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1. Quadratic functional and the Euler-Jacobi Equation

The purpose of this note is to study the Sturm-Liouville problem. We use the

variational problem as a tool – minimizing the functional is not the goal of this note.

Consider the quadratic functional

(1) K(y) =

∫ b

a

[P (x)y2 + R(x)y′ 2]dx.

The Euler equation is the well-known Jacobi equation

(2) Py − d

dx
(Ry′) = 0.

Consider the isoperimetric problem: find the stationary solution for K with the con-

strain

(3)

∫ b

a

y2dx = 1.

The method of multiplier leads to the problem of finding the stationary solution

for ∫ b

a

(Ry′ 2 + Py2 − λy2)dx.

The corresponding Euler equation is

(4) Py − d

dx
(Ry′) = λy.

This is so called the Sturm-Liouville equation.

We will only consider the simplest boundary conditions

(5) y(a) = y(b) = 0.

Assume that R(x) and P (x) are C1 functions, and R(x) > 0 for a ≤ x ≤ b.
1
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Introducing the notation

(6) L(y) = Py − d

dx
(Ry′).

Jacobi equation (2) and S-L equation (4) become

L(y) = 0, L(y) = λy.

Usually L(y) is called the S-L operator. It is linear – for any C2 functions y1, y2

and any constant α,

L(y1 + y2) = L(y1) + L(y2),

L(αy) = αL(y).

Quadratic and bilinear functionals

Define

(7) K(y, z) =

∫ b

a

(Ry′z′ + Pyz)dx.

K(y, z) is bilinear with respect to y = y(x) and z = z(x). When y = z, we have

K(y, y) = K(y).

Observe that

K(a1y + a2z) = a2
1K(y) + 2a1a2K(y, z) + a2

2K(z),

K(
n∑

i=1

aiyi) =
n∑

i=1

a2
i K(yi) + 2

∑
j>i

K(yi, yj).

Using the boundary condition (5),∫ b

a

Ry′z′dx = −
∫ b

a

(
d

dx
Ry′)zdx = −

∫ b

a

(
d

dx
Rz′)ydx.

Thus, (7) can be written as

(8) K(y, z) =

∫ b

a

L(y)zdx,

where L(y) is from (6). Obviously we also have

K(y, z) =

∫ b

a

L(z)ydx.



STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH 3

Therefore

(9)

∫ b

a

L(y)zdx =

∫ b

a

L(z)ydx.

In particular, if y = z,

(10) K(y) =

∫ b

a

L(y)ydx.

Self-adjoint operators Assume that a linear operator Ay(x) is defined on the

function space {y(x) : a ≤ x ≤ b}. If for any functions y(x), z(x) in the space, we

have ∫ b

z

(Ay)zdx =

∫ b

a

(Az)ydx,

then Ay is called a self-adjoint operator. Equation (9) shows that the S-L operator

is self-adjoint.

Similarly, we can show that in the space y ∈ C1, L(y) is self-adjoint under the

conditions

y′(a) = 0, y′(b) = 0.

Also, the operator L(y) is self-adjoint under the periodic boundary condition with

period ω = b− a:

y(b) = y(a), y′(b) = y′(a).

Orthogonality: Two functions y1(x) and y2(x) are orthogonal on [a, b] with re-

spect to the weight ρ(x) if ∫ b

a

ρ(x)y1(x)y2(x)dx = 0.

The function y1(x) is said to be normalized with respect to the weight ρ(x) if∫ b

a

ρ(x)y2
1(x)dx = 1.

We assume that ρ(x) ≥ 0 and is not identically zero.

A sequence of functions yi is said to be orthonormal with respect to ρ(x) if

∫ b

a

ρ(x)yi(x)yj(x)dx =

0 i 6= j,

1 i = j.
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2. Eigenvalues and eigenfunctions

For any real or complex λ, equation (4) under condition (5) has a trivial solution

y(x) ≡ 0.

But for some λ, the system may have nontrivial solution y 6= 0. Those λ are called

eigenvalues of the operator L, and the corresponding nontrivial functions are called

eigenfunctions of L(y). The eigenfunction is said to be normalized if∫ b

a

y2(x)dx = 1.

Basic properties of eigenvalues and eigenfunctions

1. If y(x) is an eigenfunction with y(a) = y(b) = 0, then

y′(a) 6= 0, y′(b) 6= 0.

2. If y1, y2 are two eigenfunctions corresponding to the same eigenvalue, then the

linear combination

y(x) = c1y1(x) + c2y2(x),

is either an eigenfunction or a trivial solution.

3. If y1 and y2 are eigenfunctions corresponding to the same eigenvalue λ, then y1

and y2 are linearly dependent. Moreover

y2(x)y′1(a)− y1(x)y′2(a) ≡ 0.

4. There are only two normalized eigenfunctions for the same eigenvalue λ. The

two differ by a multiple of −1.

Theorem 1. If y1 and y2 are eigenfunctions corresponding to two distinct eigenvalues

λ1 6= λ2, then y1 and y2 are orthogonal to each other∫ b

a

y1(x)y2(x)dx = 0.

