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It is well known that the standing wave u0 for the KPP type
convection–diffusion equation is stable if the perturbations of
the initial data are in the weighted function spaces proposed by
Sattinger. We study boundary conditions so that in a large finite
domain, there is a stable standing wave ũ near u0. The standing
wave ũ may not be monotone, and the stability is proved by
pseudo exponential dichotomies that are weighted both in the
spatial variable ξ and in the dual variable s to the time t.
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1. Introduction

This work is motivated by the study of a 1D liquid/vapor phase change model proposed by Haitao
Fan. The model consists of a p-system describing the motion of the liquid/vapor mixture coupled with
the reaction–diffusion equation describing the change of the percentage λ of the vapor in the mixture.
The existence of traveling waves was proved in [6]. In [7], Fan considered a simplified system where
the equation for λ is the KPP/Fisher equation:

λt = λxx ± λ(1 − λ). (1.1)
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Here, + (or −) corresponds to evaporation (or condensation) of the fluid mixture. Fan proved that the
stability of the whole system is dominated by the stability of the KPP traveling wave: if the traveling
wave to the equation for λ is stable, then the traveling wave to the liquid/vapor phase transition
system is stable.

The problem discussed here may have practical application to the design of evaporation nozzles.
If the liquid/vapor mixture moves to the right with the constant speed c, and relative to the media
the traveling wave moves to the left with the same speed, then the evaporation wave appears to be
stationary inside the nozzle. We would like to find boundary conditions for the existence and stability
of internal layer solutions to the phase transition system. Motivated by the work of Fan, as a first step,
we study boundary conditions under which the KPP/Fisher waves with convection are stable in a large
finite domain.

Consider the diffusion–convection equation with the KPP/Fisher nonlinearity [8,13]:

ut = uξξ − cuξ + f (u), c > 0,

f (0) = f (1) = 0,

f ′(0) > 0, f ′(1) < 0, f ′′(u) < 0. (1.2)

A typical example is f (u) = u(1 − u) where D f (0) = 1, D f (1) = −1. If c2/4 > D f (0), then (1.2) has a
stationary whole line solution u0(ξ), ξ ∈ R that connects u = 0 to u = 1. We assume that ξ = 0 is the
center of the wave, say u0(0) = 1/2. Then u0 is almost constant for sufficiently large |ξ |. The standing
wave satisfies

uξξ − cuξ + f (u) = 0. (1.3)

We also consider (1.3) in a finite large domain J = (a,b) where |a| and b are sufficiently large so
that u0(a) ≈ 0 and u0(b) ≈ 1.

The standing wave ũ for (1.2) is related to a singular perturbation problem. Since ε := 1/(b − a)

is a small parameter, using the change of variables T = εt , X = ε(x − a), (1.2) becomes a singularly
perturbed equation,

εuT = ε2u X X − εcu X + f (u), X ∈ (0,1).

The standing wave becomes an internal layer solution in the bounded domain (0,1).
Eq. (1.3) also describes traveling wave solutions for the reaction–diffusion equation in the coordi-

nates (x, t) with the wave speed −c,

ut = uxx + f (u). (1.4)

In the moving coordinate ξ = x+ ct , the traveling wave u = u(ξ) becomes a standing wave connecting
u = 0 to u = 1. Kolmogorov et al. [13] showed that if |c| � 2

√
D f (0) then such traveling wave exists.

When we say that the traveling wave (or standing wave with convection) u0(ξ), ξ = x + ct , connects
u = 0 to u = 1, we mean u0 → 0 as ξ → −∞ and u0 → 1 as ξ → ∞. The definition does not depend
on c > 0 or c < 0.

Similar problems have been considered by Beyn and Lorenz [1] for parabolic systems with several
unknown variables under the condition that the essential spectrum of the traveling wave lies in the
negative complex plane. In this paper, we consider the monostable traveling waves so the condition
in [1] is not satisfied. Our system has only one unknown variable which allows us to use slopes of
manifolds to describe the boundary conditions. By doing so, we obtained precise boundary conditions
that can ensure the existence and stability of the standing waves. Generalization of the results to
systems with several unknown variables, in the same spirit of [1] will appear in a separate paper. See
also Remark 4.3 in Section 4.
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Fig. 1.1. The phase portrait near the heteroclinic solution q(ξ).

Rewrite (1.3) as a first order system

u′ = v, v ′ = cv − f (u), (1.5)

of which the eigenvalues at two equilibrium points E1 = (0,0) and E2 = (1,0) are

0 < λ−
1 < λ−

2 , at E1; λ+
1 < 0 < λ+

2 , at E2.

Associated to the traveling wave u0 to (1.4), the first order system (1.5) has a node to saddle hetero-
clinic orbit q(ξ) = (u0(ξ), v0(ξ)), where v0(ξ) = u′

0(ξ).
A phase portrait for (1.5) with c = 3, f (u) = 2u(1 − u) is presented in Fig. 1.1.
In the whole real line, the stability of the KPP traveling wave is usually treated by the weighted

norm using the weight function w(ξ) introduced by Sattinger [22]. The weighted norm restricts the
allowable initial values on the whole real line so the wave is actually stable under a smaller family
of perturbations. In a closed bounded domain, all the continuous functions are bounded even in the
weighted norm. So we cannot use weighted norms to select allowable perturbations near the stand-
ing wave u0(ξ). However, we have additional control of the solutions by some boundary conditions
so that there exists a unique stable standing wave ũ for all sufficiently large b and |a|. Such boundary
conditions will be called “good boundary conditions” for brevity. General statements on good bound-
ary conditions will be given later in this paper. Here are some simple examples where d > 0, d1 � 0
are small constants and |a|, b are sufficiently large so that the solution u(a) ≈ 0 and u(b) ≈ 1:

(1) u(a, t) = 0, u(b, t) = 1 are bad boundary conditions for there does not exist any solution near u0
that satisfies such boundary conditions.

(2) ux(a, t) = 0, u(b, t) = 1 are bad boundary conditions for there does not exist any solution near u0
that satisfies such boundary conditions.

(3) u(a, t) = d, u(b, t) = 1 ± d1 are good boundary conditions.
(4) u(a, t) = d, ux(b, t) = ±d1 are good boundary conditions.
(5) ux(a, t) = d, u(b, t) = 1 are bad boundary conditions. The standing wave ũ uniquely exists but is

unstable.
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Fig. 1.2. Top: Solutions near the heteroclinic solution q(ξ) that satisfy u(a) = d, u(b) = 1 − d1. With the same a, the solutions
are determined by the b j where u(b j) = 1 − d1. Bottom: Solutions near the heteroclinic solution q(ξ) that satisfy u(a) = d,
ux(b) = 1 ± d1. With the same a, the solutions are determined by the b j where ux(b j) = 1 ± d1.

For the KPP type scalar equations, the existence of the standing wave ũ near u0 can be proved by
a phase plan analysis, and in many cases, the stability of ũ can be proved by monotone/comparison
argument. The method in this paper allows us to prove the existence and stability of nearby finite
domain standing waves for systems of equations which cannot be obtained by phase plane analysis
or comparison argument. Even for scalar equations, examples (3) and (4) show that in some cases,
stable standing waves ũ may not be monotone so comparison argument cannot be used to study the
stability of the waves. Several solutions corresponding to boundary conditions (3) and (4) are plotted
in Fig. 1.2. The starting time ξ = a is fixed, so the solutions are uniquely determined by the ending
time b j . It is interesting to see that solutions corresponding to different b j can belong to the same
orbit in the phase plane. Also, notice that some solutions may be non-physical for satisfying u(b) > 1,
but are mathematically valid solutions.

The PDE (1.2) will be considered in the function space L2( J × R
+) where J ⊂ R is a bounded or

unbounded interval. A solution u(x, t) of (1.2) is in H2,1( J ×R
+) (i.e., (u, ut , uxx) ∈ L2( J ×R

+)). From
the Trace Theorem [15], if u ∈ H2,1, then the mapping

x → (
u(x, ·), ux(x, ·)) : J → H3/4(

R
+) × H1/4(

R
+)

is continuous. Let û(x, s) be the Fourier–Laplace transform of u(x, t). Then, for each x ∈ J , both
û(x, s)(1+|s|3/4) and ûx(x, s)(1+|s|1/4) are L2 functions of ω if s = iω. The well-posedness of the ini-
tial value problem in H2,1( J ×R

+) can be proved using the weights (1 + |s|3/4) on û and (1 + |s|1/4)

on ûx , where s is in the interior of a sector in the complex plane that contains the right half plane.
See [17]. However, since we only consider eigenvalue problems, it is simpler to weight û(x, s) by
(1 + |s|0.5) while ûx(x, s) will not be weighted. See Section 4 for details. The factor (1 + |s|0.5) in-
dicates that û(x, ·) is more smooth than ûx(x, ·) and should not be confused with Sattinger’s weight
w(ξ) that specifies the decay rate of u(ξ), ξ → −∞. The use of weighted norm can also be achieved
by a change of phase variables as in Beyn and Lorenz [1].

To study the linear variational systems around the traveling/standing waves, we will use the
pseudo (or weighted) exponential dichotomies in R

± . See [10] for the definition of “pseudo expo-
nential trichotomies”. The weight of the pseudo exponential dichotomies is closely related to the
weight of Sattinger’s function spaces, as stated in Proposition 3.3. This will play a key role in this
paper.



62 X.-B. Lin / J. Differential Equations 255 (2013) 58–84
Using exponential dichotomies, the proof of the stability of standing waves in the finite bounded
domain is very similar to the proof of the existence and uniqueness of such waves. Let C

+ := {s ∈ C:
Re(s) � 0}. For each s ∈ C

+ , we show that U = 0 is the only solution that satisfies the boundary
conditions. Therefore, s is not an eigenvalue. The method can be used to treat system of KPP type
equations.

Some related topics have been considered in earlier papers [1,14]. Sandstede and Scheel [20,21]
studied the stability of waves on unbounded and large bounded domains in detail and discovered
that remnant and transient instabilities determine the spectral (in)stability of waves under domain
truncation. However, the point of view in this project is different. We look for a set of boundary
conditions such that there does not exist any eigenvalue in C

+ by checking all the parameters s ∈ C
+ .

