0, 0, 0, 0, ṙ, r̈).

Then we can choose a basis of the bounded fundamental solutions of the adjoint
equation as

ψ1 = (−ṙ, r,−ṙ, r, 0, 0), ψ2 = (0, 0,−ṙ, r, 0, 0), ψ3 = (−ṙ, r, 0, 0, 2r̈,−2ṙ).

By calculations, we have

b
(1)
11 = −π

4
, b

(1)
22 = −π

8
, b

(2)
12 = −π

8
, b

(3)
11 =

π

8
, b

(3)
22 =

π

4

and b
(i)
jk = 0 for others. Then, up to the quadratic terms, the bifurcation equations

are 
−π4β

2
1 − π

8β
2
2 = εµ1(τ − c1),

−π8β1β2 = εkµ2(τ),

π
8β

2
1 + π

4β
2
2 = εµ3(τ − c2),

(6.3)

where µ1(τ), µ2(τ), µ3(τ) are given by

µ1(τ) =(sin τ − cos τ)

∫ ∞
−∞

r(t)ṙ(t) sin tdt

+ sin τ

∫ ∞
−∞

r(t)2 cos tdt− cos τ

∫ ∞
−∞

ṙ(t)2 cos tdt

=− 31π

32
(sin τ − cos τ) + π sin τ + π cos τ

∫ ∞
−∞

ṙ(t)2 cos tdt,

µ2(τ) =(sin τ − cos τ)

∫ ∞
−∞

r(t)ṙ(t) sin tdt = −31π

32
(sin τ − cos τ),

µ3(τ) = sin τ

∫ ∞
−∞

r(t)2 cos tdt = π sin τ.
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Consider ε > 0 and assume β1 =
√
εx, β2 =

√
εy. Then

− π

4
x2 − π

8
y2 = µ1(τ − c1),

− π

8
xy = kµ2(τ),

π

8
x2 +

π

4
y2 = µ3(τ − c2),

x2 =
8

3π
(−2µ1(τ − c1)− µ3(τ − c2)),

y2 =
8

3π
(µ1(τ − c1) + 2µ3(τ − c2)),

xy = ± 8

π
kµ2(τ).

Finally, the bifurcation equation becomes

(−2µ1(τ − c1)−µ3(τ − c2))1/2 ∗ (µ1(τ − c1) + 2µ3(τ − c2))1/2 = ±3kµ2(τ). (6.4)

From its definition, µ2(τ) has simple zeros at τ0 = π/4 and τ0 = 5π/4. If the norms
of µ1 matches that of µ3, then we can adjust c1, c2 so that there exist a < τ0 < b
such that if τ ∈ [a, b] then

2µ1(τ − c1) + µ3(τ − c2) < 0,

µ1(τ − c1) + 2µ3(τ − c2) > 0.

If the norms of µ1, µ3 differ too much, we can rescale the perturbation terms to
make them comparable.

Finally, by choosing k sufficiently large, the functions in the two sides of (6.4)
will intersect transversely near τ0. Finding the parameters (c1, c2, k) can be done
numerically, and will not be discussed further in this paper.
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