Theorem 2. All the eigenvalues for L are real.

Theorem 3. If λ is an eigenvalue for L and y is a normalized eigenfunction, then

K[y] = λ.
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Theorem 4. If y(x) is an eigenfunction and if y1 is orthogonal to y, then

K(y, y1) = 0.

We now consider the minimization of K(y) under the condition∫ b

1

y2(x)dx = 1, y(a) = y(b) = 0.

It can be proved that there exists a C1 function y = y1 which solves the minimization

problem. At some λ = λ1, this function y1 satisfies the Euler equation (4). Therefore,

for the S-L equation there exist at least one eigenvalue λ1 with corresponding y1. From

Theorem 3,

K(y1) = λ1.

By definition, under conditions (3), (5), λ1 is the minimum of K with the function

y1. By the same theorem, any other eigenvalue is also a value of K(y) with the

corresponding normalized eigenfunction y. However, they are not the minimum of K.

Thus, λ1 is the smallest eigenvalue. The fact is summarized in the following

Theorem 5. The smallest eigenvalue λ1 is the conditional minimum of K under

conditions (3) and (5).

Theorem 6. If λ1 is the smallest eigenvalue with eigenfunction y1, then for any C1

function y(x) satisfying (3) and (5),

K(y) ≥ λ1

∫ b

a

y2(x)dx.

The equal sign holds iff y(x) = ±ky1.

3. Variational method on eigenvalues

Theorem 5 provides a method of getting the smallest eigenvalue λ1. Other eigen-

values can also be obtained by a conditional minimization process.

Theorem 7. Eigenvalues of L can be arranged as a increasing infinite sequence

λ1 < λ2 < · · · < λn < . . . ,
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with corresponding eigenfunctions y1, y2, . . . . For each n, the eigenvalue λn is the

conditional minimum of K(y) under the conditions

(11)

∫ b

a

y2dx = 1,

∫ b

a

yyidx = 0, i = 1, 2, . . . , n− 1,

y(a) = y(b) = 0.

Theorem 8. For any C1 function y that is orthogonal to the first n−1 eigenfunctions

and satisfies (5), we have

(12) K(y) ≥ λn

∫ b

a

y2dx.

The equal sign happens iff y = kyn.

Theorem 9. If the coefficients P (x) and R(x) increase by positive δP (x) and δR(x),

then the nth eigenvalue λn, n = 1, 2, 3, . . . increases.

Theorem 10. (Courant) The nth eigenvalue, denoted λn(b) is a monotone decreasing

function of the right boundary b. more over

λn(b) →∞, as b → a.

Theorem 11. (Oscillation theorem) The eigenfunction yn(x) corresponding to the

nth eigenvalue λn(b) has n− 1 zeros in (a, b).

4. Completeness of the eigenfunctions

Let {yn} be the orthonormal set of eigenfunctions corresponding to eigenvalues

λ1 < λ2 < · · · < λn < . . . .

Then ∫ b

a

(
n∑

i=1

aiyi)
2dx =

n∑
i=1

a2
i .

For any y ∈ C[a, b], ci =
∫ b

a
yyidx is the Fourier coefficient of y with respect to yi,∑∞

i=1 aiyi(x) is the Fourier series for y(x) and
∑n

i=1 aiyi(x) is the partial sum. The

remainder is defined as

Rn(x) := y(x)−
n∑

i=1

ciyi(x).
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a

y2dx =
n∑

i=1

c2
i +

∫ b

a

R2
ndx.

(Parseval’s inequality)
∞∑
i=1

c2
i ≤

∫ b

a

y2dx.

If the equal sign holds for any continuous function y(x), then we say {yn(x)} is

complete.

Theorem 12. Eigenfunctions of the S-L equation form a complete orthonormal basis.

Proof. Consider K(y) =
∫ b

a
(Py2+Ry′2)dx and its first n eigenfunctions: y1, y2, . . . , yn.

Let y(x) =
∑n

1 ciyi + Rn.

K(y) = K(
n∑
1

ciyi + Rn) = K(Rn) +
n∑
1

c2
i K(yi)

+ 2
n∑
1

ciK(yi, Rn) + 2
∑
i6=j

cicjK(yi, yj).

Based on K(yi) = λi and the orthogonality,

K(yi, Rn) = 0, K(yi, yj) = 0, if i 6= j.

K(y) =
n∑
1

λic
2
i + K(Rn).

Since Rn is orthogonal to y1, . . . , yn, from Theorem 8,

K(Rn) ≥ λn+1

∫ b

a

R2
ndx.

λi > 0 starting from some index i > i0, thus,

K(Rn) = K(y)−
n∑
1

λic
2
i ,

decreases if n ≥ i0, hence bounded with respect to n.∫ b

a

R2
ndx ≤ 1

λn+1

(K(y)−
n∑
1

λic
2
i ).

Since λn+1 →∞, we have

lim
n→∞

∫ b

a

R2
ndx = 0.
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