While in other works, the spectrum sets for unbounded and large bounded domains are compared.
Moreover, most of the earlier papers are interested in checking the stability of waves on the whole
real line based on information obtained from the stability of waves in large bounded domains, for
example, the information from numerical simulation of waves. We are interested in the stability of
waves in finite domains so generally speaking, our problem is simpler.

In Section 2, we review the stability for KPP type internal layer solutions on the whole real line.
The weighted norms based on Sattinger’s weight function are introduced there. In Section 3, we de-
fine the pseudo exponential dichotomies and prove some estimates on weighted vectors and weighted
functions. In Section 4, we discuss the existence of standing waves in large bounded domains with
boundary conditions. The study of the existence of standing waves in this section relies on the exis-
tence of pseudo exponential dichotomies for the linear variational system around q(ξ). Although we
only discuss the scalar KPP equation in details, our method can be used to treat KPP type systems
with several unknown variables. See Remark 4.3 at the end of Section 4.

In Section 5, we prove that the standing wave obtained in Section 4 is stable. A detailed discussion
of spectrum equation around ũ is given showing it has exponential dichotomies closely related to the
spectrum projections of the linear system at two equilibria u = 0 and u = 1. In Section 6, we prove
a generalized Lambda Lemma that applies to flows near the unstable node and use it to explore the
existence and stability of the standing waves. In particular, the geometric approach allows us to show
that some of the finite domain standing waves ũ are unstable.

Notations. We use the following notations in this paper:

Notations Meaning

u solutions to nonlinear scalar equations
u (u, v)τ where v = u′
U solutions to the linearized equation
U (U , V ) where V = U ′
u0 the whole line standing wave connecting u = 0 to u = 1
ũ standing wave near u0, satisfying boundary conditions
q(ξ) (u0(ξ), v0(ξ))τ where v0 = u′

0
q̃(ξ) q̃(ξ) = (ũ, ṽ) where ṽ = ũ′
g(ξ) the forcing term to a second order equation
G(ξ) G = (0, g)τ , the forcing term to a first order system

2. Stability of KPP type internal layer solution on the whole real line

We review some results on the stability of standing waves in the whole real line so they can be
used on the stability of standing waves in large bounded domains.

In the whole real line, the spectrum of the standing waves for a diffusion–convection equation is
the same as the traveling waves for the corresponding reaction–diffusion equation. The linear varia-
tional system around the standing wave u0(ξ) is

Uτ = LU , where LU := Uξξ − cUξ + D f (u0)U .
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The spectral equation is

(L − s)U = U ′′ − cU ′ + (
D f (u0) − s

)
U = 0. (2.1)

It can be rewritten as a first order system

U ′ = V , V ′ = cV − (
D f (u0) − s

)
U = 0. (2.2)

If the scalar valued function U (ξ) is a solution to (2.1), then the vector valued function (U (ξ), U ′(ξ))

is a solution to (2.2) and will be denoted by U(ξ).
With s as a parameter, the eigenvalues for the “spatial differential equations” (2.1) or (2.2) at

u0(−∞) = 0 and u0(∞) = 1 are

λ−
1,2(s) = c

2
∓

√(
c

2

)2

− D f (0) + s,

λ+
1,2(s) = c

2
∓

√(
c

2

)2

− D f (1) + s. (2.3)

If s = 0, using D f (0) > 0, D f (1) < 0, it is easy to check that

λ+
1 (0) < 0 < λ−

1 (0) < λ−
2 (0) < λ+

2 (0).

If s ∈ C
+ , then the eigenvalues λ−

1 (s) and λ−
2 (s) (or λ+

1 (s) and λ+
2 (s)) are in two non-intersecting

hyperbolic sectors that satisfy the gap conditions

Reλ−
1 (s) � λ−

1 (0) < λ−
2 (0) � Reλ−

2 (s),

Reλ+
1 (s) � λ+

1 (0) < λ+
2 (0) � Reλ+

2 (s). (2.4)

The KPP waves in the whole real line are unstable without an appropriate weight function. See
for example, Dan Henry [12]. More specifically, without a weight function the spectrum of (2.1) is
contained in

σess(L) = {
s ∈C: Re

√
s − D f (0) + (

c2/4
)
� c/2

}
.

This set consists of essential spectrum points of the linear operator L and is bounded to the right by
a parabola intersecting the real axis at D f (0). It can be verified that both Reλ−

1 (s) and Reλ−
2 (s) are

positive if s ∈ σess(L).
The use of weight functions to treat the stability of KPP waves becomes the standard approach to

all the researchers.

Definition 2.1. Define the rate function r(ξ), ξ ∈R as

r(ξ) =
{

eγ ξ if ξ � 0, where γ > 0,

1 if ξ � 0.

Let the weight function be w(ξ) = r(ξ)−1. Let B w be the Banach space of scalar or vector valued
continuous functions on ξ ∈ R of which the following norms are finite:

‖u‖w := sup
{

w(ξ)
∣∣u(ξ)

∣∣, ξ ∈R
}

< ∞. (2.5)
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If u ∈ B w , then |u(ξ)| � ‖u‖w · r(ξ). The rate function controls the spatial decay rate of u(ξ) as
ξ → −∞.

Remark 2.1. A general discussion of the choice of γ can be found in [23] showing γ should satisfy
λ−

1 < γ < λ−
2 . In the future we alway assume γ = c/2.

The weighted norm introduced by Sattinger [22] is

‖u‖w = sup
ξ∈R

∣∣u(ξ)w(ξ)
∣∣, w(ξ) = 1 + e−(c/2)ξ .

According to this norm, |u(ξ)| � ‖u‖w(1 + e−(c/2)ξ )−1. If γ = c/2, then the weighted norm defined in
this paper is equivalent to the one defined by Sattinger.

In the weighted function space, Sattinger proved that the spectrum of the linearized operator L
splits into two subsets in C:

{
s ∈C: Re

√
s − D f (1) + (

c2/4
)
� c/2

} ∪ {
s ∈R: D f (1) � s � D f (0) − (

c2/4
)}

.

It can be verified that both Reλ+
1,2(s) > 0 if s is in the following set

{
s ∈ C: Re

√
s − D f (1) + (

c2/4
)
� c/2

}
.

Thus this set consists of essential spectrum points of the linear operator L. The set

{
s ∈R: D f (1) � s � D f (0) − (

c2/4
)}

consists of (non-isolated) eigenvalues so it is also part of the essential spectrum set. Sattinger proved
that if c2 > 4D f (0), then in the weighted function spaces, the spectrum set is in a negative sector
in C

− . He also constructed the resolvent (L − s)−1 for the spectral equation and showed that the
wave is stable in the weighted space. In particular, any s ∈ C

+ is not an eigenvalue to the spectral
equation.

3. Pseudo exponential dichotomies and estimates on weighted vectors and weighted functions

Since the standing wave u0(ξ) either stays near u = 0 or u = 1 for large |ξ |, solutions of the
ξ -dependent system (2.1) will inherit the exponential dichotomies determined by the eigenvalues
λ±

1,2(s) at u = 0 and u = 1. For the first order system (2.2), let Y ±
1 (s) = (1, λ±

1 (s))τ and Y ±
2 (s) =

(1, λ±
2 (s))τ be eigenvectors corresponding to eigenvalues λ±

1 (s) and λ±
2 (s) at u0 = 0 or u0 = 1. From

Hartman [11], or Sattinger [22], if s ∈ C
+ , system (2.2) has two fundamental set of solutions in R

±
with the following asymptotic properties:

Z−
1 (ξ, s) ∼ eλ−

1 (s)ξ Y −
1 (s), Z−

2 (ξ, s) ∼ eλ−
2 (s)ξ Y −

2 (s), for ξ → −∞;
Z+

1 (ξ, s) ∼ eλ+
1 (s)ξ Y +

1 (s), Z+
2 (ξ, s) ∼ eλ+

2 (s)ξ Y +
2 (s), for ξ → ∞. (3.1)

Here Z(ξ, s) ∼ eλ(s)ξ Y (s) means Z(ξ, s) − eλ(s)ξ Y (s) = o(eλ(s)ξ Y (s)). Due to the rate conditions (3.1),
the solutions Z−

2 (ξ, s) and Z+
1 (ξ, s) are unique up to constant multiples. The solutions Z−

1 (ξ, s) and
Z+

2 (ξ, s) are not unique even after rescaling by constant multiples.
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Fig. 3.1. The dichotomy and pseudo dichotomy in R
± . The dotted lines indicate possible exponential weights in R

± .

The growth and decay rates of Z±
1,2(ξ) for s = 0 are depicted in Fig. 3.1. After normalization we

assume ‖Z±
j (0, s)‖ = 1. Define the Evans function

E(s) = det
(

Z−
2 (0, s), Z+

1 (0, s)
)
.

It is clear that E(s) = 0 iff s is an eigenvalue for the KPP wave in the weighted space. Sattinger
showed that the KPP wave is stable in the weighted space. Therefore E(s) �= 0 for s ∈ C

+ .
In the spaces of bounded continuous functions, s = 0 is an eigenvalue with q′(ξ) as an eigenfunc-

tion for system (2.2). As ξ → −∞ or +∞, the eigenfunction q′(ξ) has the same asymptotic behavior
as Z−

1 (ξ,0) or Z+
1 (ξ,0). We shall assume that Z−

1 (ξ,0) = q′(ξ) for ξ � 0 and Z+
1 (ξ,0) = q′(ξ) for

ξ � 0 so Z−
1 (0−,0) = Z+

1 (0+,0). More generally, we can prove the following lemma.

Lemma 3.1. For s ∈ C
+ , there exist a fundamental set of solutions Z1,2(ξ, s) for (2.2) defined and continuous

on R and satisfying the asymptotic conditions (3.1). In particular

Z1(0−, s) = Z1(0+, s), Z2(0−, s) = Z2(0+, s).

