STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH

XIAO-BIAO LIN

1. QUADRATIC FUNCTIONAL AND THE EULER-JACOBI EQUATION

The purpose of this note is to study the Sturm-Liouville problem. We use the variational problem as a tool – minimizing the functional is not the goal of this note.

Consider the quadratic functional

(1)
$$K(y) = \int_{a}^{b} [P(x)y^{2} + R(x)y'^{2}] dx.$$

The Euler equation is the well-known Jacobi equation

(2)
$$Py - \frac{d}{dx}(Ry') = 0.$$

Consider the isoperimetric problem: find the stationary solution for K with the constrain

(3)
$$\int_{a}^{b} y^2 dx = 1.$$

The method of multiplier leads to the problem of finding the stationary solution for

$$\int_{a}^{b} (Ry'^{2} + Py^{2} - \lambda y^{2}) dx.$$

The corresponding Euler equation is

(4)
$$Py - \frac{d}{dx}(Ry') = \lambda y.$$

This is so called the Sturm-Liouville equation.

We will only consider the simplest boundary conditions

(5)
$$y(a) = y(b) = 0.$$

Assume that R(x) and P(x) are C^1 functions, and R(x) > 0 for $a \le x \le b$.

Introducing the notation

(6)
$$L(y) = Py - \frac{d}{dx}(Ry').$$

Jacobi equation (2) and S-L equation (4) become

$$L(y) = 0, \quad L(y) = \lambda y.$$

Usually L(y) is called the S-L operator. It is linear – for any C^2 functions y_1, y_2 and any constant α ,

$$L(y_1 + y_2) = L(y_1) + L(y_2),$$
$$L(\alpha y) = \alpha L(y).$$

Quadratic and bilinear functionals

Define

(7)
$$K(y,z) = \int_a^b (Ry'z' + Pyz)dx.$$

K(y, z) is bilinear with respect to y = y(x) and z = z(x). When y = z, we have

$$K(y,y) = K(y).$$

Observe that

$$K(a_1y + a_2z) = a_1^2 K(y) + 2a_1 a_2 K(y, z) + a_2^2 K(z),$$
$$K(\sum_{i=1}^n a_i y_i) = \sum_{i=1}^n a_i^2 K(y_i) + 2\sum_{j>i} K(y_i, y_j).$$

Using the boundary condition (5),

$$\int_{a}^{b} Ry'z'dx = -\int_{a}^{b} (\frac{d}{dx}Ry')zdx = -\int_{a}^{b} (\frac{d}{dx}Rz')ydx.$$

Thus, (7) can be written as

(8)
$$K(y,z) = \int_{a}^{b} L(y)zdx,$$

where L(y) is from (6). Obviously we also have

$$K(y,z) = \int_{a}^{b} L(z)ydx.$$

Therefore

(9)
$$\int_{a}^{b} L(y)zdx = \int_{a}^{b} L(z)ydx$$

In particular, if y = z,

(10)
$$K(y) = \int_{a}^{b} L(y)ydx$$

Self-adjoint operators Assume that a linear operator Ay(x) is defined on the function space $\{y(x) : a \le x \le b\}$. If for any functions y(x), z(x) in the space, we have

$$\int_{z}^{b} (Ay)zdx = \int_{a}^{b} (Az)ydx,$$

then Ay is called a self-adjoint operator. Equation (9) shows that the S-L operator is self-adjoint.

Similarly, we can show that in the space $y \in C^1$, L(y) is self-adjoint under the conditions

$$y'(a) = 0, \quad y'(b) = 0.$$

Also, the operator L(y) is self-adjoint under the periodic boundary condition with period $\omega = b - a$:

$$y(b) = y(a), \quad y'(b) = y'(a)$$

Orthogonality: Two functions $y_1(x)$ and $y_2(x)$ are orthogonal on [a, b] with respect to the weight $\rho(x)$ if

$$\int_a^b \rho(x) y_1(x) y_2(x) dx = 0.$$

The function $y_1(x)$ is said to be normalized with respect to the weight $\rho(x)$ if

$$\int_a^b \rho(x) y_1^2(x) dx = 1.$$

We assume that $\rho(x) \ge 0$ and is not identically zero.

