STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH

XIAO-BIAO LIN

1. Quadratic functional and the Euler-Jacobi Equation

The purpose of this note is to study the Sturm-Liouville problem. We use the variational problem as a tool - minimizing the functional is not the goal of this note.

Consider the quadratic functional

$$
\begin{equation*}
K(y)=\int_{a}^{b}\left[P(x) y^{2}+R(x) y^{\prime 2}\right] d x \tag{1}
\end{equation*}
$$

The Euler equation is the well-known Jacobi equation

$$
\begin{equation*}
P y-\frac{d}{d x}\left(R y^{\prime}\right)=0 . \tag{2}
\end{equation*}
$$

Consider the isoperimetric problem: find the stationary solution for K with the constrain

$$
\begin{equation*}
\int_{a}^{b} y^{2} d x=1 \tag{3}
\end{equation*}
$$

The method of multiplier leads to the problem of finding the stationary solution for

$$
\int_{a}^{b}\left(R y^{\prime 2}+P y^{2}-\lambda y^{2}\right) d x
$$

The corresponding Euler equation is

$$
\begin{equation*}
P y-\frac{d}{d x}\left(R y^{\prime}\right)=\lambda y . \tag{4}
\end{equation*}
$$

This is so called the Sturm-Liouville equation.
We will only consider the simplest boundary conditions

$$
\begin{equation*}
y(a)=y(b)=0 . \tag{5}
\end{equation*}
$$

Assume that $R(x)$ and $P(x)$ are C^{1} functions, and $R(x)>0$ for $a \leq x \leq b$.

Introducing the notation

$$
\begin{equation*}
L(y)=P y-\frac{d}{d x}\left(R y^{\prime}\right) \tag{6}
\end{equation*}
$$

Jacobi equation (2) and S-L equation (4) become

$$
L(y)=0, \quad L(y)=\lambda y
$$

Usually $L(y)$ is called the S -L operator. It is linear - for any C^{2} functions y_{1}, y_{2} and any constant α,

$$
\begin{aligned}
L\left(y_{1}+y_{2}\right) & =L\left(y_{1}\right)+L\left(y_{2}\right), \\
L(\alpha y) & =\alpha L(y) .
\end{aligned}
$$

Quadratic and bilinear functionals

Define

$$
\begin{equation*}
K(y, z)=\int_{a}^{b}\left(R y^{\prime} z^{\prime}+P y z\right) d x \tag{7}
\end{equation*}
$$

$K(y, z)$ is bilinear with respect to $y=y(x)$ and $z=z(x)$. When $y=z$, we have

$$
K(y, y)=K(y)
$$

Observe that

$$
\begin{array}{r}
K\left(a_{1} y+a_{2} z\right)=a_{1}^{2} K(y)+2 a_{1} a_{2} K(y, z)+a_{2}^{2} K(z), \\
K\left(\sum_{i=1}^{n} a_{i} y_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} K\left(y_{i}\right)+2 \sum_{j>i} K\left(y_{i}, y_{j}\right) .
\end{array}
$$

Using the boundary condition (5),

$$
\int_{a}^{b} R y^{\prime} z^{\prime} d x=-\int_{a}^{b}\left(\frac{d}{d x} R y^{\prime}\right) z d x=-\int_{a}^{b}\left(\frac{d}{d x} R z^{\prime}\right) y d x
$$

Thus, (7) can be written as

$$
\begin{equation*}
K(y, z)=\int_{a}^{b} L(y) z d x \tag{8}
\end{equation*}
$$

where $L(y)$ is from (6). Obviously we also have

$$
K(y, z)=\int_{a}^{b} L(z) y d x
$$

Therefore

$$
\begin{equation*}
\int_{a}^{b} L(y) z d x=\int_{a}^{b} L(z) y d x \tag{9}
\end{equation*}
$$

In particular, if $y=z$,

$$
\begin{equation*}
K(y)=\int_{a}^{b} L(y) y d x \tag{10}
\end{equation*}
$$

Self-adjoint operators Assume that a linear operator $A y(x)$ is defined on the function space $\{y(x): a \leq x \leq b\}$. If for any functions $y(x), z(x)$ in the space, we have

$$
\int_{z}^{b}(A y) z d x=\int_{a}^{b}(A z) y d x
$$

then $A y$ is called a self-adjoint operator. Equation (9) shows that the S-L operator is self-adjoint.