Proof. Consider the fundamental set of solutions as in (3.1). For each s with s ∈ C
+ , write Z+

1 (0+, s)
as

Z+
1 (0+, s) = c1 Z−

1 (0−, s) + c2 Z−
2 (0−, s). (3.2)

We give an indirect proof that c1 �= 0. If c1 = 0, then by checking the asymptotic decay rate of Z+
1 (ξ, s)

as ξ → ±∞, we find that Z+
1 (ξ, s) is an eigenfunction corresponding to the eigenvalue s even in the

weighted function space introduced by Sattinger [22]. However, since s ∈ C
+ , this is a contradiction

to the stability result proved by Sattinger. Therefore c1 �= 0.
Using c1 and c2 obtained before, define a solution to (2.1) as follows:

Z1(ξ, s) :=
{

Z+
1 (ξ, s), ξ � 0,

c1 Z−
1 (ξ, s) + c2 Z−

2 (ξ, s), ξ � 0.

Since c1 �= 0, it is easy to show that Z1(ξ, s) ∼ eλ−
1 (s)ξ Y −

1 (s) as ξ → −∞. The property Z1(0−, s) =
Z1(0+, s) follows from its definition and (3.2).

Similarly, we can construct a solution Z2(ξ, s), ξ ∈ R so that Z2(ξ, s) = Z−
2 (ξ, s) for ξ � 0, and

Z2(ξ, s) ∼ eλ+
2 (s)ξ Y +

2 (s) as ξ → ∞. �
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It is often more convenient to use pseudo exponential dichotomies to study solutions in R
± than

the fundamental set of solutions to (2.2). A general reference for exponential dichotomies is in Cop-
pel [3]. See also the Bohl exponents given in [5]. Let T (ξ,η, s) be the principle matrix solution to (2.2)
with s as a parameter. Our definition follows from that of Henry [12] which only uses forward flow
T (ξ,η, s), ξ � η on the stable subspace and backward flow ξ � η on unstable subspace.

Definition 3.1. Let C
+ ⊂ C be the subset of complex numbers whose real parts are nonnegative,

and J ⊂ R be a bounded or unbounded interval. We say that system (2.1) has a pseudo exponential
dichotomy in the interval J for each s ∈ C

+ if there exist projections P s(ξ, s) + Pu(ξ, s) = I , ξ ∈ J ,
continuous with respect to ξ , two exponents α(s) < β(s) and a constant K (s) > 0 such that

(1)

{
T (ξ,η, s)P s(η, s) = P s(ξ, s)T (ξ,η, s), ξ � η ∈ J ,

T (ξ,η, s)Pu(η, s) = Pu(ξ, s)T (ξ,η, s), ξ � η ∈ J ,

(2)

{∣∣T (ξ,η, s)P s(η, s)
∣∣ � K (s)eα(s)(ξ−η), for ξ � η ∈ J ,∣∣T (η, ξ, s)Pu(ξ, s)
∣∣ � K (s)eβ(s)(η−ξ), for η � ξ ∈ J .

The ranges of the projections P s(ξ, s) and Pu(ξ, s) are called the (relatively) stable and unstable
subspaces of the pseudo exponential dichotomy.

We say that the system has a regular exponential dichotomy if the exponents satisfy the condition
α(s) < 0 < β(s).

Based on the information of the eigenvalues at u = 0,1, the existence of pseudo exponential
dichotomies usually can be proved by the property called “the roughness of pseudo exponential di-
chotomies”, see [3,19,10]. The projections to stable and unstable subspaces can also be obtained by
using the fundamental set of solutions Z±

1,2(ξ, s) and the Evans function [22]. In particular, for the
KPP/Fisher equation, if s ∈ C

+ , the linear equation (2.2) has an exponential dichotomy for ξ ∈ R
+ ,

and has a pseudo exponential dichotomy for ξ ∈ R
− . In R

+ , the exponents are λ+
1 (s) = α+(s) <

β+(s) = λ+
2 (s). In R

− , the exponents are λ−
1 (s) = α−(s) < β−(s) = λ−

2 (s).
Let R P denote the range of the projection P . Using Lemma 3.1, we show that the dichotomies

defined in R
± can be combined as in the following lemma.

Lemma 3.2. For each s ∈ C
+ , we can redefine the dichotomies of system (2.2) on R

± so that the projections
P s(ξ, s) and Pu(ξ, s) are continuous with respect to ξ ∈R and satisfy (1) in Definition 3.1. In particular,

R P s(0−, s) = R P s(0+, s), R Pu(0−, s) = R Pu(0+, s).

The exponential rates in each of the intervals R
± are unchanged, that is, property (2) in Definition 3.1 is

satisfied with α(s) = λ−
1 (s), β(s) = λ−

2 (s) in R
− , and with α(s) = λ+

1 (s), β(s) = λ+
2 (s) in R

+ .

Proof. Using the fundamental set of solutions from Lemma 3.1, let

R P s(ξ, s) := span
{

Z1(ξ, s), ξ ∈R
}
, R Pu(ξ, s) := span

{
Z2(ξ, s), ξ ∈R

}
.

Then the projections P s(ξ, s) + Pu(ξ, s) = I are uniquely defined for ξ ∈ R, s ∈ C
+ . �

Remark 3.1. We often say that (2.2) has an exponential dichotomy on R since the projections P s(ξ, s)
and Pu(ξ, s) are defined and continuous for all ξ ∈ R and property (1) of Definition 3.1 is satisfied.
However, property (2) of Definition 3.1 is only satisfied separately in R

− with the rate α−(s) < β−(s),
and in R

+ with the rate α+(s) < β+(s).
In Section 5, we will make a change of variables so that (2.2) becomes (5.4). To that system, we

show that if U is weighted by (1 + |s|0.5) but V = U ′ is not weighted, then the spectral system (2.2)
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can have a regular exponential dichotomy on R of which the projections are uniformly bounded with
respect to s ∈ C

+ . The constant K (s) in the definition can be chosen independent of s.

3.1. Basic estimates on weighted vectors and weighted functions

Definition 3.2. Let w(ξ) be the same weight function as in Definition 2.1 with γ = c/2. For each
ξ ∈ R , defined the Banach space B w(ξ) of vectors v ∈ R

2 with the norm ‖v‖w(ξ) = w(ξ)|v| where |v|
is the Euclidean norm of v.

Thus if ‖v‖w(ξ) = C , then |v| = Cr(ξ) in the Euclidean norm, which is much smaller at ξ = a than
at ξ = b, if |a| and b are two large constants.

Let T (ξ,η, s) be the principle matrix solution of (2.2). From Lemma 3.2, (2.2) has pseudo exponen-
tial dichotomies on R

± . A simple relationship between the pseudo exponential dichotomies and the
weighted vector spaces B w(ξ) is given below.

Proposition 3.3. The principle matrix solution T (ξ,η, s) : B w(η) → B w(ξ) induces a flow on the Banach
spaces of vectors B w(ξ) , ξ ∈ J . If T (ξ,η, s) has a pseudo exponential dichotomy on the interval J , then the in-
duced flow has a regular exponential dichotomy in the vector spaces B w(ξ) . In particular, if (2.2) has a pseudo
exponential dichotomy in ξ < 0 with the exponents α− < β− , then using α− < γ < β− , for the induced
exponential dichotomy in B w(ξ) the exponents are α − γ < 0 < β− − γ .

In the following we assume s is fixed and drop the reference to s. So the projections of the di-
chotomies will be P s(ξ), Pu(ξ) for ξ ∈ J = [a,b], and the constant is K . The exponents are α− < β−
for ξ � 0 and α+ < β+ for ξ � 0 respectively.

Lemma 3.4 (Estimates for the forward and backward flows). Assume

φs ∈ R P s(a), φu ∈ R Pu(b).

Then the function T (·,a)φs satisfies

∥∥T (·,a)φs
∥∥

w � K 2‖φs‖w(a). (3.3)

For the point-wise estimate of the flow from ξ = a to ξ = b, we have

∥∥T (b,a)φs
∥∥

w(b)
� K 2e(γ −α−)a+bα+‖φs‖w(a). (3.4)

Similarly the function T (·,b)φu satisfies

∥∥T (·,b)φu
∥∥

w � K 2‖φu‖w(b). (3.5)

For the point-wise estimate of the flow from ξ = b to ξ = a, we have

∥∥T (a,b)φu
∥∥

w(a)
� K 2e−β+b+(β−−γ )a‖φu‖w(b). (3.6)

Proof. The norms of B w(a) and B w(b) will be applied to φs and φu respectively.
We first give an estimate for the function T (ξ,a)φs . For a � ξ � 0,

∣∣T (ξ,a)φs
∣∣ � K e(ξ−a)α−‖φs‖w(a)e

γ a � K eγ ξ e(ξ−a)(α−−γ )‖φs‖w(a).
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For 0 � ξ � b,

∣∣T (ξ,a)φs
∣∣ � K eξα+ ∣∣T (0,a)φs

∣∣ � K 2eξα+
e−(α−−γ )a‖φs‖w(a).

Combining both estimates, we have (3.3) and (3.4).
Similarly, we derive estimate for T (ξ,b)φu . For 0 � ξ � b,

∣∣T (ξ,b)φu
∣∣ � K eβ+(ξ−b)‖φu‖w(b).

For a � ξ � 0,

∣∣T (ξ,b)φu
∣∣ � K 2e−β+beβ−ξ‖φu‖w(b)

� K 2eγ ξ e−β+b+(β−−γ )ξ‖φu‖w(b).

Combining both estimates, we have (3.5) and (3.6). �
Lemma 3.5 (Estimates for the integrals). For G ∈ B w , which is the weighted Banach space of continuous vector
valued functions as in Definition 2.1, let

Is(ξ) :=
ξ∫

a

T (ξ, ζ )P s(ζ )G(ζ )dζ, Iu(ξ) :=
ξ∫

b

T (ξ, ζ )Pu(ζ )G(ζ )dζ, (3.7)

where ξ ∈ [a,b]. Then

‖Is‖w � K 2
(

1

γ − α− + 1

|α+|
)

‖G‖w , (3.8)

‖Iu‖w � K 2
(

1

β+ + 1

β− − γ

)
‖G‖w . (3.9)

Proof. Using the pseudo exponential dichotomies, we have for a � ξ � 0,

∣∣Is(ξ)
∣∣ �

ξ∫
a

K eα−(ξ−ζ )eγ ζ ‖G‖w dζ

= K eγ ξ

ξ∫
a

e−(γ −α−)(ξ−ζ )‖G‖w dζ

� K
(
γ − α−)−1

eγ ξ‖G‖w .