A sequence of functions y_i is said to be orthonormal with respect to $\rho(x)$ if

$$\int_{a}^{b} \rho(x) y_{i}(x) y_{j}(x) dx = \begin{cases} 0 & i \neq j, \\ 1 & i = j. \end{cases}$$

XIAO-BIAO LIN

2. EIGENVALUES AND EIGENFUNCTIONS

For any real or complex λ , equation (4) under condition (5) has a trivial solution

$$y(x) \equiv 0$$

But for some λ , the system may have nontrivial solution $y \neq 0$. Those λ are called eigenvalues of the operator L, and the corresponding nontrivial functions are called eigenfunctions of L(y). The eigenfunction is said to be normalized if

$$\int_{a}^{b} y^2(x) dx = 1.$$

Basic properties of eigenvalues and eigenfunctions

1. If y(x) is an eigenfunction with y(a) = y(b) = 0, then

$$y'(a) \neq 0, \quad y'(b) \neq 0.$$

2. If y_1, y_2 are two eigenfunctions corresponding to the same eigenvalue, then the linear combination

$$y(x) = c_1 y_1(x) + c_2 y_2(x),$$

is either an eigenfunction or a trivial solution.

3. If y_1 and y_2 are eigenfunctions corresponding to the same eigenvalue λ , then y_1 and y_2 are linearly dependent. Moreover

$$y_2(x)y_1'(a) - y_1(x)y_2'(a) \equiv 0.$$

4. There are only two normalized eigenfunctions for the same eigenvalue λ . The two differ by a multiple of -1.

Theorem 1. If y_1 and y_2 are eigenfunctions corresponding to two distinct eigenvalues $\lambda_1 \neq \lambda_2$, then y_1 and y_2 are orthogonal to each other

$$\int_a^b y_1(x)y_2(x)dx = 0.$$

Theorem 2. All the eigenvalues for L are real.

Theorem 3. If λ is an eigenvalue for L and y is a normalized eigenfunction, then

$$K[y] = \lambda$$

Theorem 4. If y(x) is an eigenfunction and if y_1 is orthogonal to y, then

$$K(y, y_1) = 0.$$

We now consider the minimization of K(y) under the condition

$$\int_{1}^{b} y^{2}(x)dx = 1, \quad y(a) = y(b) = 0.$$

It can be proved that there exists a C^1 function $y = y_1$ which solves the minimization problem. At some $\lambda = \lambda_1$, this function y_1 satisfies the Euler equation (4). Therefore, for the S-L equation there exist at least one eigenvalue λ_1 with corresponding y_1 . From Theorem 3,

$$K(y_1) = \lambda_1.$$

By definition, under conditions (3), (5), λ_1 is the minimum of K with the function y_1 . By the same theorem, any other eigenvalue is also a value of K(y) with the corresponding normalized eigenfunction y. However, they are not the minimum of K. Thus, λ_1 is the smallest eigenvalue. The fact is summarized in the following

Theorem 5. The smallest eigenvalue λ_1 is the conditional minimum of K under conditions (3) and (5).

Theorem 6. If λ_1 is the smallest eigenvalue with eigenfunction y_1 , then for any C^1 function y(x) satisfying (3) and (5),

$$K(y) \ge \lambda_1 \int_a^b y^2(x) dx.$$

The equal sign holds iff $y(x) = \pm ky_1$.

3. VARIATIONAL METHOD ON EIGENVALUES

Theorem 5 provides a method of getting the smallest eigenvalue λ_1 . Other eigenvalues can also be obtained by a conditional minimization process.