Similarly, we can show that in the space $y \in C^{1}, L(y)$ is self-adjoint under the conditions

$$
y^{\prime}(a)=0, \quad y^{\prime}(b)=0 .
$$

Also, the operator $L(y)$ is self-adjoint under the periodic boundary condition with period $\omega=b-a$:

$$
y(b)=y(a), \quad y^{\prime}(b)=y^{\prime}(a) .
$$

Orthogonality: Two functions $y_{1}(x)$ and $y_{2}(x)$ are orthogonal on $[a, b]$ with respect to the weight $\rho(x)$ if

$$
\int_{a}^{b} \rho(x) y_{1}(x) y_{2}(x) d x=0
$$

The function $y_{1}(x)$ is said to be normalized with respect to the weight $\rho(x)$ if

$$
\int_{a}^{b} \rho(x) y_{1}^{2}(x) d x=1
$$

We assume that $\rho(x) \geq 0$ and is not identically zero.
A sequence of functions y_{i} is said to be orthonormal with respect to $\rho(x)$ if

$$
\int_{a}^{b} \rho(x) y_{i}(x) y_{j}(x) d x= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

2. Eigenvalues and eigenfunctions

For any real or complex λ, equation (4) under condition (5) has a trivial solution

$$
y(x) \equiv 0 .
$$

But for some λ, the system may have nontrivial solution $y \neq 0$. Those λ are called eigenvalues of the operator L, and the corresponding nontrivial functions are called eigenfunctions of $L(y)$. The eigenfunction is said to be normalized if

$$
\int_{a}^{b} y^{2}(x) d x=1
$$

Basic properties of eigenvalues and eigenfunctions

1. If $y(x)$ is an eigenfunction with $y(a)=y(b)=0$, then

$$
y^{\prime}(a) \neq 0, \quad y^{\prime}(b) \neq 0
$$

2. If y_{1}, y_{2} are two eigenfunctions corresponding to the same eigenvalue, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x),
$$

is either an eigenfunction or a trivial solution.
3. If y_{1} and y_{2} are eigenfunctions corresponding to the same eigenvalue λ, then y_{1} and y_{2} are linearly dependent. Moreover

$$
y_{2}(x) y_{1}^{\prime}(a)-y_{1}(x) y_{2}^{\prime}(a) \equiv 0
$$

4. There are only two normalized eigenfunctions for the same eigenvalue λ. The two differ by a multiple of -1 .

Theorem 1. If y_{1} and y_{2} are eigenfunctions corresponding to two distinct eigenvalues $\lambda_{1} \neq \lambda_{2}$, then y_{1} and y_{2} are orthogonal to each other

$$
\int_{a}^{b} y_{1}(x) y_{2}(x) d x=0
$$

Theorem 2. All the eigenvalues for L are real.
Theorem 3. If λ is an eigenvalue for L and y is a normalized eigenfunction, then

$$
K[y]=\lambda .
$$

Theorem 4. If $y(x)$ is an eigenfunction and if y_{1} is orthogonal to y, then

$$
K\left(y, y_{1}\right)=0 .
$$

We now consider the minimization of $K(y)$ under the condition

$$
\int_{1}^{b} y^{2}(x) d x=1, \quad y(a)=y(b)=0
$$

It can be proved that there exists a C^{1} function $y=y_{1}$ which solves the minimization problem. At some $\lambda=\lambda_{1}$, this function y_{1} satisfies the Euler equation (4). Therefore, for the S-L equation there exist at least one eigenvalue λ_{1} with corresponding y_{1}. From Theorem 3,

$$
K\left(y_{1}\right)=\lambda_{1} .
$$

By definition, under conditions (3), (5), λ_{1} is the minimum of K with the function y_{1}. By the same theorem, any other eigenvalue is also a value of $K(y)$ with the corresponding normalized eigenfunction y. However, they are not the minimum of K. Thus, λ_{1} is the smallest eigenvalue. The fact is summarized in the following

Theorem 5. The smallest eigenvalue λ_{1} is the conditional minimum of K under conditions (3) and (5).

Theorem 6. If λ_{1} is the smallest eigenvalue with eigenfunction y_{1}, then for any C^{1} function $y(x)$ satisfying (3) and (5),

$$
K(y) \geq \lambda_{1} \int_{a}^{b} y^{2}(x) d x
$$

The equal sign holds iff $y(x)= \pm k y_{1}$.

3. Variational method on eigenvalues

Theorem 5 provides a method of getting the smallest eigenvalue λ_{1}. Other eigenvalues can also be obtained by a conditional minimization process.