For 0 � ξ � b,

∣∣Is(ξ)
∣∣ � K eα+ξ

∣∣Is(0)
∣∣ +

ξ∫
0

K eα+(ξ−ζ )‖G‖w dζ

� K 2((γ − α−)−1 + ∣∣α+∣∣−1)‖G‖w .

All together, we have the estimate (3.8).



X.-B. Lin / J. Differential Equations 255 (2013) 58–84 69
Fig. 4.1. E1 = (0,0), E2 = (0,1) are equilibrium points. The slope of E1 P is the first positive eigenvalue λ−
1 .

Similarly, for 0 � ξ � b,

∣∣Iu(ξ)
∣∣ �

b∫
ξ

K e(ξ−ζ )β+‖G‖w dζ � K
(
β+)−1‖G‖w .

For a � ξ � 0,

∣∣Iu(ξ)
∣∣ � K eξβ− ∣∣Iu(0)

∣∣ +
0∫

ξ

K e(ξ−ζ )β−
eγ ζ ‖G‖w dζ

� K 2(β+)−1
eγ ξ‖G‖w + K

(
β− − γ

)−1
eγ ξ‖G‖w .

Combining both we have the estimate (3.9). �
4. Existence of standing waves in large bounded domains with boundary conditions

In the rest of the paper, we consider the orbit of q(ξ) as the “relatively stable” manifold that
passes through E1 = (0,0), and denoted by W s(E1). In this section, we fixed the value s = 0 in (2.1)
and (2.2) so the parameter s will be dropped in all the previously defined notations.

First we present a condition under which the standing wave ũ near u0 does not exist. Let P =
(1, λ−

1 ) be a point on the phase plane (u, v) where v = uξ . Observe that the slope of line segment
E1 P is λ−

1 , where E1 = (0,0). See Fig. 4.1.
In the phase plane U = (U , Uξ ), the boundary conditions will be defined by U(a) ∈ Ma , U(b) ∈ Mb

where the boundary manifolds Ma and Mb are two 1D linear submanifolds of R2.

Theorem 4.1. Assume that the boundary manifold Ma is mutually disjoint from the interior of the triangle
�E1 P E2 . Then the solution of the boundary value problem that stays near the orbit q(ξ) does not exist.

Proof. We give an indirect proof. If a solution q̃(ξ) is near q(ξ) for all a � ξ � b, then q̃(0) must be in
the triangle �E1 P E2. From the vector field depicted in Fig. 4.1 along the three sides of �E1 P E2, the
backward orbit q̃(ξ), ξ < 0 stays inside the triangle. Therefore q̃(a) is in the interior of the triangle
�E1 P E2 and will not be on the boundary manifold Ma , a contradiction to q̃(ξ) satisfies the boundary
condition at a. �

Based on Theorem 4.1, Ma must intersect with some interior point in the triangle �E1 P E2. Assume
that the manifold Ma transversely intersects with the orbit of q(ξ) (the “relatively stable manifold
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of E1, W s(E1)) at a point P1 = q(a) where a < 0 is a large constant so that P1 is near E1. Assume
also that Mb transversely intersects the unstable manifold W u(E2) at P2 which is close to E2. Observe
that P1 �= E1, but P2 = E2 is allowed. For such P1 ∈ W s

loc(E1) and P2 ∈ W u
loc(E2), define the boundary

manifolds as

Ma = {
U

∣∣ (U − P1) · na = 0
}
, Mb = {

U
∣∣ (U − P2) · nb = 0

}
, (4.1)

where na and nb are normal vectors to Ma and Mb respectively.
The following hypothesis will be assumed throughout this paper:

(H1) Let the angles between Ma and T W s(E1) be θ1 and Mb and T W u(E2) be θ2. We assume that
there is a constant 0 < θ0 � π/2 such that θ0 � θ j � π/2 for j = 1,2.

Remark 4.1. The lower bound θ0 determines how close P1, P2 are to E1, E2 and how large |a| and b
should be. Notice that the condition P1 being close to E1 is the same as |a| being sufficiently large.
We state both conditions to make the boundary conditions on both ends look similar.

Also notice that if a < 0 is fixed, increasing b > 0 can only make ũ(b) close to P2. The largeness of
b > 0 and the closeness of P2 to E2 are both necessary to ensure that ũ(b) is close to E2.

Let u(ξ) = q(ξ)+ U (ξ). Then U (ξ), a � ξ � b satisfies the following first order system with bound-
ary conditions:

Uξ = V , V ξ = cUξ − D f
(
u0(ξ)

)
U − g(ξ), (4.2)

q(a) + U (a) ∈ Ma, q(b) + U (b) ∈ Mb. (4.3)

Here g(ξ) represents the nonlinear term N(U (ξ)) = f (q + U ) − f (q) − D f (q)U .

Lemma 4.2. If U ∈ B w with small ‖U‖w , then N(U ) ∈ B w and there exists a constant C > 0 such that
‖N(U )‖w � C‖U‖2

w . Moreover, the linear operator DN maps B w → B w with the operator norm bounded
by ‖DN‖ � C‖U‖w .

Proof. From

N(U ) = f (q + U ) − f (q) − D f (q)U =
( 1∫

0

D2 f (q + tU )(1 − t)dt

)
U 2,

and ‖U 2‖w � ‖U‖2
w , we easily find that ‖N(U )‖w � C‖U‖2

w .
Next for any function Ū ∈ B w , from 〈DN(U ), Ū 〉 = 〈D f (q + U ) − D f (q), Ū 〉, we find

∥∥〈
DN(U ), Ū

〉∥∥
w �

∣∣D f (q + U ) − D f (q)
∣∣‖Ū‖w � C‖U‖w‖Ū‖w . �

Theorem 4.3. Let Ma and Mb be the boundary manifolds defined in (4.1). Assume that P1 and P2 are suffi-
ciently close to E1 and E2 , Ma � W s

loc(E1) and Mb � W u
loc(E2), and the condition (H1) is satisfied. Then for

sufficiently large |a| and b, there exists a unique standing wave q̃(ξ) near q(ξ) for a � ξ � b that satisfies the
boundary conditions at a and b.

Proof. First we replace N(U (ξ)) by a given function Ñ(ξ) in B w . We will solve the linear variational
equation with the given Ñ(ξ). Then a contraction mapping principle with Ñ = N(U ) will determine U
for the nonlinear equation.
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Let G(ξ) = (0, Ñ(ξ))τ be the vector valued function in B w . Using the pseudo exponential di-
chotomy, U(ξ), a � ξ � b, can be written as

U(ξ) = T (ξ,a)P s(a)U(a) + T (ξ,b)Pu(b)U(b) − Is(ξ) − Iu(ξ) (4.4)

where Is(ξ), Iu(ξ) are the convolutions of G(ξ) to Green’s functions as in (3.7). Let δ := min{γ − α−,

β− − γ , |α+|, β+} > 0. From Lemma 3.5 (with γ = c/2) the integrals Is(ξ), Iu(ξ) satisfy

‖Is‖w �
(

2K 2

δ

)
‖G‖w , ‖Iu‖w �

(
2K 2

δ

)
‖G‖w .

From (4.4) the solution U is determined by the two vectors:

φs := P s(a)U(a), φu := Pu(b)U(b).

From Lemma 3.4, in the weighted norms, the functions T (ξ,a)φs and T (ξ,b)φu satisfy

∥∥T (·,a)φs
∥∥

w � C‖φs‖w(a),
∥∥T (·,b)φu

∥∥
w � C‖φu‖w(b).

Notice the weight at ξ = b is w = 1. We write ‖φu‖w(b) for symmetry only.
Finally T (b,a)φs and T (a,b)φu shall be weighted at b and a by w(b) and w(a) respectively. From

Lemma 3.4 again, we have the following decay estimates of vectors in the weighted norms:

∥∥T (b,a)φs
∥∥

w(b)
� Ce−δ(b−a)‖φs‖w(a),

∥∥T (a,b)φu
∥∥

w(a)
� Ce−δ(b−a)‖φu‖w(b). (4.5)

Denote the function U in (4.4) by U =F1(φs, φu, G). Then in the weighted norm,

∥∥F1(φs, φu, G)
∥∥

w � C
(‖φs‖w(a) + ‖φu‖w(b) + ‖G‖w

)
. (4.6)

If ‖U‖w is sufficiently small, due to Lemma 4.2 N(U ) is Lipschitz continuous with a small Lipschitz
number. Then the fix point problem

U = F1
(
φs, φu,

(
0, N(U )

)τ )
, (4.7)

has a unique solution by the contraction mapping principle. Let the solution of the nonlinear equa-
tion (4.7) be denoted by

U = F2(φs, φu), then

|U|w �
∣∣F2(φs, φu)

∣∣
w � C

(‖φs‖w(a) + ‖φu‖w(b)

)
. (4.8)

To satisfy the boundary conditions, (φs, φu) must satisfy

φs + Iu(a) + q(a) + T (a,b)φu ∈ Ma,

φu + Is(b) + q(b) + T (b,a)φs ∈ Mb.

The above can be expressed as
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(
φs + Iu(a) + T (a,b)φu

) · na = 0,(
φu + Is(b) + T (b,a)φs + q(b) − P2

) · nb = 0.

Recall that Ma and Mb transversely intersect with W s
loc(E1) and W u

loc(E2) respectively and the angles
between the manifolds are bounded below by θ0. If |a| and b are sufficiently large, then Ma and Mb
also transversely intersect with R P s(a) and R Pu(b) respectively. Then φs → φs · na and φu → φu · nb
are two isomorphisms. The inverses to the two mapping are bounded operators and shall be denoted
by Ka and Kb . We then have

φs = Ka(φs · na), ‖φs‖w(a) � C
∥∥(φs · na)

∥∥
w(a)

,

φu = Kb(φu · nb), ‖φu‖w(b) � C
∥∥(φu · nb)

∥∥
w(b)

.