Theorem 7. Eigenvalues of L can be arranged as a increasing infinite sequence

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n < \ldots,$$

with corresponding eigenfunctions y_1, y_2, \ldots For each n, the eigenvalue λ_n is the conditional minimum of K(y) under the conditions

(11)
$$\int_{a}^{b} y^{2} dx = 1, \int_{a}^{b} y y_{i} dx = 0, \ i = 1, 2, \dots, n-1,$$
$$y(a) = y(b) = 0.$$

Theorem 8. For any C^1 function y that is orthogonal to the first n-1 eigenfunctions and satisfies (5), we have

(12)
$$K(y) \ge \lambda_n \int_a^b y^2 dx$$

The equal sign happens iff $y = ky_n$.

Theorem 9. If the coefficients P(x) and R(x) increase by positive $\delta P(x)$ and $\delta R(x)$, then the nth eigenvalue λ_n , n = 1, 2, 3, ... increases.

Theorem 10. (Courant) The nth eigenvalue, denoted $\lambda_n(b)$ is a monotone decreasing function of the right boundary b. more over

$$\lambda_n(b) \to \infty$$
, as $b \to a$.

Theorem 11. (Oscillation theorem) The eigenfunction $y_n(x)$ corresponding to the nth eigenvalue $\lambda_n(b)$ has n-1 zeros in (a,b).

4. Completeness of the eigenfunctions

Let $\{y_n\}$ be the orthonormal set of eigenfunctions corresponding to eigenvalues

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n < \ldots$$

Then

$$\int_{a}^{b} (\sum_{i=1}^{n} a_{i} y_{i})^{2} dx = \sum_{i=1}^{n} a_{i}^{2}.$$

For any $y \in C[a, b]$, $c_i = \int_a^b yy_i dx$ is the Fourier coefficient of y with respect to y_i , $\sum_{i=1}^{\infty} a_i y_i(x)$ is the Fourier series for y(x) and $\sum_{i=1}^{n} a_i y_i(x)$ is the partial sum. The remainder is defined as

$$R_n(x) := y(x) - \sum_{i=1}^n c_i y_i(x).$$

$$\int_{a}^{b} y^{2} dx = \sum_{i=1}^{n} c_{i}^{2} + \int_{a}^{b} R_{n}^{2} dx.$$

(Parseval's inequality)

$$\sum_{i=1}^{\infty} c_i^2 \le \int_a^b y^2 dx.$$

If the equal sign holds for any continuous function y(x), then we say $\{y_n(x)\}$ is complete.

Theorem 12. Eigenfunctions of the S-L equation form a complete orthonormal basis.

Proof. Consider $K(y) = \int_a^b (Py^2 + Ry'^2) dx$ and its first *n* eigenfunctions: y_1, y_2, \dots, y_n . Let $y(x) = \sum_{i=1}^n c_i y_i + R_n$.

$$K(y) = K(\sum_{1}^{n} c_{i}y_{i} + R_{n}) = K(R_{n}) + \sum_{1}^{n} c_{i}^{2}K(y_{i})$$
$$+ 2\sum_{1}^{n} c_{i}K(y_{i}, R_{n}) + 2\sum_{i \neq j}^{n} c_{i}c_{j}K(y_{i}, y_{j}).$$

Based on $K(y_i) = \lambda_i$ and the orthogonality,

$$K(y_i, R_n) = 0, \quad K(y_i, y_j) = 0, \text{ if } i \neq j.$$
$$K(y) = \sum_{1}^{n} \lambda_i c_i^2 + K(R_n).$$

Since R_n is orthogonal to y_1, \ldots, y_n , from Theorem 8,

$$K(R_n) \ge \lambda_{n+1} \int_a^b R_n^2 dx$$

 $\lambda_i > 0$ starting from some index $i > i_0$, thus,

$$K(R_n) = K(y) - \sum_{1}^{n} \lambda_i c_i^2,$$

decreases if $n \ge i_0$, hence bounded with respect to n.

$$\int_a^b R_n^2 dx \le \frac{1}{\lambda_{n+1}} (K(y) - \sum_{1}^n \lambda_i c_i^2).$$

Since $\lambda_{n+1} \to \infty$, we have

$$\lim_{n \to \infty} \int_a^b R_n^2 dx = 0.$$