Theorem 7. Eigenvalues of L can be arranged as a increasing infinite sequence

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\ldots,
$$

with corresponding eigenfunctions y_{1}, y_{2}, \ldots. For each n, the eigenvalue λ_{n} is the conditional minimum of $K(y)$ under the conditions

$$
\begin{align*}
& \int_{a}^{b} y^{2} d x=1, \int_{a}^{b} y y_{i} d x=0, i=1,2, \ldots, n-1 \tag{11}\\
& y(a)=y(b)=0
\end{align*}
$$

Theorem 8. For any C^{1} function y that is orthogonal to the first $n-1$ eigenfunctions and satisfies (5), we have

$$
\begin{equation*}
K(y) \geq \lambda_{n} \int_{a}^{b} y^{2} d x \tag{12}
\end{equation*}
$$

The equal sign happens iff $y=k y_{n}$.
Theorem 9. If the coefficients $P(x)$ and $R(x)$ increase by positive $\delta P(x)$ and $\delta R(x)$, then the nth eigenvalue $\lambda_{n}, n=1,2,3, \ldots$ increases.

Theorem 10. (Courant) The nth eigenvalue, denoted $\lambda_{n}(b)$ is a monotone decreasing function of the right boundary b. more over

$$
\lambda_{n}(b) \rightarrow \infty, \text { as } b \rightarrow a
$$

Theorem 11. (Oscillation theorem) The eigenfunction $y_{n}(x)$ corresponding to the nth eigenvalue $\lambda_{n}(b)$ has $n-1$ zeros in (a, b).

4. Completeness of the eigenfunctions

Let $\left\{y_{n}\right\}$ be the orthonormal set of eigenfunctions corresponding to eigenvalues

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\ldots
$$

Then

$$
\int_{a}^{b}\left(\sum_{i=1}^{n} a_{i} y_{i}\right)^{2} d x=\sum_{i=1}^{n} a_{i}^{2}
$$

For any $y \in C[a, b], c_{i}=\int_{a}^{b} y y_{i} d x$ is the Fourier coefficient of y with respect to y_{i}, $\sum_{i=1}^{\infty} a_{i} y_{i}(x)$ is the Fourier series for $y(x)$ and $\sum_{i=1}^{n} a_{i} y_{i}(x)$ is the partial sum. The remainder is defined as

$$
R_{n}(x):=y(x)-\sum_{i=1}^{n} c_{i} y_{i}(x)
$$

$$
\begin{aligned}
& \int_{a}^{b} y^{2} d x=\sum_{i=1}^{n} c_{i}^{2}+\int_{a}^{b} R_{n}^{2} d x \\
& \sum_{i=1}^{\infty} c_{i}^{2} \leq \int_{a}^{b} y^{2} d x
\end{aligned}
$$

(Parseval's inequality)
If the equal sign holds for any continuous function $y(x)$, then we say $\left\{y_{n}(x)\right\}$ is complete.

Theorem 12. Eigenfunctions of the S-L equation form a complete orthonormal basis.
Proof. Consider $K(y)=\int_{a}^{b}\left(P y^{2}+R y^{\prime 2}\right) d x$ and its first n eigenfunctions: $y_{1}, y_{2}, \ldots, y_{n}$. Let $y(x)=\sum_{1}^{n} c_{i} y_{i}+R_{n}$.

$$
\begin{aligned}
K(y) & =K\left(\sum_{1}^{n} c_{i} y_{i}+R_{n}\right)=K\left(R_{n}\right)+\sum_{1}^{n} c_{i}^{2} K\left(y_{i}\right) \\
& +2 \sum_{1}^{n} c_{i} K\left(y_{i}, R_{n}\right)+2 \sum_{i \neq j} c_{i} c_{j} K\left(y_{i}, y_{j}\right)
\end{aligned}
$$

Based on $K\left(y_{i}\right)=\lambda_{i}$ and the orthogonality,

$$
\begin{gathered}
K\left(y_{i}, R_{n}\right)=0, \quad K\left(y_{i}, y_{j}\right)=0, \text { if } i \neq j . \\
K(y)=\sum_{1}^{n} \lambda_{i} c_{i}^{2}+K\left(R_{n}\right)
\end{gathered}
$$

Since R_{n} is orthogonal to y_{1}, \ldots, y_{n}, from Theorem 8,

$$
K\left(R_{n}\right) \geq \lambda_{n+1} \int_{a}^{b} R_{n}^{2} d x
$$

$\lambda_{i}>0$ starting from some index $i>i_{0}$, thus,

$$
K\left(R_{n}\right)=K(y)-\sum_{1}^{n} \lambda_{i} c_{i}^{2}
$$

decreases if $n \geq i_{0}$, hence bounded with respect to n.

$$
\int_{a}^{b} R_{n}^{2} d x \leq \frac{1}{\lambda_{n+1}}\left(K(y)-\sum_{1}^{n} \lambda_{i} c_{i}^{2}\right)
$$

Since $\lambda_{n+1} \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} R_{n}^{2} d x=0
$$