We are led to the system of fixed point for the mapping (φs, φu) → (φ′
s, φ

′
u) where

φ′
s = −Ka

[(
Iu(a) + T (a,b)φu

) · na
]
,

φ′
u = −Kb

[(
Is(b) + q(b) − P2 + T (b,a)φs

) · nb
]
. (4.9)

In the weighted norms the following estimates hold:

∥∥φ′
s

∥∥
w(a)

� C
(‖G‖w + e−δ(b−a)‖φu‖w(b)

)
,∥∥φ′

u

∥∥
w(b)

� C
(‖G‖w + e−δ(b−a)‖φs‖w(a) + ∥∥(

q(b) − P2
)∥∥

w(b)

)
.

Replacing G by (0, N(U ))τ and using the estimate (4.8), if b − a is sufficiently large then (4.9) defines
a contraction mapping from R P s(a) × R Pu(b) to itself:

(φs, φu) → (
φ′

s, φ
′
u

)
.

The unique fix point (φs, φu) = (φ′
s, φ

′
u) determines the solution U(ξ) that satisfies the boundary con-

ditions at a and b. �
Remark 4.2. Using an iteration method starting with φs = 0, φu = 0 to approximate the solution of
the fixed point problem, at the first approximation, we see φ1

s = 0 and φ1
u = −Kb((q(b) − P2) · nb).

The approximation (φ1
s , φ1

u) has an exponentially small error. This suggests that the standing wave
solution has a fast boundary layer at near ξ = b if (q(b) − P2) · nb �= 0. This can also be seen from the
phase portrait near the equilibrium E2 in Fig. 1.1.

Remark 4.3. With exactly the same method we can treat systems of KPP type equations. Assume
that system (1.3), with u ∈ R

n , has a whole line standing wave solution u0(ξ) connecting u = w1 to
u = w2. The corresponding heteroclinic solution is q(ξ). Assume that the equilibrium u = w2 is stable,
i.e., Reσ D f (w2) < 0. The other equilibrium u = w1 has k unstable modes with real eigenvalues, i.e.,
if σ D f (w1) = {s j}n

1, then 0 < s1 � s2 � · · · � sk and

Re(s j) < 0, k + 1 � j � n.

Assume c/2 > sk . The first order system corresponding to the second order equations has 2n eigen-
values. We shall consider the first k positive eigenvalues of the first order system that are bounded
by c/2 to be “relatively stable”. Let the n-D boundary manifold Ma transversely intersect with the
local “relatively stable” manifold of E1 = (w1,0) at q(a) = P1; and the n-D boundary manifold Mb
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Fig. 5.1. The growth/decay rates of fundamental set of solutions are shown in logarithmic scale. The arrows indicate the ranges
of ka and kb which are never equal to λ−

1 (s) or λ+
2 (s) for any s � 0.

transversely intersect with the local unstable manifold of E2 = (w2,0) at P2. Assume that P1, P2 are
close to E1 and E2 and |a|, b are sufficiently large. Then there exists a unique standing wave ũ(ξ) on
[a,b] that satisfies the boundary conditions defined by Ma and Mb . The solution stays close to the
whole line standing wave solution u0(ξ) for all ξ ∈ [a,b].

5. Stability of the solution in a large bounded domain

Assume all the conditions in Section 4 are satisfied so there exists a unique standing wave solu-
tion ũ that satisfies the boundary conditions defined by Ma and Mb . As before we assume that Ma

and Mb pass P1 and P2 where P1 = (u1, v1), P2 = (u2, v2). We rewrite Ma , Mb as

Ma = {
(u, v)

∣∣ v − v1 = ka(u − u1)
}
, Mb = {

(u, v)
∣∣ v − v2 = kb(u − u2)

}
.

Recall that λ±
1,2(0) are eigenvalues of (2.2) at s = 0, u = 0,1. Beside (H1), the following hypothesis

will be assumed in this section:

(H2) λ−
1 (0) < ka � ∞, −∞ � kb < λ+

2 (0). If ka = ∞ and/or kb = −∞, we mean the Dirichlet boundary
condition u ≡ u1 and/or u ≡ u2 respectively.

The ranges of allowable ka and kb and the ranges of λ−
1 (s) and λ+

2 (s) for s � 0 are depicted in
Fig. 5.1.

The linear variational system around the standing wave solution ũ is

Ūt = Ūξξ − cŪξ + D f (ũ)Ū , a < ξ < b,

Ūξ = kaŪ at ξ = a, Ūξ = kbŪ at ξ = b. (5.1)

Since we deal with linear problem in this section, it is more convenient to use the weight function
e−γ ξ for both ξ � 0 and ξ � 0. By the change of variable Ū = eγ ξ U , γ = c/2, we have the linear
boundary value problem for the new variable U ,

Ut = Uξξ + (
D f (ũ) − γ 2)U , a < ξ < b,

Uξ = (ka − γ )U at ξ = a, Uξ = (kb − γ )U at ξ = b. (5.2)
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Let s be an eigenvalue and U be the corresponding eigenfunction of the linear system. Let ha :=
ka − γ , hb = kb − γ . Then the spectral equation can be written as a first order system with boundary
conditions:

Uξ = V , V ξ = (
γ 2 + s − D f (ũ)

)
U ,

V = haU at ξ = a, V = hbU at ξ = b. (5.3)

The boundary condition for the eigenfunction can be expressed as

U(a) · na = 0, U(b) · nb = 0,

where na =
(

ha√
h2

a + 1
,

−1√
h2

a + 1

)
, nb =

(
hb√

h2
b + 1

,
−1√

h2
b + 1

)
.

For the Dirichlet boundary conditions at ξ = a and/or ξ = b, we let na = (1,0) and/or nb = (1,0).
We also consider the linear system with ũ(ξ) replaced by the whole line standing wave u0(ξ),

Uξ = V , V ξ = (
γ 2 + s − D f (u0)

)
U . (5.4)

The eigenvalues at the limiting states u = 0 and u = 1 are

μ−
1,2(s) = ∓

√
γ 2 − D f (0) + s,

μ+
1,2(s) = ∓

√
γ 2 − D f (1) + s. (5.5)

The condition (H2) becomes

(H3) μ−
1 (0) < ha � ∞, −∞ � hb < μ+

2 (0). If ha = ∞ and/or hb = −∞, we mean the Dirichlet bound-
ary conditions at a and/or b.

Before studying the stability problem, we shall state a version of the roughness of the exponential
dichotomies which allow us to relate the spectrum at u = 0 and u = 1 to the exponential dichotomies
around u0 and ũ. Let T (x, y) be the principal matrix solution for u′(x) = A(x)u(x), x ∈ I . Assume the
system has an exponential dichotomy on I with projections P s(x) and Pu(x). Let the constant of the
dichotomy be K0 � 1 and the exponent be α0 > 0. The exponential dichotomy persists under small
perturbations.

Theorem 5.1 (Roughness of exponential dichotomies). Let T B(x, y) be the principal matrix solution for the
following linear system

u′(x) = (
A(x) + B(x)

)
u(x). (5.6)

Assume that the matrix B(x) is piecewise continuous and uniformly bounded with δ = sup{|B(x)|, x ∈ I} < ∞.
For any given 0 < α̃ < α0 , assume that δ is sufficiently small so that

C1δ < 1, and C2δ < 1 where C1 = 2K0

α0 − α̃
, C2 = 2K 2

0

(α0 − α̃)(1 − C1δ)
.

Then (5.6) also has an exponential dichotomy on I with projections P̃ s(x), P̃u(x), the constant K̃ and the
exponent α̃. Moreover K̃ = K0(1 − C1δ)

−1(1 − C2δ)
−1 and
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∥∥T B(x, y) P̃ s(y)
∥∥ � K̃ e−α̃(x−y), y � x,∥∥T B(x, y) P̃ s(y)
∥∥ � K̃ e−α̃(y−x), x � y,

∥∥ P̃ s(x) − P s(x)
∥∥ � C2δ

1 − C2δ
.

The proof of Theorem 5.1 is in [3,16]. For a shorter proof with almost identical notations, see [18]
(simply replace the rate function a(x) by ex and the decay rate (a(x)/a(y))−α be e−α(x−y)).

To treat the linear system (5.3) that depends on the parameter s, following [17], we introduce an
s-dependent weighted norm to vectors in R

2 as follows.

Definition 5.1. Consider the Banach space E0.5(s) of vectors (u, v) ∈ C
2 with the following weighted

norms:

∥∥(u, v)τ
∥∥

E0.5(s) = (
1 + |s|0.5)∣∣u(s)

∣∣ + ∣∣v(s)
∣∣,

where |u| and |v| are the Euclidean norms.

The principle matrix solution T (ξ,η, s) with parameter s of the linear system

Uξ = V , V ξ = (
sI + A(ξ)

)
U + B(ξ)V (5.7)

can be viewed as a linear flow in E0.5(s). Without any change, the results of Theorem 5.1 still hold
in E0.5(s).

Definition 5.2. We say that the linear system (5.7), or the flow T (ξ,η, s), has an exponential di-
chotomy in E0.5(s) for s ∈ C

+ and on the interval ξ ∈ J , if there exist projections P s(ξ, s)+ Pu(ξ, s) = I
in E0.5(s), continuous in ξ and uniformly bounded with respect to s ∈ C

+ , such that the property (1)
of the following holds. Moreover there exist constant K > 0 and exponent α(1 +|s|0.5) > 0 for s ∈ C

+ ,
such that the property (2) of the following holds.

(1)

{
T (ξ,η, s)P s(η, s) = P s(ξ, s)T (ξ,η, s), ξ � η ∈ J ,

T (ξ,η, s)Pu(η, s) = Pu(ξ, s)T (ξ,η, s), ξ � η ∈ J ;

(2)

⎧⎨
⎩

∣∣T (ξ,η, s)P s(η, s)
∣∣

E0.5(s) � K e−α(1+|s|0.5)(ξ−η), ξ � η,∣∣T (ξ,η, s)Pu(η, s)
∣∣

E0.5(s) � K e−α(1+|s|0.5)|ξ−η|, ξ � η.

We now consider the existence of exponential dichotomies for the linear systems (5.4) for ξ ∈ R

and (5.3) for ξ ∈ [a,b].

Lemma 5.2. Assume that u0(ξ) is the whole line standing wave connecting u = 0 to u = 1. Let δ1 =
supξ |D f (u0(ξ))|. Assume that N > 0 is a large constant and

δ2 = max
{

sup
{∣∣D f

(
u0(ξ)

) − D f (0)
∣∣: ξ � −N

}
, sup

{∣∣D f
(
u0(ξ)

) − D f (1)
∣∣: ξ � N

}}
. (5.8)

If δ2 is sufficiently small, then in the space E0.5(s), system (5.4), with s ∈ C
+ , has an exponential dichotomy

on R. The projections P s(ξ, s) and Pu(ξ, s) are uniformly bounded by K > 0 that is independent of s. The
exponent is α(1 + |s|0.5) for some α > 0.

Moreover, let P s(E1, s) and Pu(E2, s) be the spectral projections at E1 or E2 . There is a large constant
M > 0 such that at ξ = a or ξ = b, depending on |s| � M or |s| < M, we have
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∥∥P s(ξ, s) − P s(E1, s)
∥∥ � 16K 2δ j

α(1 + |s|0.5)
, ξ � −N,

∥∥Pu(ξ, s) − Pu(E2, s)
∥∥ � 16K 2δ j

α(1 + |s|0.5)
, ξ � N, (5.9)

where j = 1 for |s| � M, and j = 2 for |s| � M.

Proof. Case 1: Exponential dichotomies for |s| � M. Let M > 0 be a sufficiently large constant. In the
region {|s| � M} ∩ {s ∈ C

+}, we treat (5.4) as perturbations to the system

Uξ = V , V ξ = (
γ 2 + s

)
U .

From [17], the system above has an exponential dichotomy in E0.5(s) with the constants K0 and the
exponent α0 = α(1 + |s|0.5).

Although we cannot make δ1 = supξ |D f (u0(ξ))| small, but the conditions C1δ1 < 1 and C2δ1 < 1
in Theorem 5.1 can be satisfied if we choose α̃ = α(1+|s|0.5)/2. Then from α0 = α(1+|s|0.5), α0 −α̃ =
α(1+|s|0.5)/2 can be large from the condition |s| � M for a large constant M . If M is sufficiently large
then

C1δ1 = 4kδ1

α(1 + |s|0.5)
� 1

2
, C2δ1 � 8K 2δ1

α(1 + |s|0.5)
� 1

2
.

From Theorem 5.1, if M > 0 is sufficiently large then system (5.3) has exponential dichotomies in
E0.5(s) with the constant K̃ independent of s. The exponent of the dichotomy is α̃ = α

2 (1+|s|0.5). The
projections satisfy (5.9) with j = 1.

Case 2: Exponential dichotomies for |s| � M. After M > 0 has been determined, we consider the
spectral equation in the compact set {|s| � M} ∩ {s ∈ C

+}. Assume that in I− = (−∞,−N] and I+ =
[N,∞), q(ξ) is close to E1 and E2 respectively. We now replace D f (u0(ξ)) by D f (0) or D f (1) in I−
or I+ . The eigenvalues for the constant system are μ±

1,2(s) as in (5.5).
It is straightforward to show that

Reμ−
1 (s) � μ−

1 (0) < 0 < μ−
2 (0) � Reμ−

2 (s),

Reμ+
1 (s) � μ+

1 (0) < 0 < μ+
2 (0) � Reμ+

2 (s).

The two systems with constant coefficients D f (0) and D f (1) have exponential dichotomies on R

with the common exponent α0 = Reμ−
2 (s), since Reμ−

2 (s) < Reμ+
2 (s). Also the projections depend

continuously on s. So in the compact set of s, we can assume that K is independent of s.
Now in I− or I+ , u0(ξ) is close to u = 0 or u = 1, (5.4) is a perturbation to the linear variational

system around u = 0, u = 1 with constant coefficients. If δ2 as in (5.8) is sufficiently small, then
a standard perturbation theory shows that system (5.4) has exponential dichotomies in I− and I+ .
In fact, the unstable (stable) subspace in I− (or I+) is uniquely defined while the stable (unstable)
subspace in I− (or I+) is not unique. For definiteness, assume that R P s(−N, s) and R Pu(N, s) are
the same as the stable eigenspace at u = 0 and unstable eigenspace at u = 1 of the linear constant
system respectively. Then the dichotomies thus obtained are also analytic in s. The dichotomies can
be extended to ξ ∈ [a,0] and [0,b] by the linear flow. The extended dichotomies have the same
exponents but the constant K may be larger.

Since {|s| � M} ∩ {s ∈ C
+} is a compact set, without loss of generality we assume that for sys-

tem (5.4), the constant of the dichotomy is independent of s and the exponent is α1(1 + |s|0.5) where
α1 is independent of s.

From the proof presented above, if |s| � M , we actually have a unified exponential dichotomy on R,
i.e., Pu(s,0−) = Pu(s,0+), P s(s,0−) = P s(s,0+). For |s| � M , the exponential dichotomies related to
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system (5.4) for ξ ∈ (−∞,0] and [0,∞) have the following property: R Pu(s,0−) and R P s(s,0+) are
linearly independent. This is from the fact that s ∈ C

+ is not an eigenvalue for the linear variational
system around u0(ξ), due to the assumption that the standing wave solution u0(ξ) is stable. The
linear independence of the subspace allows us to redefine a unified dichotomy for all ξ ∈ R if |s| � M ,
just as in Lemmas 3.1 and 3.2.

If we combine the two cases, unified projections can be defined and are continuous on R. Now
select the larger of the two constants K , and reset α = min{α̃/2,α1}, then system (5.4) has an ex-
ponential dichotomy in E0.5(s) for ξ ∈ R. The constant K is independent of s and the exponent is
α(1 + |s|0.5). This completes the proof of the lemma. �

Similar results for system (5.3) are stated in the following lemma:

Lemma 5.3. Assume that ũ(ξ) is a standing wave solution that is near the whole line standing wave solution
u0(ξ) for all ξ ∈ [a,b]. Let

δ3 = sup
{∣∣D f

(
ũ(ξ)

) − D f
(
u0(ξ)

)∣∣: ξ ∈ [a,b]}. (5.10)

If δ3 is sufficiently small, then in the space E0.5(s), system (5.3) has an exponential dichotomy on [a,b]. Let
the projections of the dichotomy related to u0(ξ) be denoted by P 0

s (ξ, s) and P 0
u(ξ, s); and the projections of

the dichotomy related to ũ(ξ) be denoted by P s(ξ, s) and Pu(ξ, s). If the following additional conditions are
satisfied:

R P s(ξ, s) = T (ξ,b, s)R P 0
s (b, s),

R Pu(ξ, s) = T (ξ,b, s)R P 0
u(a, s),

then the perturbed system has a unique exponential dichotomy on [a,b]. The projections P s(ξ, s) and Pu(ξ, s)
are uniformly bounded by K > 0 that is independent of s. The exponent is α(1 + |s|0.5) for some α > 0.

Moreover, let P s(E1, s) and Pu(E2, s) be the spectral projections at E1 or E2 . There is a large constant
M > 0 such that at ξ = a or ξ = b, depending on |s| � M or |s| < M, we have

∥∥P s(a, s) − P s(E1, s)
∥∥ � 32K 2δ j

α(1 + |s|0.5)
,

∥∥Pu(b, s) − Pu(E2, s)
∥∥ � 32K 2δ j

α(1 + |s|0.5)
. (5.11)

The constant δ j in the above is determined as follows: For |s| � M, δ j = supξ |D f (ũ(ξ))|; and for |s| � M,
δ j = δ4 where δ4 = δ2 + δ3 with δ2 defined in (5.8).

Proof. The existence of M > 0 and the case |s| � M is proved exactly as in Lemma 5.2.
For the proof of the case |s| � M , if the exponential dichotomy around u0(ξ) has the exponential

α(1 + |s|0.5). Then to system (5.3), we let the exponent be (α/2)(1 + |s|0.5). If δ3 is sufficiently small,
then Theorem 5.1 can be applied to treat (5.3) as a perturbation of (5.4) for ξ ∈ [a,b]. �
Corollary 5.4. The projections P s(ξ, s) and Pu(ξ, s) depend analytically on s ∈C

+ .

Proof. It is well known that the uniform limit of a sequence of analytic functions is analytic. The
spectral projections for the two systems with constant coefficients D f (0) and D f (1) around u = 0,1
are analytic functions of s ∈ C

+ . The existence of the projections of the exponential dichotomies for
systems (5.3) and (5.4) is obtained by a perturbation method. Iteration procedures or the contrac-
tion mapping principles are used to find the projection matrices. Therefore, if the equations depend
analytically in s, then the projections also depend analytically in s. �
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Remark 5.1. The exponents α(1 + |s|0.5) obtained in Lemma 5.2 and Lemma 5.3 are not the best and
can be improved. However, the comparison of projections as in (5.9) and (5.11) is more important in
the rest of the paper.

Recall that from (H3), μ−
1 (0) < ha � ∞ and −∞ � hb < μ+

2 (0).
Assume that P1 and P2 are close to E1 and E2 respectively and |a| and b are sufficiently large. For

the boundary value problem (5.3), T Ma and T Mb transversely intersect with R P s(a, s) and R Pu(b, s)
respectively. Let φs ∈ R P s(a, s), φu(b, s) ∈ R Pu(b, s). Recall that na , nb are normal vectors to the
boundary manifolds as in (4.1). Then for each s ∈C

+ , φs → φs ·na and φu → φu ·nb are isomorphisms.
There exist bounded inverse operators Rs(s) and Ru(s) for each s ∈ C

+ such that:

φs = Rs(s)(φs · na), φu = Ru(s)(φu · nb). (5.12)

Lemma 5.5. The operators Rs(s) : R → R P s(a, s), Ru(s) : R → R Pu(b, s) are bounded operators for each
s ∈ C

+ in the E0.5(s) norm. For the non-Dirichlet boundary conditions, there exists a constant C that only
depends on ha, hb but is independent of s ∈C

+ such that

‖φs‖E0.5(s) � C‖φs · na‖, ‖φu‖E0.5(s) � C‖φu · nb‖.
For the Dirichlet boundary conditions

‖φs‖E0.5(s) � C
(
1 + |s|0.5)|φs · na|, ‖φu‖E0.5(s) � C

(
1 + |s|0.5)|φu · nb|.

Proof. Assume ka �= ∞ first. Dirichlet boundary conditions will be treated later.
Case 1: Non-Dirichlet boundary conditions. First consider {s ∈ C

+} ∩ {|s| � M} where M > 0 is a
large constant. At ξ = a, the vector φs = (u, v) is close to the eigenvector Y −

1 (s) = (1, λ−
1 (s)) and

na = (ka,−1)/
√

k2
a + 1. Then

∣∣Y −
1 (s) · na

∣∣ = ∣∣ka − λ−
1 (s)

∣∣/√k2
a + 1.

If M > 0 is sufficiently large then |ka − λ−
1 (s)| � c1(1 + |s|0.5) for |s| � M . Also |Y −

1 (s)|E0.5(s) � c2(1 +
|s|0.5) where the constants c1, c2 > 0 are independent of s. Therefore

∣∣Y −
1 (s) · na

∣∣ � c1

c2

√
k2

a + 1

∣∣Y −
1 (s)

∣∣
E0.5(s), for |s| � M. (5.13)

Next consider s in the compact set {|s| � M} ∩ {s ∈ C
+}. It is straightforward to verify that

|ka − λ−
1 (s)| � c3 and |Y −

1 (s)|E0.5(s) � c4 in such set. Therefore

∣∣Y −
1 (s) · na

∣∣ � c3

c4

√
k2

a + 1

∣∣Y −
1 (s)

∣∣
E0.5(s), for |s| � M. (5.14)

From (5.13), (5.14), we have

∣∣Y −
1 (s) · na

∣∣ � C
∣∣Y −

1 (s)
∣∣

E0.5(s), for s ∈C
+. (5.15)

We now choose φs(s) = P (a, s)Y −
1 (s) ∈ R P s(a, s). It is a small perturbation of Y −

1 (s) since

∣∣φs(s) − Y −
1 (s)

∣∣ = ∥∥(
P (a, s) − P (E1, s)

)∥∥∣∣Y −
1 (s)

∣∣ � 16K 2δ

0.5

∣∣Y −
1 (s)

∣∣.

α(1 + |s| )
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The fraction 16K 2δ/α(1 + |s|0.5) can be made arbitrarily small in two steps as described in Theo-
rem 5.1.

So from (5.15), we have

∣∣φs(s) · na
∣∣ � C

∣∣φs(s)
∣∣

E0.5(s), for s ∈C
+.

Therefore the inverse operator satisfies the property ‖Rs(s)‖ � C for some constant C > 0 that is
independent of s.

Case 2: Dirichlet boundary condition. Next we consider the Dirichlet boundary condition where
ka = ∞. In this case na = (1,0) and |Y −

1 (s) · na| = 1. In the unbounded region |s| � M ,

∣∣Y −
1 (s) · na

∣∣ � 1

c2(1 + |s|0.5)

∣∣Y −
1 (s)

∣∣
E0.5(s).

In the bounded region |s| � M we have the same estimate with 1/c2 replaced by a constant C that
is independent of s.

Recall that φs is a small perturbation of Y −
1 (s). Therefore for the Dirichlet boundary condition at

ξ = a, we have

∣∣φs(s) · na
∣∣ � C

1 + |s|0.5

∣∣φs(s)
∣∣

E0.5(s), for s ∈C
+.

The inverse operator satisfies the property ‖Rs(s)‖ � C(1 + |s|0.5) for some constant C > 0 that is
independent of s.

The proof for the boundedness of Ru(s) in the E0.5(s) norm is similar. �
Theorem 5.6. Assume that P1 , P2 are sufficiently close to E1 , E2 respectively, and |a|, b are sufficiently
large so that the estimates for the inverse operators Rs(s) : R → R P s(a, s), Ru(s) : R → R Pu(b, s) as in
Lemma 5.5 hold. Then under these conditions the standing wave ũ is stable if we assume that b − a is suffi-
ciently large.

Proof. The proof follows closely to the existence and uniqueness of the standing wave solutions.
We show that for any s ∈ C

+ , (U , V ) = 0 is the unique solution for the eigenvalue/eigenfunction
equation (5.3). Therefore s is not an eigenvalue.

Using the exponential dichotomy, for a � ξ � b, we can express the solution of (5.3) as

U(ξ, s) = T (ξ,a)P s(a, s)U(a, s) + T (ξ,b, s)Pu(b, s)U(b, s).

The solution is uniquely determined by the unknown vectors

φs := P s(a, s)U(a, s) ∈ R P s(a, s), φu := Pu(b, s)U(b, s) ∈ R Pu(b, s).

To satisfy the boundary condition, we require that

(
φs + T (a,b, s)φu

) · na = 0,
(
φu + T (b,a, s)φs

) · nb = 0.

We look for the vector (φs, φu) which is a fix point to the following system:

φ′
s = −Rs(s)

[(
T (a,b, s)φu

) · na
]
,

φ′
u = −Ru(s)

[(
T (b,a, s)φs

) · nb
]
. (5.16)
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From Lemma 5.3 and Lemma 5.5,

∥∥φ′
s

∥∥ + ∥∥φ′
u

∥∥ � C
(
1 + |s|0.5)e−α(1+|s|0.5)(b−a)

(‖φs‖ + ‖φu‖).
If b − a is sufficiently large then the system of Eqs. (5.16) defines a mapping from R P s(a, s) ×

R Pu(b, s) to itself: (φs, φu) → (φ′
s, φ

′
u), and is a contraction mapping in the space E0.5(s) × E0.5(s).

Therefore (5.16) has a unique solution (φs, φu) = (0,0) for any s ∈ C
+ . Thus corresponding to any

s ∈C
+ , the only solution to the eigenvalue problem is U (ξ, s) = 0. Hence any s ∈C

+ is not an eigen-
value for the linearized equation with boundary conditions. �
6. Generalized Lambda Lemma and geometric method to the existence and stability problems

A useful tool to show the existence of the standing wave ũ is the graph transformations com-
monly known as the Inclination Lemma or the Lambda Lemma [10,2,4]. However, the classical Lambda
Lemma does not apply to any neighborhood of E1 which is not a saddle point. In this section we will
present a generalized Lambda Lemma that works in the neighborhood of E1, and use it to give an
alternative proof of the existence of standing waves in large bounded domain with some boundary
conditions.

Following [10], we define the so-called u-slice that is transverse to the relatively stable subspace
of the dichotomy at q(ξ). Any point in a neighborhood of q(ξ), ξ ∈ R, can be expressed as (u, v) =
q(ξ)+(φs, φu) where φs ∈ R P s(ξ), φu ∈ R Pu(ξ). This servers as a local 2D coordinate system near q(ξ).

Definition 6.1. A C1 submanifold Mu is said to be a u-slice passing through q(ξ) and of size (ε1, K1)

if

Mu := {
q(ξ) + (φs, φu): φs = h1(φu), |φu|w(ξ) � ε1, h1(0) = 0, h1 ∈ C1, |Dh1| � K1

}
.

Let the flow of (1.3) be Φ(ξ,η). We have the following “Generalized λ Lemma”:

Lemma 6.1. Let Mu := {φs = h1(φu)} be a u-slice passing through the point q(a) and of size (ε1, K1). Then
there exists a constant ε̃1(K1) > 0 which depends on K1 such that the following results hold:

If 0 < ε1 � ε̃1 and if a < 0 is sufficiently large, then Φ(0,a)Mu is a u-slice. The size of the domain of
Φ(0,a)Mu is greater than ε1 in the weighted norm ‖ · ‖w(ξ) , and the truncated image

M̄u = Φ(0,a)Mu ∩ {|φu|w(0) � ε1
}
,

is a u-slice passing through q(0), and of size (ε1, C K1e(β−−α−)a + Cε1).

Proof. The idea of the proof follows from that of [10] which was adapted from the proof of the
Lambda Lemma in [9], although both papers dealt with discrete dynamical systems.

We first show that there is a function h̄1 : R Pu(0) → R P s(0) such that Φ(0,a)Mu is the graph of
the function φs(0) = h̄1(φu(0)).

For any small vector in the 1D subspace: φu(0) ∈ R Pu(0) with |φu(0)|w(0) � ε1, we look for the
corresponding φs(0) ∈ R P s(0) such that (φs(0), φu(0)) ∈ M̄u . Since M̃0 := {U | Pu(0)U = φu(0)} is a
manifold transverse to R Pu(0). Just like the proof of Theorem 4.3, with Mu and M̃0 as two boundary
manifolds, we can prove that there exists a unique solution U(ξ) to the nonlinear BVP which will
uniquely determine φs(0). The function φs(0) = h̄1(φu(0)) is defined by changing φu(0) continuously
in the ε1-neighborhood of 0 and calculating the corresponding φs(0).

As in (4.8), the solution of the nonlinear BVP U(ξ) can be expressed by φu(0) and an undetermined
φs(a) := P s(a)U(a) as

U = F2
(
φs(a),φu(0)

)
with |U |w � C

(∥∥φs(a)
∥∥ + ∥∥φu(0)

∥∥ )
. (6.1)
w(a) w(0)
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Then φu(a) := Pu(a)U(0) can be written as

φu(a) = T (a,0)φu(0) +
a∫

0

T (a, ζ )Pu(ζ )G(ζ )dζ,

where G(ζ ) = N (F2(φs(a), φu(0)))(ζ ) where N is the higher order term after linearization. Due to
the nonlinear term N (U ), the integral term is bounded by C(‖φs(a)‖2

w(a) + ‖φu(0)‖2
w(0)). At ξ = a,

φs(a) = h1
(
φu(a)

) = h1

(
T (a,0)φu(0) +

a∫
0

T (a, ζ )Pu(ζ )G(ζ )dζ

)
.

In the above equation, φs(a) also appears in the right hand side through the small integral term. By
the contraction mapping principle one can uniquely find φs(a) as a function of φu(0):

φs(a) = H
(
φu(0)

)
, with

∣∣φs(a)
∣∣

w(a)
� |Dh1|

(∣∣T (a,0)Pu(0)
∣∣∣∣φu(0)

∣∣
w(0)

+ C
∣∣φu(0)

∣∣2
w(0)

)
.

Using this φs(a) to calculate φs(0),

φs(0) = P s(0)U(0) = T (0,a)φs(a) +
0∫

a

T (0, ζ )P s(ζ )G(ζ )dζ.

Thus we have an explicit form of h̄1 : φu(0) → φs(0):

φs(0) = T (0,a)h1
(
T (a,0)φu(0) + Iu(a)

) + Is(0),

where Iu(a) =
a∫

0

T (a, ζ )Pu(ζ )N
(
F2

(
H

(
φu(0)

)
, φu(0)

))
(ζ )dζ,

Is(0) =
0∫

a

T (0, ζ )P s(ζ )N
(
F2

(
H

(
φu(0)

)
, φu(0)

))
(ζ )dζ. (6.2)

The integral terms Iu(0) and Is(a) are small terms as proved in Section 3.1. Using the estimates

∣∣Iu(a)
∣∣

w(a)
+ ∣∣Is(0)

∣∣
w(0)

� C
∣∣φu(0)

∣∣2
w(0)

,

we obtain the following from (6.2):

∣∣φs(0)
∣∣

w(0)
�

∣∣T (0,a)P s(a)
∣∣|Dh1|

(∣∣T (a,0)Pu(0)
∣∣∣∣φu(0)

∣∣
w(0)

+ ∣∣Iu(a)
∣∣

w(a)

) + ∣∣Is(0)
∣∣

w(0)

� Ce(β−−α−)a|Dh1|
∣∣φu(0)

∣∣
w(0)

+ C
∣∣φu(0)

∣∣2
w(0)

� Ce(β−−α−)a K1ε1 + Cε2.
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From (6.2), we also have

∂φs(0)

∂φu(0)
= T (0,a)P s(a)Dh1

[
T (a,0)Pu(0) + ∂ Iu(a)

∂φu(0)

]
+ ∂ Is(0)

∂φu(0)
,

∂ Iu(a)

∂φu(0)
=

a∫
0

T (a, ζ )Pu(ζ )
∂N
∂U

(
∂F2

∂φu(0)
+ ∂F2

∂φs(u)

∂H
∂φu(0)

)
dζ.

Therefore,

∣∣∣∣ ∂ Iu(a)

∂φu(0)

∣∣∣∣ � C
∣∣φu(0)

∣∣
w(0)

.

Similarly we can show that

∣∣∣∣ ∂ Is(0)

∂φu(0)

∣∣∣∣ �
∣∣φu(0)

∣∣
w(0)

.

We finally have obtain that

|Dh̄1| =
∣∣∣∣ ∂φs(0)

∂φu(0)

∣∣∣∣ � Ce(β−−α−)a|Dh1| + C
∣∣φu(0)

∣∣
w(0)

� C K1e(β−−α−)a + Cε1. �
Remark 6.1. In the unweighted norm, the domain of the image of a u-slice is also expanding for ξ > a,
so a simpler graph transformation lemma on the u-slice using unweighted norm can be proved. How-
ever, using the weighted norm allows us to develop a comprehensive theory on the graph transforms
near the non-saddle point E1. In the neighborhood of q(0), we can define the C1 local submani-
fold that is transverse to R Pu(ξ) at ξ = 0, called the s-slice [10]. Without using the weighted norm,
the size of an s-slice shrinks under the backward flow when ξ → −∞. Using the weighted norms
‖ · ‖w(ξ) in the definition of the s-slice, the backward image of an s-slice appears to be expanding so
after truncation it is of the same size in the weighted norm. Although the weighted norm blows up
the neighborhood of q(a), it can be shown that as ξ → a, the s-slice C1 approaches R P s(ξ) in the
weighted norm.

The proof of the part of the Lambda Lemma involving s-slice is more complicated and will not be
given in this paper.

We now present a geometric proof of the existence of the standing wave ũ using the generalized
Lambda Lemma (Lemma 6.1).

Recall that Φ(ξ,η) is the flow of (1.3). We will take the forward mapping of Ma from a to ξ = 0,
the image will be denoted M ′

a = Φ(0,a)Ma; and take backwards mapping of Mb from b to ξ = 0, the
image will be called M ′

b = Φ(0,b)Mb . If the two manifolds M ′
a and M ′

b intersect transversely at ξ = 0,
then a unique solution q̃(ξ) near the heteroclinic orbit q(ξ) is determined. See Fig. 6.1.

Because the initial manifold Ma transversely intersects with R P s(a). The initial manifold can be
expressed as φs(a) = h1(φu(a)) where h1 : R Pu(a) → R P s(a) is a mapping from a 1D linear space to
another 1D linear space.

From Lemma 6.1, the Generalized λ Lemma, M ′
a = Φ(0,a)Ma can be expressed as φs(0) =

h̄1(φu(0)) where Dh̄1 → 0 as ε1 → 0 and a → −∞.
The linear variational equation around the heteroclinic orbit has an exponential dichotomy for

ξ � 0 and has a pseudo exponential dichotomy for ξ � 0. Using the regular Lambda Lemma [9],
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Fig. 6.1. The transverse intersection of M ′
a and M ′

b uniquely determines the solution of the boundary value problem.

M ′
b = Φ(0,b)Mb is C1 exponentially close to the stable subspace R P s(0) of the dichotomy at 0+. Then

one can choose C1 distance to be small if b is large. From the generalized Lambda Lemma (Lemma 6.1)
which shows that M ′

a = Φ(0,a)Ma is C1 exponentially close to the strong unstable subspace of the
dichotomy at 0− if Ce(β−−α−)a + Cε1 � 1.

It is known that R Pu(0) and R P s(0) are linearly independent. Then the strong unstable subspace
at 0− is transverse to the stable subspace at 0+. In this example, the stable subspace at 0+ is the
tangent vector of q′(0) while the strong unstable subspace is transverse to q′(0) at 0−.

On the other hand, if a < 0 is sufficiently large, then M ′
a = Φ(0,a)Ma will pass through q(0) and

its tangent space T M ′
a is close to R Pu(0) which is transverse to q′(0). This shows that M ′

a will have a
unique nonempty intersection with M ′

b at near q(0). The intersection determines ũ(0), and hence the
solution ũ(ξ) for all ξ ∈ J .

In the rest of this section, we illustrate the usefulness of the graph transformation method. We
shall use the linear version of the Lambda Lemma to show that the conditions ka > λ−

1 , kb < λ+
2

that define the boundary conditions above are almost necessary for the standing wave solution to be
stable.

Theorem 6.2.

(I) If −∞ < ka < λ−
1 (0) and −∞ � kb < λ+

2 (0), then the standing wave ũ is unstable.
(II) If λ−

1 (0) < ka � ∞ and λ+
2 (0) < kb < ∞, then the standing wave ũ is unstable.

Proof. We only need to consider the real eigenvalue s � 0.
(I) As shown in Lemma 5.3, for all real s � 0, the linearized system around ũ has a pseudo

exponential dichotomy on R
− and R

+ respectively. Although the projections can be defined and con-
tinuous on the whole real line R, but the exponential rates on R

± are different. Since λ+
2 (s) � λ+

2 (0)

for all s � 0, we have kb < λ+
2 (s) for all s � 0. Thus T Mb intersects transversely with the unsta-

ble subspace at ξ = b. By the regular Lambda Lemma on R
+ , T (0,b, s) maps T Mb to T M ′

b that
is C1 close to the stable subspace R P s(0, s) at ξ = 0. Since T M ′

b intersects with R Pu(0−) trans-
versely, by the linear version of the generalized Lambda Lemma on R

− , which is the same as the
pseudo exponential dichotomy on R

− , the backwards flow T (a,0, s) maps T M ′
b to its image that

is close to the stable subspace of the dichotomy at ξ = a. However the stable subspace satisfies
V /U = c/2 − √

c2/4 − D f (0) + s which approaches −∞ continuously as s → ∞. Since T Ma satis-
fies V /U = ka with −∞ < ka < λ−

1 (0). Then for some real s0 > 0 the backward image of T M ′
b will

be tangent to T Ma . For such s0 the tangential intersection of the subspaces determines a (nonzero)
eigenfunction. Therefore s0 is an eigenvalue.

(II) For any s � 0, we have λ−
1 (s) < ka . Thus Ma transversely intersects with the stable subspace

R P s(a, s) of the dichotomy at a. The forward flow T (0,a, s) will take T Ma to T M ′
a , which from the

linear version of the generalized Lambda Lemma, is close to the strong unstable subspace R Pu(0, s) at
ξ = 0. Since the exponential dichotomies have unified projections, R Pu(0−, s) = R Pu(0+, s) at ξ = 0.
So by the regular Lambda Lemma on R

+ and the fact T M ′
a transversely intersects with R P s(0+, s) at
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ξ = 0, we conclude that T (b,0, s) maps T M ′
a to a linear space that is close to R Pu(b, s) at b. Now as-

sume that s increases continuously from 0 to ∞, then the slope of R Pu(b, s) starting from near λ+
2 (0)

monotonically increases to near infinite. For some s0 > 0, the slope of T (b,0, s)T M ′
a will be tangent

to Mb . For such s0 there is a nonzero solution which is the eigenfunction for the eigenvalue s0. �
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